JPS6324415B2 - - Google Patents

Info

Publication number
JPS6324415B2
JPS6324415B2 JP59122979A JP12297984A JPS6324415B2 JP S6324415 B2 JPS6324415 B2 JP S6324415B2 JP 59122979 A JP59122979 A JP 59122979A JP 12297984 A JP12297984 A JP 12297984A JP S6324415 B2 JPS6324415 B2 JP S6324415B2
Authority
JP
Japan
Prior art keywords
collection
mno
collection material
kcfc
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59122979A
Other languages
Japanese (ja)
Other versions
JPS614530A (en
Inventor
Hideo Higuchi
Nobuhiro Nonaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON BUNSEKI SENTAA
Original Assignee
NIPPON BUNSEKI SENTAA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON BUNSEKI SENTAA filed Critical NIPPON BUNSEKI SENTAA
Priority to JP12297984A priority Critical patent/JPS614530A/en
Priority to US06/719,433 priority patent/US4720422A/en
Publication of JPS614530A publication Critical patent/JPS614530A/en
Publication of JPS6324415B2 publication Critical patent/JPS6324415B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(イ) 発明の目的 産業上の利用分野 本発明は放射性核種および重金属等の捕集材で
ある。 本発明は原子力発電所、放射性同位元素取扱等
事業所を始めとする原子力施設から発生する放射
性廃液中に含まれる放射性核種の分離除去および
“海洋河川”あるいは産業廃水等に含まれている
放射性核種および重金属等の分離除去に利用され
る。 従来の技術 原子力発電所(水型)、放射性同位元素取扱事
業所等各種原子力施設から発生する放射性廃液に
は各種放射性核種が含まれている。これらの放射
性廃液の処理においては、被曝低減の観点などか
ら廃液中に含まれる放射性核種を分離除去して放
射線レベルを低減させることが必要である。又、
海洋河川中には微量ではあるが、 60Co、 54Mn、
90Sr、 65Zn、 137Csなど種々の人工性核種の存
在が確認されており、これらの放射性核種の濃度
および分布に関するデータを長期間にわたり蓄積
することは海洋学、海洋生態学または中低レベル
放射性廃棄物の海洋投棄などの観点から重要なこ
とである。 従来、放射性廃液中の放射性核種の分離・除去
あるいは海洋河川からの放射性核種および重金属
の回収には主として凝集沈殿法およびイオン交換
法が利用されている。 凝集沈殿法は、廃液に凝集剤を混合して放射性
物質の電荷を中和し、これを凝集させて大きな分
子の集団、すなわちフロツクを生成させ、このフ
ロツクを沈降、分離させる処理方法で、一般に
Al2(SO43+Ca(OH)2、粘土(+高分子凝集剤)、
FeCl3+Na2S、Na3PO4+Ca(OH)2等が凝集剤と
して使用されている。この方法は、小量ないし複
雑な廃液の処理には、手数がかかる割に除染係数
は大きくなるが安価簡便であり、単純な液質の大
量廃液を処理するのに適するので広く用いられて
いる。イオン交換法は各種合成陽イオン交換体、
合成陰イオン交換体、混床イオン交換樹脂、ある
いは石炭、褐炭、泥炭等をベースとする天然有機
交換体、グリンサイド、カオリナイト、ゼオライ
ト等をベースとする無機交換体を使用して廃液の
処理を行う方法である。かかる凝集沈殿法および
イオン交換法によつて廃液を処理するとき放射能
は各々スラツジ(汚泥)および再生廃液に濃縮さ
れる。非放射性廃液の場合には浄化された水を得
さえすればこれら濃縮液は一般に放置廃棄される
のであるが、放射性廃液の場合には濃縮放射能を
再拡散させず保持固定するため二次処理が必要で
ある。現在、かかるスラツジ、再生廃液は沈降、
砂床ロ過、加圧ロ過、真空ロ過、遠心分離、オー
トクレーブ処理等の二次処理方法で脱水減容をは
かつた後固型化が施されているが、これらの二次
処理による減容比は各々<1、4、5〜10、10〜
15、25〜35および2〜4というのが実情である。 上述した理由により、各種原子力事業所から発
生する放射性廃液に含まれる放射性核種、海洋河
川あるいは産業廃水等に含まれる放射性核種ある
いは重金属を効率よく分離・除去し且つ減容比が
高い捕集材が斯界で望まれていた。 本発明者等はアクリル繊維に一般式K2M〓
〔FeC(CN)6〕〔M〓はコバルト、亜鉛、ニツケル
等2価の金属〕で表わされるフエロシアン酸塩化
合物を担持・固定して成る放射性核種および重金
属捕集材(以下“捕集材−KCFC”と略記する場
合がある)を開発してすでに特許出願した〔特願
昭59−115827<特開昭60−260000>〕。捕集材−
KCFCは 137Csを100%捕集する他 59Fe、 65Zn、
144Ce等を高率で捕集するが、 54Mnを高捕集率
で捕集することが出来ないという欠点があること
がわかつた。そこで本発明者等は鋭意研究した結
果、 54Mnの他 65Zn、 144Ce、 137Cs、 59Fe、
60Co、をほぼ100%捕集出来る捕集材の開発に成
巧した。 発明が解決しようとする問題点 本発明によつて捕集効率および減容比の高い放
射性核種および重金属捕集材が提供される。 本発明によつてPH7〜9の範囲で放射性廃液、
海洋河川あるいは産業廃水中に含まれる放射性核
種特に 54Mn、 59Fe、 60Co、 65Zn、 103+106
Ru、 134+137Cs、 144Ceを多量のNa+存在下にお
いてもほぼ100%の高い効率で捕集し且つ高い比
率で減容される捕集材が提供される。 本発明によつて深属海水中の微量放射性核種を
採水現場で捕集することが可能な捕集材が提供さ
れる。 本発明によつて解決される問題点は以下逐次明
らかにされる。 (ロ) 発明の構成 問題点を解決するための手段 上述した問題点は捕集材−KCFCとアクリル繊
維にMnO2を担持・固定した捕集材(以下“捕集
材−MnO2”と略記する場合がある)を捕集装置
内に混合して使用するか、両捕集材を通結して使
用することによつて解決される。更に、別法とし
ては上述した問題点は、アクリル繊維に一般式
K2M〓〔Fe(CN)6〕で表わされるフエロシアン酸
塩化合物(ここでM〓はCo、Zn、Ni、Zr等2価
金属から選ばれる一種)およびMnO2を同時に担
持・固定した捕集材(以下“捕集材−KCKF+
MnO2”と略記する場合がある)を使用すること
によつて解決される。 以下、本発明の捕集材の製造方法の一態様につ
いて述べる。 捕集材−KCFC アクリル繊維100gを10%フエロシアン化カリ
ウム水溶液に浸漬し3時間加温し、取り出した
後、10%M〓(NO32(M〓はCo、Zn、Ni、Zr等2
価の金属)水溶液に浸漬し3時間加温した後水洗
後60〜70℃で10時間乾燥し、この操作を3回繰返
すことによつてアクリル繊維に一般式K2M〓〔Fe
(CN)6〕(M〓はCo、Ni、Zn、Zr等2価の金属)
を担持・固定させた赤褐色の捕集材が製造され
る。 捕集材−MnO2 アクリル繊維100gを0.5M過マンガンカリウム
水溶液に4日間浸漬し繊維が黒色を示したら引き
上げ過剰の過マンガン酸カリウムを純水で洗浄し
たのち、60〜70℃で乾燥することによつてアクリ
ル繊維にMnO2を担持・固定させた黒色の捕集材
が製造される。 捕集材−KCFC+MnO2 アクリル繊維100gを10%フエロシアン化カリ
ウム水溶液に浸漬し3時間加温し、取り出した
後、10%M〓(NO32(M〓はCo、Zn、Ni、Zr等2
価の金属水溶液に浸漬し3時間加温した後水洗後
60〜70℃で10時間乾燥する。この操作を3回繰返
し再び0.5M過マンガン酸カリウム水溶液に4日
間浸漬し、繊維が黒色を示したら引き上げ過剰の
過マンガン酸カリウムを純水で洗浄したのち60〜
70℃で乾燥することによつてアクリル繊維に一般
式K2M〓(Fe(CN)6)で表わされるフエロシアン
酸塩化合物およびMnO2を同時に担持・固定した
捕集材が製造される。 又、別の方法としては、アクリル繊維100gを
10%M〓(NO32(M〓は前述した通り)水溶液に浸
漬し3時間加温し、取り出した後10%フエロシア
ン化カリウム水溶液に浸漬し3時間加温した後水
洗後60〜70℃で10時間乾燥する。この操作を3回
繰返し再び上述した0.5M過マンガン酸カリウム
水溶液による処理以下の処理を施すことによつて
も捕集材−KCFC+MnO2が製造される。 本発明者等が本発明以前に開発した捕集材−
KCFCは 134+137Cs、 59Fe、 65Zn、および 144Ce
等をほぼ100%捕集することが出来るが 54Mnを
高捕集率で捕集することが出来ない。一方、本発
明の捕集材の一部を構成する捕集材−MnO254
Mnの他 65Znおよび 144Ce等を100%捕集するこ
とが出来る。従つて、捕集材−KCFCおよび捕集
材−MnO2を捕集装置内に混合して入れるか、両
捕集材を連結して使用することによつて、 54
Mn、 59Fe、 60Co、 65Zn、 134+137Csおよび 144
Ce等を100%捕集することが出来る。更に、捕集
材−KCFCと捕集材−MnO2を併用する代りにア
クリル繊維にK2M〓(Fe(CN)6)(M〓は前述した
通り)で表わされるフエロシアン酸塩化合物およ
びMnO2を同時に担持・固定させた捕集材−
KCFC+MnO2を使用しても同じ捕集効果を得る
ことが出来る。 本発明の捕集材を製造するのに使用されるアク
リル繊維は繊径18μm、8wt%のアクリル酸メチ
ルを共重合したものでアニオン基として0.05me
q/g繊維のSO3 -を含有している。30%以下の塩
酸、硝酸、硫酸等の耐酸性は非常に強く、逆に耐
アルカリ性は弱く1%水酸化ナトリウム溶液でも
変性する。 本発明の捕集材はPH7〜9の範囲で 54Mn、 6
Zn、 59Fe、 60Co、 103+106Ru、 137Csおよび 1
44Ceを略々100%捕集する。更に重要なことは多
量のNa+の存在下においても上記核種を捕集する
ことが出来るという特徴をもつている。 本発明の捕集材は放射性廃液の態様によつて使
い分けることが好ましい、例えば軽水一次冷却
水系中の放射性核種を分離・除去するにはフエロ
シアン化コバルト・カリウムに替えてフエロシア
ン化ニツケル・カリウムおよび二酸化マンガンを
担持・固定させた捕集材を用いる方が好ましい。 以下実施例および参考例によつて本発明をより
具体的に説明する。 実施例−捕集材の製造 材料および試薬 (a) アクリル繊維:繊径18μm、8wt%のアクリ
ル酸メチルを共重合したもので、アニオン基と
して0.05meq/g繊維のSO3 -を含有している。 (b) フエロシアン化カリウム:試薬特級 (c) 硝酸コバルト:試薬特級 (d) 過マンガン酸カリウム:試薬特級 参照例 1 捕集材−MnO2 アクリル繊維100gを0.5M過マンガン酸カリウ
ム溶液に4日間浸漬し繊維が黒色を呈したら引き
上げ過剰の過マンガン酸カリウムを純水で洗浄し
たのち60〜70℃で乾燥することによつて黒色の綿
状捕集材−MnO2を製造した。この捕集材はアク
リル繊維上にMnO2の形で担持されている。捕集
材−MnO21g中に担持されたマンガン量は123mg
であつた。 参照例 2 捕集材−KCFC アクリル繊維100gを10%フエロシアン化カリ
ウム溶液に浸漬し3時間加温した。取り出した
後、10%硝酸コバルト溶液に浸漬し3時間加温し
た。水洗後60゜〜70℃で10時間乾燥した。この操
作を3回繰り返してアクリル繊維にフエロシアン
化コバルト、カリウム(K2Co〔Fe(CN)6〕)を担
持・固定した赤褐色の綿状捕集材−KCFCを製造
した。捕集材−KCFCでは、アクリル繊維上に
K2Co3〔Fe(CN)62の形で担持されている。捕集
材−KCFC1g中に担持されたカリウム、コバル
トおよび鉄の量はそれぞれ9.8mg、35mg、および
12mgであつた。 実施例 1 捕集材−KCFC+MnO2 アクリル繊維100gを10%フエロシアン化カリ
ウム水溶液に浸漬し3時間加温した。取り出した
後、10%硝酸コバルト水溶液に浸漬し3時間加温
した。水洗後60℃〜70℃で10時間乾燥した。この
操作を3回繰り返し、再び0.5M過マンガンカリ
ウム水溶液に4日間浸漬し、繊維が黒色を示した
ら引き上げ、過剰の過マンガン酸カリウムを純水
で洗浄したのち、60〜70℃で乾燥して黒色の綿状
捕集材−KCFC+MnO2を製造した。捕集材−
KCFC+MnO21g中に担持されたマンガン、カ
リウム、コバルトおよび鉄の量はそれぞれ123mg、
9.8mg、35mgおよび12mgであつた。 次に実施例で製造した3種の捕集材を使用して
海水からの各種放射性核種の捕集テストを行つて
得た結果を参考例として記載する。 参考例 1 実験材料 A カラム ガラス製、内径15mmφ、長さ20cmを使用し
た。 B 海水 海水(千葉県勝浦市で採水)は富士フイル
ム社製・ミクロフイルター(0.45μm)でロ
過したものを使用し、トレーサーとしての各
種の放射性核種添加後、塩酸ならびに水酸化
ナトリウム溶液でPHを8.0±0.5に調整した。
また使用した海水の塩分は33.7%であつた C 使用核種 54Mn(MnCl2、0.5NHCl)無担体 59Fe(FeCl3、0.5NHCl)11mCi/mgFe 60Co(CoCl2、0.1NHCl)136mCi/mgCo 65Zn(ZnCl2、0.5NHCl)2.8mCi/mgZn 85Sr(SrCl2、0.5NHCl)7.4mCi/mgSr 106Ru(塩化物、4NHCl)7.7mCi/mgRu 137Cs(CsCl、0.5NHCl)9.0mCi/mgCs 144Ce(CeCl3、1NHCl)250mCi/mgCe これらの核種を放射能濃度として約100nC
i/mlに希釈したのち海水に添加した。 D NaI(Tl)シンチレーシヨンスペクトロメ
ーター:44φ×51mm井戸型NaI(Tl)検出器
をAloka社製ユニバーサルスケーラ(モデル
TDC−501)に接続して測定した。 2 実験操作 2.1 バツチ法による撹拌時間と捕集率 3つのバツチの海水200ml毎に各種のトレ
ーサーを添加した。これに実施例1および参
照例1、2で製造した捕集材を加え、撹拌時
間を2、5、10、20分と変化させた。各撹拌
時間が終了した後、海水の一定量を測定用ポ
リエチレン管に移し入れ、NaI(Tl)検出器
で測定し捕集率を求めた。捕集率Aは次式の
ように定義した。バツチ法による実験条件を
表−1に示す。 A(%)={(R1−R2)/R1}×100 A:繊維(KCFC)の捕集率 R1:トレーサー添加海水の計数率 R2:撹拌後の海水の計数率
(a) Field of industrial application of the invention The present invention is a collection material for radionuclides, heavy metals, etc. The present invention is applicable to the separation and removal of radionuclides contained in radioactive waste fluids generated from nuclear facilities such as nuclear power plants and radioisotope handling facilities, and to the separation and removal of radionuclides contained in "marine rivers" or industrial wastewater. It is also used for separating and removing heavy metals, etc. BACKGROUND ART Radioactive waste fluids generated from various nuclear facilities, such as nuclear power plants (water type) and offices that handle radioactive isotopes, contain various radionuclides. In the treatment of these radioactive waste liquids, it is necessary to separate and remove radionuclides contained in the waste liquids to reduce the radiation level from the perspective of reducing exposure. or,
Although in trace amounts, 60 Co, 54 Mn,
The existence of various artificial nuclides, such as 90 Sr, 65 Zn, and 137 Cs, has been confirmed, and the accumulation of data on the concentration and distribution of these radionuclides over a long period of time is a challenge for oceanography, marine ecology, or medium- to low-level research. This is important from the perspective of preventing radioactive waste from being dumped into the ocean. Conventionally, coagulation-sedimentation methods and ion exchange methods have been mainly used to separate and remove radionuclides from radioactive waste liquids or to recover radionuclides and heavy metals from marine rivers. The coagulation-sedimentation method is a treatment method in which a flocculant is mixed with the waste liquid to neutralize the electric charge of the radioactive substance, and this is flocculated to produce a group of large molecules, or flocs, and the flocs are sedimented and separated.
Al 2 (SO 4 ) 3 +Ca(OH) 2 , clay (+polymer flocculant),
FeCl 3 +Na 2 S, Na 3 PO 4 +Ca(OH) 2 , etc. are used as flocculants. This method is widely used for treating small volumes or complex waste liquids, although it requires a lot of work and the decontamination coefficient is large, but it is cheap and easy, and is suitable for treating large quantities of simple liquid waste liquids. There is. The ion exchange method uses various synthetic cation exchangers,
Treatment of waste liquids using synthetic anion exchangers, mixed bed ion exchange resins, or natural organic exchangers based on coal, lignite, peat, etc., or inorganic exchangers based on greenside, kaolinite, zeolites, etc. This is the way to do it. When wastewater is treated by such coagulation-sedimentation and ion exchange methods, radioactivity is concentrated in the sludge and regenerated wastewater, respectively. In the case of non-radioactive waste liquids, these concentrated liquids are generally disposed of as long as purified water is obtained, but in the case of radioactive waste liquids, secondary treatment is required to retain and fix the concentrated radioactivity without re-diffusion. is necessary. Currently, such sludge and recycled waste liquid settles,
Solidification is performed after dehydration and volume reduction using secondary treatment methods such as sand bed filtration, pressure filtration, vacuum filtration, centrifugation, and autoclaving. The volume reduction ratio is <1, 4, 5~10, 10~, respectively.
The actual situation is 15, 25-35 and 2-4. For the reasons mentioned above, a collection material with a high volume reduction ratio that can efficiently separate and remove radionuclides contained in radioactive waste fluids generated from various nuclear power plants, radionuclides or heavy metals contained in marine rivers or industrial wastewater, etc. is needed. It was desired in this world. The inventors applied the general formula K 2 M〓 to acrylic fibers.
[FeC(CN) 6 ] [M] is a divalent metal such as cobalt, zinc, or nickel] A radioactive nuclide and heavy metal trapping material (hereinafter referred to as a “trapping material”) is made by supporting and fixing a ferrocyanate compound represented by cobalt, zinc, or nickel. KCFC" (sometimes abbreviated as "KCFC") and has already applied for a patent [Patent Application No. 59-115827 <Unexamined Patent Application No. 60-260000>]. Collection material
KCFC captures 100% of 137 Cs, as well as 59 Fe, 65 Zn,
It was found that 144 Ce, etc. can be collected at a high rate, but 54 Mn cannot be collected at a high rate. As a result of intensive research, the present inventors found that in addition to 54 Mn, 65 Zn, 144 Ce, 137 Cs, 59 Fe,
We have succeeded in developing a collection material that can capture almost 100% of 60 Co. Problems to be Solved by the Invention The present invention provides a radionuclide and heavy metal trapping material with high trapping efficiency and volume reduction ratio. According to the present invention, radioactive waste liquid with a pH in the range of 7 to 9,
Radionuclides contained in marine rivers or industrial wastewater, especially 54 Mn, 59 Fe, 60 Co, 65 Zn, 103+106
A trapping material is provided that can trap Ru, 134+137 Cs, and 144 Ce with a high efficiency of almost 100% even in the presence of a large amount of Na + and can reduce the volume at a high rate. The present invention provides a collection material capable of collecting trace amounts of radionuclides in deep seawater at a water sampling site. The problems solved by the present invention will be successively clarified below. (b) Means for solving the structural problems of the invention The above-mentioned problems can be solved by using a collection material - KCFC and a collection material in which MnO 2 is supported and fixed on acrylic fibers (hereinafter abbreviated as "collection material - MnO 2 "). This problem can be solved by using a mixture of the two types of collection materials (which may be used in some cases) in the collection device, or by combining both types of collection materials. Furthermore, as an alternative method, the above-mentioned problems can be solved by applying the general formula to acrylic fibers.
A ferrocyanate compound represented by K 2 M〓 [Fe(CN) 6 ] (where M〓 is a type selected from divalent metals such as Co, Zn, Ni, and Zr) and MnO 2 are simultaneously supported and immobilized. Collection material (hereinafter referred to as "collection material - KCKF+"
This is solved by using MnO 2 (sometimes abbreviated as "MnO 2 ").Hereinafter, one embodiment of the method for producing the collection material of the present invention will be described. Collection material - KCFC 100 g of acrylic fiber is After soaking in potassium erocyanide aqueous solution and heating for 3 hours, and taking it out, 10% M〓(NO 3 ) 2 (M〓 is Co, Zn, Ni, Zr, etc. 2
The acrylic fibers were immersed in an aqueous solution of 3 hours of heating, washed with water, and dried at 60 to 70°C for 10 hours. By repeating this operation 3 times, the acrylic fibers were given the general formula K 2 M〓[Fe
(CN) 6 〕(M〓 is a divalent metal such as Co, Ni, Zn, Zr)
A reddish-brown collection material is produced that supports and immobilizes . Collection material - Soak 100g of MnO 2 acrylic fibers in a 0.5M potassium permanganate aqueous solution for 4 days. When the fibers turn black, pull them out and wash excess potassium permanganate with pure water, then dry at 60-70℃. A black collection material in which MnO 2 is supported and fixed on acrylic fibers is produced. Collection material - KCFC + MnO 2 100g of acrylic fiber is immersed in 10% potassium ferrocyanide aqueous solution, heated for 3 hours, taken out, 10%M〓(NO 3 ) 2 (M〓 is Co, Zn, Ni, Zr, etc.) 2
After immersing in a metal aqueous solution and heating for 3 hours, and then washing with water.
Dry at 60-70°C for 10 hours. This operation was repeated three times and the fibers were immersed in a 0.5M potassium permanganate aqueous solution for 4 days. When the fibers turned black, they were pulled up and washed with pure water to remove excess potassium permanganate.
By drying at 70°C, a collection material is produced in which a ferrocyanate compound represented by the general formula K 2 M (Fe(CN) 6 ) and MnO 2 are simultaneously supported and fixed on the acrylic fiber. Another method is to use 100g of acrylic fiber.
10%M〓(NO 3 ) 2 (M〓 is as described above) immersed in an aqueous solution, heated for 3 hours, taken out, immersed in a 10% potassium ferrocyanide aqueous solution, heated for 3 hours, and washed with water for 60 to 70 minutes. Dry for 10 hours at °C. A collection material -KCFC+MnO 2 is also produced by repeating this operation three times and performing the following treatment with the above-mentioned 0.5M potassium permanganate aqueous solution. Collection material developed by the present inventors prior to the present invention -
KCFC is 134+137 Cs, 59 Fe, 65 Zn, and 144 Ce
It is possible to collect almost 100% of 54 Mn, etc., but it is not possible to collect Mn at a high collection rate. On the other hand, the collection material - MnO 2 constituting a part of the collection material of the present invention is 54
In addition to Mn, 100% of 65 Zn and 144 Ce can be collected. Therefore, by mixing the collection material - KCFC and the collection material - MnO 2 into the collection device, or by using both collection materials in conjunction, 54
Mn, 59 Fe, 60 Co, 65 Zn, 134+137 Cs and 144
Capable of capturing 100% of Ce, etc. Furthermore, instead of using a scavenger - KCFC and a scavenger - MnO 2 together, a ferrocyanate compound represented by K 2 M〓(Fe(CN) 6 ) (M〓 is as described above) and MnO are added to the acrylic fiber. A collection material that supports and fixes 2 at the same time.
The same trapping effect can be obtained by using KCFC + MnO 2 . The acrylic fiber used to produce the collection material of the present invention has a fiber diameter of 18 μm, is copolymerized with 8 wt% methyl acrylate, and has an anion group of 0.05 me
It contains q/g of fiber SO 3 - . It has very strong acid resistance to less than 30% hydrochloric acid, nitric acid, sulfuric acid, etc., but it has weak alkali resistance and can be denatured even with 1% sodium hydroxide solution. The collection material of the present invention has 54 Mn and 6 in the pH range of 7 to 9.
5 Zn, 59 Fe, 60 Co, 103+106 Ru, 137 Cs and 1
44 Captures almost 100% of Ce. What is more important is that it is capable of collecting the above-mentioned nuclides even in the presence of a large amount of Na + . It is preferable to use the collection material of the present invention depending on the type of radioactive waste liquid. For example, to separate and remove radionuclides in a light water primary cooling water system, use nickel/potassium ferrocyanide and potassium dioxide instead of cobalt/potassium ferrocyanide. It is preferable to use a collection material that supports and fixes manganese. The present invention will be explained in more detail below using Examples and Reference Examples. Examples - Materials and reagents for manufacturing collection materials (a) Acrylic fiber: Copolymerized with 8 wt% methyl acrylate, fiber diameter 18 μm, containing 0.05 meq/g fiber SO 3 - as anion group. There is. (b) Potassium ferrocyanide: Reagent special grade (c) Cobalt nitrate: Reagent special grade (d) Potassium permanganate: Reagent special grade Reference example 1 Collection material - 100 g of MnO 2 acrylic fiber was soaked in 0.5M potassium permanganate solution for 4 days. When the fibers were immersed and turned black, they were pulled up, washed with pure water to remove excess potassium permanganate, and then dried at 60 to 70°C to produce a black cotton-like collection material - MnO 2 . This collection material is supported on the acrylic fiber in the form of MnO 2 . Collection material - The amount of manganese supported in 1g of MnO 2 is 123mg
It was hot. Reference Example 2 Collection Material - KCFC 100 g of acrylic fiber was immersed in a 10% potassium ferrocyanide solution and heated for 3 hours. After taking it out, it was immersed in a 10% cobalt nitrate solution and heated for 3 hours. After washing with water, it was dried at 60° to 70°C for 10 hours. This operation was repeated three times to produce a reddish-brown cotton-like collection material -KCFC in which cobalt and potassium ferrocyanide ( K2Co [Fe(CN) 6 ]) were supported and fixed on acrylic fibers. Collection material - At KCFC, we use a collection material on acrylic fibers.
It is supported in the form of K 2 Co 3 [Fe(CN) 6 ] 2 . The amounts of potassium, cobalt and iron supported in 1 g of absorption material - KCFC are 9.8 mg, 35 mg and 35 mg, respectively.
It was 12 mg. Example 1 Collection material - KCFC + MnO 2 100 g of acrylic fiber was immersed in a 10% potassium ferrocyanide aqueous solution and heated for 3 hours. After taking it out, it was immersed in a 10% cobalt nitrate aqueous solution and heated for 3 hours. After washing with water, it was dried at 60°C to 70°C for 10 hours. This operation was repeated three times, and the fibers were immersed in a 0.5M potassium permanganate aqueous solution for 4 days. When the fibers turned black, they were taken out, and the excess potassium permanganate was washed with pure water, and then dried at 60-70°C. A black cotton-like collection material-KCFC+ MnO2 was produced. Collection material
The amounts of manganese, potassium, cobalt and iron supported in 1 g of KCFC + MnO 2 are 123 mg each,
They were 9.8mg, 35mg and 12mg. Next, the results obtained by performing a collection test of various radionuclides from seawater using the three types of collection materials manufactured in the examples will be described as a reference example. Reference Example 1 Experimental Materials A Column made of glass, inner diameter 15 mmφ, length 20 cm was used. B Seawater Seawater (collected in Katsuura City, Chiba Prefecture) was filtered through a Fujifilm microfilter (0.45μm), and after adding various radionuclides as tracers, it was treated with hydrochloric acid and sodium hydroxide solution. The pH was adjusted to 8.0±0.5.
The salinity of the seawater used was 33.7%. C Nuclides used: 54 Mn (MnCl 2 , 0.5NHCl) without carrier 59 Fe (FeCl 3 , 0.5NHCl) 11 mCi/mgFe 60 Co (CoCl 2 , 0.1NHCl) 136 mCi/mgCo 65 Zn (ZnCl 2 , 0.5NHCl) 2.8mCi/mgZn 85 Sr (SrCl 2 , 0.5NHCl) 7.4mCi/mgSr 106 Ru (chloride, 4NHCl) 7.7mCi/mgRu 137 Cs (CsCl, 0.5NHCl) 9.0mCi/mgCs 144 Ce (CeCl 3 , 1NHCl) 250mCi/mgCe Radioactive concentration of these nuclides is approximately 100nC
After diluting to 1/ml, it was added to seawater. D NaI (Tl) scintillation spectrometer: A 44φ
TDC-501). 2 Experimental procedures 2.1 Stirring time and collection rate by batch method Various tracers were added to 200 ml of seawater in three batches. The collection materials produced in Example 1 and Reference Examples 1 and 2 were added to this, and the stirring time was changed to 2, 5, 10, and 20 minutes. After each stirring period ended, a certain amount of seawater was transferred to a polyethylene tube for measurement, and measured with a NaI (Tl) detector to determine the collection rate. The collection rate A was defined as in the following equation. Table 1 shows the experimental conditions for the batch method. A (%) = {(R 1 − R 2 )/R 1 }×100 A: Collection rate of fiber (KCFC) R 1 : Count rate of tracer-added seawater R 2 : Count rate of seawater after stirring

【表】 2.2 カラム法による流速と捕集率 内径15mmφのガラス製捕集カラムに実施例
1および参照例1、2で製造した捕集材を詰
め、トレーサーを添加した海水200mlを流速
を変化させて通した。通過液の一定量を測定
用ポリエチレン管に移し入れ、NaI(Tl)検
出器で測定し捕集率を求めた。捕集率Aは次
式のように定義した。カラム法による実験条
件を表−2に示す。 A(%)={(R1−R3)/R1}×100 A:繊維(KCFC)の捕集率 R1:トレーサー添加海水の計数率 R3:繊維(KCFC)カラム通過液の計数率
[Table] 2.2 Flow rate and collection rate by column method A glass collection column with an inner diameter of 15 mmφ was filled with the collection material produced in Example 1 and Reference Examples 1 and 2, and 200 ml of seawater added with a tracer was added at varying flow rates. I passed it. A certain amount of the passing liquid was transferred to a polyethylene tube for measurement, and measured with a NaI (Tl) detector to determine the collection rate. The collection rate A was defined as in the following equation. Table 2 shows the experimental conditions for the column method. A (%) = {(R 1 − R 3 )/R 1 }×100 A: Collection rate of fiber (KCFC) R 1 : Count rate of tracer-added seawater R 3 : Count of liquid passing through the fiber (KCFC) column rate

【表】 3 結果と考察 3.1 撹拌時間と捕集率 バツチ法での実験結果を第1〜3図に示し
た。 図から明らかなように捕集材−MnO2には
20分間の撹拌時間で 54Mn、 60Co、 144Ce
がほぼ100%捕集されている。一方、捕集材
−KCFCには20分間の撹拌時間で 65Zn、 106
Ru、 144Ceが90%以上とよく捕集される他、
54Mn、 60Co、 59Feが一部捕集されてい
る。しかしながら 85Srは全く捕集されてい
ないことが明らかとなつた。 捕集材−MnO2で捕集率の低かつた 106Ru
が捕集材−KCFCで91%と高い捕集率を示し
たのは非常に興味深い結果である。又、捕集
材−MnO2と捕集材−KCFCの両方の機能を
有する捕集材−KCFC+MnO254Mn、 59
Fe、 60Co、 65Zn、 137Csおよび 144Ceをほ
ぼ100%捕集することがわかる。 3.2 流速と捕集率 結果を第4〜6図に示した。第4図からわ
かるように、捕集材−MnO2の場合流速20
ml/minで 144Ce、 54Mn、 60Co、 65Znの捕
集率は90%以上であり、流速を200ml/min以
上に増加しても 144Ceおよび 54Mnの捕集率
は90%以上を保持している。一方、第5図か
らわかるように捕集材−KCFCの場合、流速
20ml/minで 59Fe、 60Co、 65Zn、 137Cs、
144Ceの捕集率は90%以上であり、180ml/mi
nと流速を増加しても、これらの核種は80%
と高い捕集率を示した。 65Zn、 137Cs、 144
Ceでは捕集率の減少がみられなかつたが、
59Feで5%、 60Coで10%の減少が認められ
た。 106Ruは20ml/minと180のml/minでは55
%と大幅な減少を示した。第6図は捕集材−
MnO2と捕集材−KCFCの両方の機能を有す
る捕集材−KCFC+MnO2の結果を示すグラ
フであるが、流速を180〜200ml/分の間で 5
Mn、 137Cs、 144Ce、 60Co、 65Zn、 59Fe
をほぼ90%以上の捕集率で捕集することがわ
かる。 以上の実験より、アクリル繊維にMnO2を担
持・固定させて成る捕集材とアクリル繊維に一般
式K2M〓(Fe(CN)6)で表わされるフエロシアン
酸塩化合物を担持・固定させて成る捕集材を併用
するか又はアクリル繊維にMnO2および一般式
K2M〓(Fe(CN)6)で表わされるフエロシアン酸
塩化合物を同時に担持・固定させて成る捕集材を
使用することによつて主として 54Mn、 59Fe、
60Co、 65Zn、 103+106Ru、 137+134Csおよび 144
Ce等を多量のNa+の存在下においてもほぼ100%
の高捕集率で捕集することがわかる。 尚、比較例として未担持アクリル繊維について
各種放射性核種の捕集テストを行つた。これと捕
集材−KCFC+MnO2とにおける鉄の捕集量を比
較すると後者のほうが3×103倍と大幅に捕集可
能であり、未担持アクリル繊維の捕集効果は非常
に低い。 発明の効果 以上を通覧することによつて本発明の捕集材
は; (1) PH7〜9の範囲で 54Mn、 59Fe、 60Co、 6
Zn、 103+106Ru、 134+137Cs、 144Ceを捕集す
ること、 (2) 多量のNa+の存在下に於いても上記核種を捕
集すること、 (3) 綿状であるためフイルターへの加工が容易で
ありまたカートリツジ式にも加工出来ること、 (4) 綿状であるため燃焼させると廃棄物としての
処理が極めて容易である。等の効果があること
等が理解される。
[Table] 3 Results and discussion 3.1 Stirring time and collection rate The experimental results using the batch method are shown in Figures 1 to 3. As is clear from the figure, the collection material - MnO 2 has
54 Mn, 60 Co, 144 Ce with stirring time of 20 minutes
has been captured almost 100%. On the other hand, 65 Zn and 106 were added to the scavenger - KCFC with stirring time of 20 minutes.
Ru and 144 Ce are well collected at over 90%.
Some of 54 Mn, 60 Co, and 59 Fe were collected. However, it became clear that 85 Sr was not collected at all. Collection material - 106 Ru with low collection rate with MnO 2
It is a very interesting result that the collection material - KCFC showed a high collection rate of 91%. In addition, the collection material - KCFC + MnO 2 , which has the functions of both the collection material - MnO 2 and the collection material - KCFC , is 54 Mn and 59
It can be seen that almost 100% of Fe, 60 Co, 65 Zn, 137 Cs and 144 Ce are collected. 3.2 Flow velocity and collection rate The results are shown in Figures 4 to 6. As can be seen from Figure 4, in the case of the collection material - MnO 2, the flow rate was 20
At ml/min, the collection rate of 144 Ce, 54 Mn, 60 Co, and 65 Zn is over 90%, and even when the flow rate is increased to 200 ml/min or more, the collection rate of 144 Ce and 54 Mn remains over 90%. is held. On the other hand, as can be seen from Figure 5, in the case of the collection material - KCFC, the flow rate
59 Fe, 60 Co, 65 Zn, 137 Cs, at 20ml/min
The collection rate of 144 Ce is over 90%, 180ml/mi
Even with increasing n and flow rate, these nuclides are reduced by 80%
showed a high collection rate. 65 Zn, 137 Cs, 144
Although no decrease in collection rate was observed with Ce,
A decrease of 5% in 59 Fe and 10% in 60 Co was observed. 106 Ru is 55 at 20ml/min and 180 ml/min
%, which showed a significant decrease. Figure 6 shows the collection material.
This is a graph showing the results of KCFC + MnO 2 , a collection material that has the functions of both MnO 2 and collection material - KCFC .
4 Mn, 137 Cs, 144 Ce, 60 Co, 65 Zn, 59 Fe
It can be seen that it collects with a collection rate of approximately 90% or more. From the above experiments, we found that a collection material made by supporting and fixing MnO 2 on acrylic fibers and a ferrocyanate compound represented by the general formula K 2 M (Fe(CN) 6 ) supported and fixed on acrylic fibers were used. Or use acrylic fibers with MnO 2 and general formula
54 Mn , 59 Fe ,
60 Co, 65 Zn, 103+106 Ru, 137+134 Cs and 144
Almost 100% of Ce, etc. even in the presence of a large amount of Na +
It can be seen that it is collected with a high collection rate. As a comparative example, various radionuclide collection tests were conducted on unsupported acrylic fibers. Comparing the amount of iron trapped between this and the trapping material -KCFC+MnO 2 , the latter can collect 3×10 3 times more iron, and the trapping effect of unsupported acrylic fibers is very low. Effects of the Invention Based on the above, the collection material of the present invention has: (1) 54 Mn, 59 Fe, 60 Co, 6 in the pH range of 7 to 9.
5. Captures Zn, 103+106 Ru, 134+137 Cs, 144 Ce. (2) Captures the above nuclides even in the presence of a large amount of Na + . (3) It is flocculent. (4) Since it is cotton-like, it is extremely easy to process it as waste when burned. It is understood that it has the following effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は捕集材−MnO2を用いた撹拌時間と捕
集率との関係を示すグラフ、第2図は捕集材−
KCFCを用いた撹拌時間と捕集率とを示すグラ
フ、第3図は捕集材−KCFC+MnO2を用いた撹
拌時間との関係を示すグラフ、第4図は捕集材−
MnO2を用いた流速と捕集率との関係を示すグラ
フ、第5図は捕集材−KCFCを用いた流速と捕集
率との関係を示すグラフ、第6図は捕集材−
KCFC+MnO2を用いた流速と捕集率との関係を
示すグラフである。
Figure 1 is a graph showing the relationship between stirring time and collection rate using MnO 2 as a collection material, and Figure 2 is a graph showing the relationship between the collection rate and the stirring time using MnO 2 as a collection material.
A graph showing the stirring time and collection rate using KCFC. Figure 3 is a graph showing the relationship between stirring time and collection rate using the collection material - KCFC + MnO 2. Figure 4 is a graph showing the relationship between the stirring time and the collection rate using the collection material -
A graph showing the relationship between the flow rate and the collection rate using MnO 2 , Figure 5 is a graph showing the relationship between the flow rate and the collection rate using the collection material - KCFC, and Figure 6 is a graph showing the relationship between the collection rate and the collection rate using the collection material - KCFC.
It is a graph showing the relationship between flow rate and collection rate using KCFC + MnO 2 .

Claims (1)

【特許請求の範囲】 1 アクリル繊維に一般式K2M〓(Fe(CN)6
(M〓は2価の金属)で表されるフエロシアン酸塩
化合物を担持・固定させてなる捕集材およびアク
リル繊維にMnO2を担持・固定させてなる捕集材
の組み合わせからなる放射性核種および重金属捕
集材。 2 M〓がCo、Zn、ZrおよびNiからなる群から
選択される特許請求の範囲第1項記載の放射性核
種および重金属捕集材。 3 アクリル繊維に一般式K2M〓(Fe(CN)6
(M〓は2価の金属)で表されるフエロシアン酸塩
化合物およびMnO2を担持・固定させてなる放射
性核種および重金属捕集材。 4 M〓がCo、Zn、ZrおよびNiからなる群から
選択される特許請求の範囲第3項記載の放射性核
種および重金属捕集材。
[Claims] 1 General formula K 2 M〓(Fe(CN) 6 ) in acrylic fiber
(M〓 is a divalent metal) A radionuclide and Heavy metal collection material. 2. The radionuclide and heavy metal collecting material according to claim 1, wherein M is selected from the group consisting of Co, Zn, Zr and Ni. 3 General formula K 2 M〓(Fe(CN) 6 ) for acrylic fiber
(M〓 is a divalent metal) A radionuclide and heavy metal trapping material made by supporting and fixing a ferrocyanate compound and MnO 2 . 4. The radionuclide and heavy metal collecting material according to claim 3, wherein M is selected from the group consisting of Co, Zn, Zr and Ni.
JP12297984A 1984-06-06 1984-06-15 Radioactive nuclide and heavy metal collecting material Granted JPS614530A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP12297984A JPS614530A (en) 1984-06-15 1984-06-15 Radioactive nuclide and heavy metal collecting material
US06/719,433 US4720422A (en) 1984-06-06 1985-04-03 Material for collecting radionuclides and heavy metals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12297984A JPS614530A (en) 1984-06-15 1984-06-15 Radioactive nuclide and heavy metal collecting material

Publications (2)

Publication Number Publication Date
JPS614530A JPS614530A (en) 1986-01-10
JPS6324415B2 true JPS6324415B2 (en) 1988-05-20

Family

ID=14849304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12297984A Granted JPS614530A (en) 1984-06-06 1984-06-15 Radioactive nuclide and heavy metal collecting material

Country Status (1)

Country Link
JP (1) JPS614530A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013027652A1 (en) * 2011-08-19 2013-02-28 一般財団法人生産技術研究奨励会 Radioactive cesium adsorbent and method for producing same, and method for removing radioactive cesium from environment using said adsorbent
JP2013061220A (en) * 2011-09-13 2013-04-04 Futaba Shoji Kk Radioactive cesium adsorptive cloth

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6439600A (en) * 1987-08-06 1989-02-09 Ebara Corp Treatment of radioactive waste liquid containing salts at high concentration
GB9402334D0 (en) * 1994-02-07 1994-03-30 Bradtecltd Magnetic particles a method for the preparation thereof and their use in the purification of solutions
JP5999675B2 (en) * 2010-08-30 2016-09-28 国立研究開発法人産業技術総合研究所 Electrode material for lithium ion secondary battery using defect-free Prussian blue analogue
JP5858473B2 (en) * 2011-05-06 2016-02-10 国立研究開発法人産業技術総合研究所 Composite containing metal complex and radioactive cesium adsorbent using the same
WO2013065829A1 (en) * 2011-11-02 2013-05-10 ダイワボウホールディングス株式会社 Radioactive-substance adsorbent, method for manufacturing same, and textile good including radioactive-substance adsorbent
JP6343760B2 (en) * 2012-01-10 2018-06-20 国立研究開発法人日本原子力研究開発機構 Method for separating / removing radioactive elements from liquid
JP2014102240A (en) * 2012-11-20 2014-06-05 Kankyo Joka Kenkyusho:Kk Method for decontaminating accumulated radioactive liquid and device for the same
JP5713375B1 (en) * 2013-12-02 2015-05-07 国立大学法人東京工業大学 Cesium adsorbent, method for producing the same, and method for removing cesium using cesium adsorbent
JP2017121616A (en) * 2016-01-08 2017-07-13 日本化学工業株式会社 Absorbent

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4932466A (en) * 1972-07-24 1974-03-25
JPS5035753A (en) * 1973-06-14 1975-04-04

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4932466A (en) * 1972-07-24 1974-03-25
JPS5035753A (en) * 1973-06-14 1975-04-04

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013027652A1 (en) * 2011-08-19 2013-02-28 一般財団法人生産技術研究奨励会 Radioactive cesium adsorbent and method for producing same, and method for removing radioactive cesium from environment using said adsorbent
US9455054B2 (en) 2011-08-19 2016-09-27 The Foundation For The Promotion Of Industrial Science Radioactive cesium adsorbent, method for producing the same, and method for removing radioactive cesium in environment with said adsorbent
JP2013061220A (en) * 2011-09-13 2013-04-04 Futaba Shoji Kk Radioactive cesium adsorptive cloth

Also Published As

Publication number Publication date
JPS614530A (en) 1986-01-10

Similar Documents

Publication Publication Date Title
JPS6324415B2 (en)
JP5922193B2 (en) NOVEL ADSORBENT, METHOD FOR PRODUCING THE SAME AND USE THEREOF
JPWO2015037734A1 (en) Tritium adsorbent, method for separating tritium from water, and method for regenerating tritium adsorbent
Lienert et al. Uranium infiltration from a river to shallow groundwater
US4720422A (en) Material for collecting radionuclides and heavy metals
Al Radi et al. Recent progress, economic potential, and environmental benefits of mineral recovery geothermal brine treatment systems
CN102773067B (en) Preparation method of selective adsorbent for magnetic cesium
JP2014020916A (en) METHOD FOR PROCESSING RADIOACTIVE Cs CONTAMINATED WATER
JP6516317B2 (en) Method and apparatus for decontaminating soil contaminated with radioactive cesium
US3965283A (en) Fibrous sorbing materials and preparations thereof
Alberts et al. Concentrations of plutonium-239 and-240, cesium-137 and strontium-90 in the waters of the Laurentian Great Lakes. Comparison of 1973 and 1976 values
JPH0262032B2 (en)
JP2013061220A (en) Radioactive cesium adsorptive cloth
JPS60161598A (en) Method of treating radioactive waste liquor containing radioactive ruthenium
Pátzay et al. Modification of the radioactive wastewater treatment technology in the Hungarian PWR
Merritt Radiochemical analysis for long-lived fission products in environmental materials
JPH0722699B2 (en) Collection material for heavy metals such as complex radionuclides
Fuks et al. Sorption of selected radionuclides from liquid radioactive waste by sorbents of biological origin: The alkaline earth alginates
JPH0727069B2 (en) Separation method of cesium in nitric acid-containing aqueous solution
El-Khouly Separation of europium, cobalt and zinc on zirconium tungstate ion exchanger
KR900003608B1 (en) Recovery or removal of uranium by the utilization of acrons
Datta et al. Recent trends in the application of biowaste for hazardous radioactive waste treatment
JPS62176913A (en) Process for separation and recovery of cesium from treating liquid containing sodium salt
Hakimi Improved iodine-125 removal in anionic form of iodate by column method using laterite soil
JP2017096967A (en) Method for manufacturing radioactive cesium adsorptive fabric

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees