JP2014102240A - Method for decontaminating accumulated radioactive liquid and device for the same - Google Patents

Method for decontaminating accumulated radioactive liquid and device for the same Download PDF

Info

Publication number
JP2014102240A
JP2014102240A JP2012267666A JP2012267666A JP2014102240A JP 2014102240 A JP2014102240 A JP 2014102240A JP 2012267666 A JP2012267666 A JP 2012267666A JP 2012267666 A JP2012267666 A JP 2012267666A JP 2014102240 A JP2014102240 A JP 2014102240A
Authority
JP
Japan
Prior art keywords
radioactive
liquid
fibrous adsorbent
adsorbent
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012267666A
Other languages
Japanese (ja)
Inventor
Takanobu Sugo
高信 須郷
Koichi Suzuki
晃一 鈴木
Kunio Fujiwara
邦夫 藤原
Kyoichi Saito
恭一 斎藤
Takaaki Someya
孝明 染谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiba University NUC
Kankyo Joka Kenkyusyo KK
Original Assignee
Chiba University NUC
Kankyo Joka Kenkyusyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiba University NUC, Kankyo Joka Kenkyusyo KK filed Critical Chiba University NUC
Priority to JP2012267666A priority Critical patent/JP2014102240A/en
Publication of JP2014102240A publication Critical patent/JP2014102240A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for removing radioactive materials from accumulated radioactive liquid that is easily applicable in any location.SOLUTION: A method for decontaminating accumulated radioactive liquid immerses a fibrous adsorbent whose outer surface area is 0.5 m/g or more and whose distribution coefficient is 5000 or more at a liquid-to-resin ratio of 100, in radioactive liquid at a liquid-to-resin ratio of 100000 or less.

Description

発明の詳細な説明Detailed Description of the Invention

本発明は放射性核種を含む液体から放射性核種を除去する方法、特にピットなどの側溝、タンク、プールなどに滞留している放射性液体から、簡単な手段で放射性核種を捕捉する方法に関するものである。特に、原子力施設の事故に伴い発生する放射性物質を含む液から、放射性物質を効率よく分離除去し、環境を浄化するとともに作業者の被ばくを最小限に抑えることが可能な放射性物質の除去方法に関するものである。  The present invention relates to a method for removing a radionuclide from a liquid containing a radionuclide, and more particularly to a method for capturing a radionuclide from a radioactive liquid staying in a side groove such as a pit, a tank or a pool by a simple means. In particular, the present invention relates to a method for removing a radioactive material that can efficiently separate and remove the radioactive material from a liquid containing a radioactive material generated in an accident at a nuclear facility, purify the environment, and minimize the exposure of workers. Is.

2011年3月11日の東日本大震災においてはセシウムー137、セシウムー134やヨウ素−131に代表される放射性物質が福島第1原子力発電所から放出された。これらは周辺に飛散し、陸・海・空における深刻な汚染を引き起こした。発電所内はもとより、環境中に放出された放射性物質を除染することが急務である。大気中に放出された放射性物質のうち、セシウム137は半減期が約30年と長く、汚染の主原因物質となっているため、セシウムー137の除染が急務である。原子力発電所から放出されたセシウムー137はそのまま地表に降下するものや、塵や水滴に吸着して地表に降下し、土壌、植物、建物や道路などに付着する。住民の被ばくを防ぐには、放射性物質が付着した土壌や建造物から放射性物質を取り除くための除染作業が必要である。  In the Great East Japan Earthquake on March 11, 2011, radioactive materials represented by cesium-137, cesium-134 and iodine-131 were released from the Fukushima Daiichi Nuclear Power Station. These scattered around and caused severe pollution in land, sea and air. There is an urgent need to decontaminate radioactive materials released into the environment as well as within the power plant. Of the radioactive substances released into the atmosphere, cesium 137 has a long half-life of about 30 years and is a major cause of pollution, so decontamination of cesium-137 is urgent. Cesium-137 released from a nuclear power plant falls on the ground as it is, or adsorbs to dust and water droplets and falls to the ground, and adheres to soil, plants, buildings, roads, and the like. In order to prevent the exposure of residents, decontamination work is required to remove radioactive materials from soils and buildings with radioactive materials attached.

しかしながら、除染作業は十分には行われていない。その原因として、汚染の状況が一様でなく、また汚染区域が広範囲にわたる点がある。放射性セシウムは土壌と接触し、粘土質や鉱物類に容易に吸着すると言われているが、完全に吸着するわけではないため、吸着されなかったセシウムはイオンとして遊離している。したがって、放射性のセシウムを除染するには、土壌に吸着したセシウム及びイオン状のセシウムの両方を除去する必要がある。  However, decontamination work has not been performed sufficiently. The cause is that the situation of contamination is not uniform and the contaminated area is extensive. It is said that radioactive cesium comes into contact with soil and is easily adsorbed by clays and minerals. However, since it is not completely adsorbed, cesium that has not been adsorbed is released as ions. Therefore, in order to decontaminate radioactive cesium, it is necessary to remove both cesium adsorbed on soil and ionic cesium.

土壌に降下したセシウムは表層から数十cmの深さに留まり、時間経過とともに次第に地中深くに移動する傾向にあり、放置すると除染をますます困難にする。表層を機械的に掻き取り、別の場所に保管する作業が行われているが、汚染物の量が膨大となり、保管場所の問題と保管物からの放射性物質の再溶出の問題がある。したがって、土壌からもセシウム等を脱着させ、洗浄済みの土壌を元の場所に戻すと同時に、脱着した放射能汚染液の分離と減容化処理が必要である。  Cesium that has fallen to the soil stays at a depth of several tens of centimeters from the surface, and tends to move deeper into the ground over time, making it more difficult to decontaminate if left untreated. The work of mechanically scraping the surface layer and storing it in another place is being carried out, but the amount of contaminants becomes enormous, and there is a problem of the storage location and the problem of re-elution of radioactive substances from the storage. Therefore, it is necessary to desorb cesium and the like from the soil and return the washed soil to the original place, and at the same time, separate and reduce the volume of the desorbed radioactive contamination liquid.

植物及び建造物等にはセシウムイオンが比較的多いため、環境や気象条件により、汚染が拡大する危険性がある。水洗浄等が行われているが、個別の除染現場では除染廃液の処理まで対策することが難しい。  Since plants and buildings have a relatively large amount of cesium ions, there is a risk of contamination spreading depending on the environment and weather conditions. Although water washing is performed, it is difficult to take countermeasures up to the treatment of decontamination waste liquid at individual decontamination sites.

2012年3月11日の大震災以前より、公知のセシウムイオンの除去方法として、ゼオライトなど無機吸着材による吸着法がある。しかしこれらは、粒状吸着材であるため、使用方法としてはカラム充填方式しかない。この方法を採用すると、原水タンク、ポンプ、吸着塔、処理水タンク、電源及び放射能計測機器などから成る部品一式を揃えた装置が必要となり、大規模の処理には向いているが、機動性に欠ける。また、使用済みの汚染吸着材の処理処分や装置の養生も煩雑である。  Since the March 11, 2012 earthquake, there is an adsorption method using an inorganic adsorbent such as zeolite as a known method for removing cesium ions. However, since these are granular adsorbents, the only method of use is the column packing method. If this method is adopted, a device with a complete set of parts consisting of raw water tanks, pumps, adsorption towers, treated water tanks, power supplies and radioactivity measuring equipment is required, which is suitable for large-scale treatment, Lack. In addition, the disposal of the used contaminated adsorbent and the curing of the apparatus are complicated.

他の除去方法として、金属フェロシアン化物の粉末を利用した凝集沈殿処理法がある。
この方法は除去率が高くなる反面、ポンプ、受水槽、撹拌装置、薬剤注入設備が必要となるばかりでなく、取扱の難しい汚泥処理が必要となる。
As another removal method, there is a coagulation precipitation method using a metal ferrocyanide powder.
Although this method increases the removal rate, it requires not only a pump, a water receiving tank, a stirring device, and a chemical injection facility, but also a sludge treatment that is difficult to handle.

以上の状況に鑑み、簡単、効果的かつ除染後の放射性廃棄物の処分の容易な除染方法が望まれる。特に、プールやピット、タンク、水田、農業用水、湖沼、河川、閉鎖的な海域などの滞留水や表流水から簡単な手段で除染可能な除染方法が望まれている。本発明は上記課題を解決するため、簡単な方法で除染が可能な除染材料とそれを利用した除染方法を提供する。  In view of the above situation, a decontamination method that is simple, effective, and easy to dispose of radioactive waste after decontamination is desired. In particular, there is a demand for a decontamination method that can be decontaminated by simple means from stagnant water or surface water such as pools, pits, tanks, paddy fields, agricultural water, lakes, rivers, and closed waters. In order to solve the above problems, the present invention provides a decontamination material that can be decontaminated by a simple method and a decontamination method using the same.

課題を解決する手段Means to solve the problem

本発明は下記の特徴を有する放射性液体の除染方法である。  The present invention is a method for decontaminating a radioactive liquid having the following characteristics.

態様1:放射性物質を含有する液体と放射性物質を捕捉する繊維状吸着材とを接触させて滞留した放射性液体からの放射性物質を除去する方法であって、繊維状吸着材の特性が
1. 外部表面積が0.5m/g以上
2. 放射性物質除去性能が、液樹脂比100の回分式吸着試験において、24時間経過 後の分配係数が5000以上
である繊維状吸着材を液樹脂比100000以下で放射性液体に浸漬させることを特徴とする滞留した放射性液体からの放射性物質除去方法。
Aspect 1: A method of removing radioactive material from a radioactive liquid that has accumulated by contacting a liquid containing a radioactive substance and a fibrous adsorbent that captures the radioactive substance, and the properties of the fibrous adsorbent are 1. 1. External surface area of 0.5 m 2 / g or more Radioactive substance removal performance is characterized in that in a batch type adsorption test with a liquid resin ratio of 100, a fibrous adsorbent having a distribution coefficient of 5000 or more after 24 hours is immersed in a radioactive liquid at a liquid resin ratio of 100,000 or less. A method for removing a radioactive substance from a staying radioactive liquid.

繊維状吸着材の特性として、外部表面積が0.5m/g以上であること、さらに放射性物質の吸着性能が液樹脂比100の回分式吸着試験において、分配係数が5000以上(24時間経過後)の繊維状吸着材を放射性物質含有液体に液樹脂比100000以下で浸漬させておくだけで、放射性液体の除染を達成できることを見出した。The characteristics of the fibrous adsorbent are that the external surface area is 0.5 m 2 / g or more, and that the distribution coefficient is 5000 or more (after 24 hours have passed) It has been found that decontamination of the radioactive liquid can be achieved simply by immersing the fibrous adsorbent of (1) in the radioactive substance-containing liquid at a liquid resin ratio of 100,000 or less.

外部表面積とは、繊維状吸着材の場合、繊維径と繊維長さの円柱より算出される幾何学的表面積のことである。粒状吸着材の場合、平均粒径を球の直径として算出される幾何学的表面積のことである。外部表面積が大きいと、吸着速度は繊維表面への物質移動が支配的となる。滞留水は環境にもよるが、絶えず対流等によって移動しており、外部表面積の大きな繊維状吸着材と接触する機会が多い。  In the case of a fibrous adsorbent, the external surface area is a geometric surface area calculated from a cylinder of fiber diameter and fiber length. In the case of a granular adsorbent, it is the geometric surface area calculated with the average particle size as the diameter of the sphere. When the external surface area is large, the mass transfer to the fiber surface is dominant in the adsorption rate. Although the accumulated water depends on the environment, it is constantly moving by convection and the like, and there are many opportunities to come into contact with the fibrous adsorbent having a large external surface area.

有機高分子繊維の径を数十μm、真比重約1の円柱として幾何学的表面積を計算すると0.1〜数m/gとなる。繊維径が小さいと表面積が大きくなるが、機械的強度が小さくなるため数μ〜数十μmが好ましい。When the geometric surface area is calculated as a cylinder having an organic polymer fiber diameter of several tens of μm and a true specific gravity of about 1, it is 0.1 to several m 2 / g. When the fiber diameter is small, the surface area becomes large, but since the mechanical strength becomes small, several μ to several tens μm are preferable.

ゼオライトの表面積は通常、BETの表面積測定法で数百m/gと大きいが、粒径1.5mmの球とみなして計算した場合、外部表面積が0.1m/g以下にしかならない。物質移動の速度が小さい。The surface area of zeolite is usually as large as several hundred m 2 / g by the BET surface area measurement method, but when it is calculated as a sphere having a particle diameter of 1.5 mm, the external surface area is only 0.1 m 2 / g or less. The speed of mass transfer is low.

除染用の吸着材として具備すべき特性としては、放射性物質の濃度が非常に小さいため、吸着容量よりも吸着速度が重要である。吸着速度は液体中の放射性物質の吸着材表面への物質移動が支配的となるため、ゼオライトに比べ外部表面積が約10倍大きな繊維状吸着材が優れている。  As a characteristic to be provided as an adsorbent for decontamination, the concentration of radioactive material is very small, so the adsorption rate is more important than the adsorption capacity. Since the adsorption rate is dominated by the mass transfer of radioactive substances in the liquid to the adsorbent surface, fibrous adsorbents having an external surface area approximately 10 times larger than zeolite are superior.

液樹脂比100で接触時間が24時間の分配係数が5000以上となる繊維状吸着材の場合、吸着速度が大きいため、本発明の吸着方法に適している。さらに好ましくは液樹脂比100で30分以内に分配係数5000以上の放射性物質除去性能であれば、さらに本発明の効果が発揮される。すなわち、吸着材を滞留水に投入しておくだけで、除染ができる。  In the case of a fibrous adsorbent having a liquid resin ratio of 100 and a distribution coefficient with a contact time of 24 hours of 5000 or more, the adsorbing speed is large, so that it is suitable for the adsorption method of the present invention. More preferably, the effect of the present invention is further exhibited if the radioactive resin removal performance has a partition coefficient of 5000 or more within 30 minutes at a liquid resin ratio of 100. That is, decontamination can be performed by simply putting the adsorbent into the stagnant water.

分配係数Kdは次の式で定義される(日本原子力学会バックエンド部会のHPより)。
Kd=[(C−C)/C]×[V/m] C:吸着操作前における水溶液中の金属イ オン濃度
C:吸着操作後における水溶液中の金属イ オン濃度
V:水溶液の量[ml]
m:吸着材の量[g]
The distribution coefficient Kd is defined by the following formula (from the Japan Atomic Energy Society Backend Division HP).
Kd = [(C 0 −C) / C] × [V / m] C 0 : Metal ion concentration in the aqueous solution before the adsorption operation
C: Metal ion concentration in aqueous solution after adsorption operation
V: Amount of aqueous solution [ml]
m: amount of adsorbent [g]

例えば、液量10ml、吸着材量0.1gで初期セシウム濃度10mg/lが0.2mg/lに低減した場合、Kdが4900、0.1mg/lの場合、Kdが9900となる。  For example, when the liquid amount is 10 ml and the adsorbent amount is 0.1 g, the initial cesium concentration of 10 mg / l is reduced to 0.2 mg / l, and when Kd is 4900, 0.1 mg / l, Kd is 9900.

液樹脂比100で、24時間での分配係数が5000以上という数値の意味は、液量10mlに吸着材0.1gを投入し、撹拌開始後24時間で10mg/lの初期濃度が0.2mg/l以下に低減する吸着材の性能を表している。
ここで、液樹脂比は液量(ml)/吸着材重量(g)で定義される値である。
The meaning of the numerical value that the liquid resin ratio is 100 and the distribution coefficient in 24 hours is 5000 or more means that 0.1 g of the adsorbent is introduced into 10 ml of the liquid volume, and the initial concentration of 10 mg / l is 0.2 mg in 24 hours after the start of stirring. The performance of the adsorbent is reduced to 1 / l or less.
Here, the liquid resin ratio is a value defined by liquid volume (ml) / adsorbent weight (g).

分配係数がこの値より小さいと、十分な除去性能が得られない。長期間放射性液体中に浸漬すると、微生物や藻類が付着し、吸着が著しく阻害される。また、使用後の後処理も煩雑になる。分配係数測定時の撹拌操作は、マグネチックスターラーや振とう機による撹拌であり、吸着材と放射性物質とは十分に接触する。  If the distribution coefficient is smaller than this value, sufficient removal performance cannot be obtained. When immersed in a radioactive liquid for a long period of time, microorganisms and algae adhere and adsorption is remarkably inhibited. In addition, post-processing after use becomes complicated. The stirring operation at the time of measuring the distribution coefficient is stirring by a magnetic stirrer or a shaker, and the adsorbent and the radioactive substance are in sufficient contact.

放射性物質を含有する液体と放射性物質を捕捉する繊維状吸着材とを液樹脂比100000以下で接触させた場合、特に撹拌せずとも効果的な除染ができる。接触時間を長時間、例えば数週間とれば、放射性物質を90%以上吸着除去できる。このようなケースとして、放射性液体をタンクに保管し、長期間放置している場合を想定できる。現在、福島第1原子力発電所の敷地内には膨大な数のタンクが設置され、中には放射性液体が保管されている。タンクへ繊維状吸着材を投入すれば、予め液体中の放射性物質を低減することができる。本発明の効果をさらに発揮させるには液樹脂比50000以下で接触させる方がよく、さらに好ましくは10000以下で接触させるのがよい。液樹脂比100000以上になれば、繊維状吸着材表面への物質移動速度が十分でなく、放射性物質を除去するためにはさらに長時間の接触時間が必要となる。  When the liquid containing the radioactive substance is brought into contact with the fibrous adsorbent that captures the radioactive substance at a liquid resin ratio of 100,000 or less, effective decontamination can be performed without any particular stirring. If the contact time is long, for example, several weeks, 90% or more of the radioactive substance can be adsorbed and removed. As such a case, it can be assumed that the radioactive liquid is stored in a tank and left for a long time. Currently, a huge number of tanks are installed in the site of the Fukushima Daiichi Nuclear Power Station, and radioactive liquid is stored inside. If the fibrous adsorbent is introduced into the tank, the radioactive substance in the liquid can be reduced in advance. In order to further bring out the effects of the present invention, it is better to make the contact at a liquid resin ratio of 50000 or less, more preferably at 10,000 or less. If the liquid resin ratio is 100,000 or more, the mass transfer speed to the surface of the fibrous adsorbent is not sufficient, and a longer contact time is required to remove the radioactive substance.

放射性セシウム汚染現場を例にとると、貯水槽や側溝等に繊維状吸着材を吊るすか沈めておくだけで、少なくともイオン状の放射性セシウムが除去でき、滞留水の漏洩による汚染の拡大を防止できる。  Taking a radioactive cesium contamination site as an example, at least ionic radioactive cesium can be removed simply by suspending or sinking a fibrous adsorbent in a water tank or a side ditch, etc., preventing the spread of contamination due to leakage of stagnant water .

態様2:態様1に記載の放射性物質除去方法において、放射性物質を含有する放射性液体と繊維状吸着材とを接触させる間、放射性液体を流動させる操作を行うことを特徴とする態様1記載の滞留した放射性液体からの放射性物質除去方法。Aspect 2: In the method for removing a radioactive substance according to aspect 1, the dwelling according to aspect 1, wherein the operation of flowing the radioactive liquid is performed while the radioactive liquid containing the radioactive substance is brought into contact with the fibrous adsorbent. Of removing radioactive material from a radioactive liquid.

繊維状吸着材に接触した放射性物質は直ちに吸着捕捉されるため、放射性液体中に繊維を静置しておくだけでも放射性物質が除去される。しかし、撹拌操作を加えることにより、接触効果が高まり、除染速度をさらに向上できる。しかしながら、撹拌操作はしかるべき装置や設置環境が必要になるため、放射性液体の存在形態、処理目標や作業者の能力などにより、適宜除染操作に適した撹拌操作を選択できる。  Since the radioactive substance that has come into contact with the fibrous adsorbent is immediately adsorbed and captured, the radioactive substance can be removed simply by leaving the fiber in the radioactive liquid. However, by adding a stirring operation, the contact effect is enhanced and the decontamination rate can be further improved. However, since an appropriate apparatus and installation environment are required for the agitation operation, an agitation operation suitable for the decontamination operation can be selected as appropriate depending on the existence form of the radioactive liquid, the processing target, the ability of the operator, and the like.

態様3:態様2記載の放射性液体を撹拌させる操作を、撹拌羽根を有する撹拌装置、ポンプ循環、エアレーション及び繊維状吸着材自体の上下左右動及び回転動から選択される手段で行われる態様1又は2記載の滞留した放射性液体からの放射性物質除去方法。  Aspect 3: The aspect 1 or 2 in which the operation of stirring the radioactive liquid according to aspect 2 is performed by means selected from a stirring device having a stirring blade, pump circulation, aeration, vertical and horizontal movements and rotational movements of the fibrous adsorbent itself. 3. A method for removing a radioactive substance from a staying radioactive liquid.

本発明は放射性液体中に繊維状吸着材を投入し、放置しておくだけで除染が可能であるが、流動させた方が吸着速度を大きくすることができ、効果的であることは言うまでもない。放射性液体を流動させる操作としては、通常の撹拌羽根を有する撹拌装置、ポンプ循環、エアレーション及び繊維状吸着材自体の上下左右動及び回転動から選択される手段で実施できる。撹拌装置を用いれば、十分な撹拌効果が得られ、放射性物質の吸着には好ましい。しかしながら、常に流動させておく必要はなく、例えば、繊維をクレーンのような懸架装置で上下動させる程度でよく、しかも数日に1回と断続的に行ってもよい。  The present invention can be decontaminated just by putting the fibrous adsorbent into the radioactive liquid and leaving it to stand, but it goes without saying that the adsorbing speed can be increased and it is effective. Yes. The operation of causing the radioactive liquid to flow can be carried out by means selected from a stirring device having a normal stirring blade, pump circulation, aeration, vertical and horizontal movements and rotational movements of the fibrous adsorbent itself. If a stirrer is used, a sufficient stirring effect can be obtained, which is preferable for adsorption of radioactive substances. However, it is not always necessary to make it flow. For example, the fiber may be moved up and down by a suspension device such as a crane, and may be intermittently performed once every few days.

しかし、撹拌装置は放射性廃棄物の増加に招くため、構造物を用いない方が好ましい。本発明は放射性廃棄物を増加させることが目的ではなく、吸着材の後処理及び取扱いの容易性、作業者の被ばく量低減、簡単な操作での高い除染効果などを考慮し選択することができる。  However, it is preferable not to use a structure because the agitator causes an increase in radioactive waste. The purpose of the present invention is not to increase the amount of radioactive waste, but can be selected in consideration of ease of post-treatment and handling of the adsorbent, reduction of worker exposure, high decontamination effect through simple operation, etc. it can.

ここで重要なことは、吸着材自体を上下、左右又は回転させることにより、放射性液体を流動させることができる点である。繊維状吸着材自体が撹拌羽根の役割を果たしている。また、空気を送り気泡を発生させてもよく、液を流動させることができさえすればよい。放射性液体の置かれた環境、即ち場所、量、放射線量、容器など諸条件により、適宜選択できる。時間が許せば、繊維状吸着材を所定時間浸漬させておくだけで十分な除染効果が得られる。  What is important here is that the radioactive liquid can be made to flow by rotating the adsorbent itself up and down, left and right, or rotating. The fibrous adsorbent itself plays the role of a stirring blade. Moreover, air may be sent and bubbles may be generated as long as the liquid can flow. It can be appropriately selected depending on the environment in which the radioactive liquid is placed, that is, various conditions such as location, amount, radiation dose, and container. If time permits, a sufficient decontamination effect can be obtained only by immersing the fibrous adsorbent for a predetermined time.

態様4:繊維状吸着材が放射線グラフト重合法を利用して製造されたものである態様1、2、又は3記載の滞留した放射性液体からの放射性物質除去方法。  Aspect 4: The method for removing a radioactive substance from a staying radioactive liquid according to Aspect 1, 2, or 3, wherein the fibrous adsorbent is produced using a radiation graft polymerization method.

液樹脂比100、接触時間24時間で分配係数5000以上の性能を有する繊維状吸着材としては、放射性セシウムを対象にした場合、繊維にゼオライトの微粒子、フェロシアン化物微粒子を担持したものが利用できる。ゼオライトは塩類濃度が高い海水などに適用すると除去性能が極端に低下する場合があるため、特にフェロシアン化物微粒子を担持したものが共存塩類濃度の影響を受けにくいため好ましい。  As the fibrous adsorbent having a liquid resin ratio of 100, a contact time of 24 hours, and a partition coefficient of 5000 or more, when radioactive cesium is used, a fiber carrying zeolite fine particles or ferrocyanide fine particles can be used. . When zeolite is applied to seawater or the like having a high salt concentration, the removal performance may be extremely lowered. In particular, a zeolite carrying ferrocyanide fine particles is preferable because it is hardly affected by the coexisting salt concentration.

繊維にフェロシアン化物微粒子を担持する方法として、樹脂にフェロシアン化物微粒子を練りこませて繊維化する方法などが採用できる。しかし、放射線グラフト重合法で繊維にイオン交換基やキレート基を導入し、そのグラフト鎖間にフェロシアン化物微粒子を担持したものが特に好ましい。  As a method for supporting the ferrocyanide fine particles on the fiber, a method of kneading the ferrocyanide fine particles into a resin to form a fiber can be employed. However, it is particularly preferable that an ion exchange group or a chelate group is introduced into the fiber by a radiation graft polymerization method and ferrocyanide fine particles are supported between the graft chains.

フェロシアン化物微粒子はフェロシアン酸と次に示す金属との反応により、超微粒子が繊維内及び繊維表面に沈殿析出したものが好ましい。フェロシアン酸と反応させる金属はCo、Zn、Zr、Ni、Ti、Al、Fe、MnおよびCuからなる群及び/又はLi、Na、Kのアルカリ金属から選択されるものが好適である。  The ferrocyanide fine particles are preferably those in which ultrafine particles are precipitated in the fiber and on the fiber surface by the reaction of ferrocyanic acid and the following metal. The metal to be reacted with ferrocyanic acid is preferably selected from the group consisting of Co, Zn, Zr, Ni, Ti, Al, Fe, Mn and Cu and / or an alkali metal of Li, Na and K.

フェロシアン化物自体の放射性セシウム除去能力に加え、導入したイオン交換基やキレート基も放射性物質の除去に適用できる。特に塩類濃度が低い場合には、イオン交換基やキレート基自体が有効に活用される。  In addition to the ability of ferrocyanide itself to remove radioactive cesium, introduced ion exchange groups and chelate groups can also be applied to remove radioactive substances. In particular, when the salt concentration is low, ion exchange groups and chelate groups themselves are effectively used.

放射線グラフト重合法とは、γ線や電子線等の電離性放射線を基材に照射し、基材表面あるいは基材内部に生成したラジカルを利用して重合性単量体(以下、「モノマー」と称する。)を重合させ、基材からグラフト鎖を成長させる方法である。  The radiation graft polymerization method is a method of irradiating a substrate with ionizing radiation such as γ-rays or electron beams and utilizing a radical generated on the surface of the substrate or inside the substrate (hereinafter referred to as “monomer”). Is a method of growing a graft chain from a substrate.

放射線グラフト重合法の特徴として、放射線の照射により、基材の表面のみならず基材の内部にまでラジカルを容易に発生させることができることが挙げられる。よって、基材表面だけではなく基材内部にまでモノマーを重合させることができるので、基材に導入されるグラフト鎖の数が多くなり、したがって基材に導入される官能基の数も多くなる。  A characteristic of the radiation graft polymerization method is that radicals can be easily generated not only on the surface of the substrate but also inside the substrate by irradiation with radiation. Therefore, since the monomer can be polymerized not only on the substrate surface but also inside the substrate, the number of graft chains introduced into the substrate increases, and thus the number of functional groups introduced into the substrate also increases. .

グラフト(graft)とは「接ぎ木」という意味であり、グラフト鎖の一端が基材に固定されていて、他端が固定されていない自由端である状態を表す。グラフト鎖がこのような形態的特徴を有するので、グラフト鎖間にはサイズの小さなイオンから大きな分子まで容易に侵入することができる。この点は、架橋構造を有するイオン交換樹脂と比較して、大きく異なる特徴である  Graft means “grafting” and represents a state where one end of the graft chain is fixed to the base material and the other end is a free end that is not fixed. Since the graft chains have such morphological characteristics, small ions to large molecules can easily enter between the graft chains. This point is a feature that is greatly different from the ion exchange resin having a cross-linked structure.

特にグラフト鎖中にイオン交換基やキレート基のような固定電荷が存在すると、固定電荷同士が静電的に反発するため、グラフト鎖が延び、グラフト鎖同士も反発しあう。このため、グラフト鎖間に広いスペースが形成される。フェロシアン化金属粒子形成のための金属のイオンやフェロシアン化物イオンなども、このように形成されたグラフト鎖間スペースに容易に侵入することが可能であり、ここで有機高分子成形体への吸着ならびにフェロシアン化金属塩微粒子を形成させることができる。  In particular, when a fixed charge such as an ion exchange group or a chelate group is present in the graft chain, the fixed charges repel each other electrostatically, so that the graft chain extends and the graft chains repel each other. For this reason, a wide space is formed between the graft chains. Metal ions, ferrocyanide ions, and the like for forming ferrocyanide metal particles can also easily enter the space between the graft chains thus formed. Adsorption and ferrocyanide metal salt fine particles can be formed.

本発明の放射性物質捕集材の基材として有用な繊維素材として、合成繊維の他、綿などのセルロース系繊維、動物性繊維、鉱物系繊維、若しくは再生繊維、またはそれらの混合繊維が挙げられる。合成繊維にはポリエステル系、ポリアミド系、アクリル系、ポリ塩化ビニル系、ポリ塩化ビニリデン系、ポリエチレン系、ポリプロピレン系、ポリウレタン系、ポリビニルアルコール系、フッ素系等が含まれる。セルロース系繊維には、綿、麻等の天然セルロース系繊維、ビスコースレーヨン、銅アンモニア法レーヨン、ポリノジック等の再生セルロース繊維、テンセル等の精製セルロース繊維、アセテート、ジアセテート等の半合成繊維が含まれる。鉱物系繊維には、石綿、玄武岩繊維等が含まれる。動物性繊維には、羊毛等の獣毛繊維、絹等が含まれる。再生繊維には、キチン・キトサン繊維、コラーゲン繊維などが含まれる。これら繊維素材の混紡を用いることもまた可能である。  Examples of the fiber material useful as a base material for the radioactive material collection material of the present invention include synthetic fibers, cellulose fibers such as cotton, animal fibers, mineral fibers, regenerated fibers, or mixed fibers thereof. . Synthetic fibers include polyester, polyamide, acrylic, polyvinyl chloride, polyvinylidene chloride, polyethylene, polypropylene, polyurethane, polyvinyl alcohol, fluorine, and the like. Cellulosic fibers include natural cellulose fibers such as cotton and hemp, viscose rayon, copper ammonia rayon, regenerated cellulose fibers such as polynosic, purified cellulose fibers such as tencel, and semi-synthetic fibers such as acetate and diacetate. It is. Mineral fibers include asbestos and basalt fibers. Animal fibers include animal hair fibers such as wool, silk and the like. The recycled fiber includes chitin / chitosan fiber, collagen fiber and the like. It is also possible to use blends of these fiber materials.

放射線グラフト重合法を利用して導入する官能基として、イオン交換基又はキレート基が好ましい。例えば、イオン交換基としてはスルホン酸基、カルボキシル基、リン酸基、4級アンモニウム基、アミノ基などが利用できる。キレート基としてはイミノジ酢酸基を代表とするアミノ酸基、カルボキシル基を複数含有するキレート基、13級アミノ基を、単独又は複数含有するアミノ系官能基、アミノリン酸基、アミドキシム基、ヒドロキサム酸基より選択されるものを利用することができる。代表的なイオン交換基であるスルホン酸基や4級アンモニウム基はグラフト鎖を荷電反発により膨潤させるため、セシウムの吸着やフェロシアン酸金属塩不溶化物を析出するのに好適である。As a functional group to be introduced using a radiation graft polymerization method, an ion exchange group or a chelate group is preferable. For example, as the ion exchange group, a sulfonic acid group, a carboxyl group, a phosphoric acid group, a quaternary ammonium group, an amino group, and the like can be used. As chelate groups, amino acid groups typified by iminodiacetic acid groups, chelate groups containing a plurality of carboxyl groups, amino functional groups, aminophosphate groups, amidoxime groups, hydroxamic acids containing one or more primary to tertiary amino groups Those selected from the group can be used. Since sulfonic acid groups and quaternary ammonium groups, which are typical ion exchange groups, swell the graft chain by charge repulsion, they are suitable for adsorbing cesium and precipitating ferrocyanic acid metal salt insolubles.

フェロシアン酸金属塩不溶化物を担持するには、例えばアニオン交換基にフェロシアン化カリウム溶液を接触させ、フェロシアン酸イオンを吸着させた後、コバルトやニッケルの塩化物又は硝酸塩水溶液を接触させ、グラフト鎖間にフェロシアン酸金属塩不溶化物析出させることで容易に担持できる。このとき、コバルトやニッケルに替えて亜鉛、鉄やマンガン、チタンなど遷移金属類を利用することができる。また、これら金属塩に加え、塩化カリウムなどの金属塩を共存させることもセシウム除去性能を向上させるにふさわしい。  In order to carry the ferrocyanic acid metal salt insolubilized material, for example, a potassium ferrocyanide solution is brought into contact with an anion exchange group, ferrocyanate ions are adsorbed, and then a chloride or nitrate aqueous solution of cobalt or nickel is brought into contact with the graft chain. It can be easily supported by depositing a ferrocyanic acid metal salt insolubilized material therebetween. At this time, transition metals such as zinc, iron, manganese, and titanium can be used instead of cobalt and nickel. In addition to these metal salts, coexistence of a metal salt such as potassium chloride is also suitable for improving the cesium removal performance.

カチオン交換基の場合は、先ずコバルト、ニッケルイオンをイオン交換吸着させておき、次いでフェロシアン酸カリウムを接触させることで、容易にフェロシアン酸金属塩不溶化物が担持できる。イオン交換基を利用して析出させるため、超微粒子を担持できる。  In the case of a cation exchange group, first, cobalt and nickel ions are ion-exchanged and adsorbed, and then contacted with potassium ferrocyanate, whereby the ferrocyanate metal salt insolubilized material can be easily supported. Ultrafine particles can be supported because precipitation is performed using ion exchange groups.

キレート基もイオン交換基の場合に準じて担持することができる。  Chelate groups can also be supported according to the case of ion exchange groups.

態様5:前記繊維状吸着材の形状が単繊維、単繊維の集合体である撚糸、それらを巻いたボビン状構造物、ワインド型構造物、組みひも状、ロープ状、モール状繊維構造物、不織布や織布などのシート状の繊維集合体、その切断加工品より選択された態様1−4記載の滞留した放射性液体からの放射性物質除去方法Aspect 5: The fibrous adsorbent is a single fiber, a twisted yarn that is an aggregate of single fibers, a bobbin-like structure wound around them, a wind-type structure, a braided shape, a rope shape, a molding fiber structure, A method for removing a radioactive substance from a staying radioactive liquid according to the aspect 1-4 selected from a sheet-like fiber assembly such as a nonwoven fabric or a woven fabric, and a cut processed product thereof

繊維状吸着材は成型加工が容易なため、使用環境によって様々な形状と使用方法を選択できる。形状としては単繊維、単繊維の集合体である撚糸、それらを巻いたボビン状構造物(第1図)、ワインド型構造物(第2図)、組みひも状、ロープ状、モール状繊維構造物(第3図)、不織布や織布などのシート状の繊維集合体、その切断加工品より選択されたものを利用できる。これらは市販の繊維を利用しても良いし、繊維吸着材を製造後に加工しても良い。モール状構造物(第3図)とは、ロープの外側に放射状に繊維や撚糸を突出させた構造の一種の組みひもである。第4図の試作例のようにブラシのようなものである。  Since the fibrous adsorbent is easy to mold, various shapes and usage methods can be selected depending on the use environment. As for the shape, single fiber, twisted yarn that is an aggregate of single fibers, bobbin-like structure wound around them (Fig. 1), wind-type structure (Fig. 2), braided, rope-like, molding-like fiber structure Materials (FIG. 3), sheet-like fiber assemblies such as non-woven fabrics and woven fabrics, and products selected from the cut products can be used. For these, commercially available fibers may be used, or the fiber adsorbent may be processed after production. A molding-like structure (FIG. 3) is a kind of braid having a structure in which fibers and twisted threads are radially projected from the outside of a rope. It is like a brush as in the prototype of FIG.

水田に敷設する場合、第5図に示すように水田に水の存在する期間中は、モール状等に加工した繊維状吸着材を田植えの方向に沿って敷設し、土壌から溶出する放射性セシウムを除去し、使用済み後は撤去し、次回使用時まで保管するという方法などが可能である。  When laying in a paddy field, as shown in Fig. 5, during the period when water is present in the paddy field, a fibrous adsorbent processed into a mall shape or the like is laid along the direction of rice planting, and radioactive cesium eluted from the soil is removed. It can be removed, removed after use, and stored until next use.

水田に流入させる農業用水路から水田に引き込む際、引込み口に吸着材を浸漬しておくことで、用水路から持ち込まれる放射性セシウムを除去することができる。除去能力が低下すれば、繊維状吸着材を遮蔽容器等に回収し、所定の廃棄処理を行う。  When drawing into the paddy field from the agricultural canal flowing into the paddy field, the radioactive cesium brought in from the canal can be removed by immersing the adsorbent in the drawing port. If the removal capability decreases, the fibrous adsorbent is collected in a shielding container or the like, and a predetermined disposal process is performed.

土壌、道路、建造物や車両等の除染済み廃液は先ず貯留槽に貯められる。貯留槽における繊維状吸着材の使用方法も適宜選択できる。  Decontaminated waste liquid such as soil, roads, buildings and vehicles is first stored in a storage tank. The usage method of the fibrous adsorbent in the storage tank can also be selected as appropriate.

例えば、繊維や撚糸をモール状に加工し吊り下げる、不織布や織布などのシートを貯留槽底部に敷設する、網状の袋に繊維塊を収納し支持ロープに懸架するなど、その場に適した方法を採用することができる。For example, it is suitable for the occasion, such as processing and suspending fibers and twisted yarns in a mall shape, laying a sheet of nonwoven fabric or woven fabric on the bottom of the storage tank, storing fiber mass in a net-like bag and hanging it on a support rope The method can be adopted.

また、モール状を繊維構造物又は袋状ネットに繊維塊入れ、貯留槽に吊るしておくだけでよい。必要であれば、所定時間経過後に洗浄吸着材を上下に動かし、液に流動を与えると効果的である。  Moreover, it is only necessary to put the molding into a fiber structure or a bag-like net and hang it in a storage tank. If necessary, it is effective to move the cleaning adsorbent up and down after a predetermined period of time to give the liquid a flow.

従来、繊維状吸着材を使用する場合は、繊維状吸着材を充填した充填塔を別に用意し、貯留槽から充填塔までポンプで送液し、処理液を処理水槽に貯留するような方法を採用していたが、充填塔やポンプなどが不要で、放射性廃棄物が少なくなる。  Conventionally, when using a fibrous adsorbent, prepare a separate packed tower filled with the fibrous adsorbent, pump it from the storage tank to the packed tower, and store the treatment liquid in the treatment water tank. Although it was adopted, packed towers and pumps are unnecessary, and radioactive waste is reduced.

プール水の場合は、タテ・ヨコの距離があるため、水田と同じように、所定の間隔をあけて並列に敷設してもよく、またジグザグに敷設してもよい。所定時間浸漬しておくだけで放射性セシウムが除去できる。  In the case of pool water, since there is a vertical and horizontal distance, it may be laid in parallel at a predetermined interval or zigzag like a paddy field. Radiocesium can be removed simply by soaking for a predetermined time.

港湾の場合は、防波堤等に囲まれた内部の滞留部及び外海の海水の進入路に深さ方向に設置し、汚染の拡大を防止することができる。さらに、海底に敷設し、海底から溶出する放射性セシウム等を溶出の初期段階で除去できる。  In the case of a harbor, it can be installed in the depth direction in an internal staying part surrounded by a breakwater or the like and an approaching path for seawater in the open sea to prevent the spread of pollution. In addition, radioactive cesium and the like that are laid on the seabed and eluted from the seabed can be removed at the initial stage of elution.

繊維状吸着材の吸着量に余裕がある場合は、撤去して次の使用に備え保管するかそのまま使用を継続してもよい。ポンプ等の動力が不要なため、維持管理のための作業者の負担が少ない。  When there is a margin in the amount of adsorption of the fibrous adsorbent, it may be removed and stored for the next use, or the use may be continued as it is. Since power such as a pump is unnecessary, the burden on the operator for maintenance is low.

態様6:繊維状吸着材、繊維状吸着材の固定具、巻取り装置及び巻き取った繊維状吸着材を収納するための遮蔽容器からなる滞留した放射性液体からの放射性物質除去装置Aspect 6: Fibrous adsorbent, fibrous adsorbent fixture, take-up device, and radioactive substance removing device from a staying radioactive liquid comprising a shielding container for storing the taken-up fibrous adsorbent

使用済みの繊維状吸着材は、液体中から取出し、遮蔽等の諸条件を満たした保管容器に収納される。  The used fibrous adsorbent is taken out from the liquid and stored in a storage container that satisfies various conditions such as shielding.

タンク内に滞留した放射性液体を本発明の除染方法で除染する例をとり説明する。繊維状吸着材が撚糸の束、組みひも、モール状などの長尺の場合は、長尺の一端を支持棒に取り付けて吸着を行い、使用後は支持棒を回転させリールで糸を巻き取るように回転させながら取出すことが可能である。所定時間空中に保持することにより、液切りすれば、重量を軽減することができる。その後、支持棒ごと保管容器に収納できる。  An example of decontaminating the radioactive liquid staying in the tank by the decontamination method of the present invention will be described. If the fibrous adsorbent is long, such as a bundle of twisted yarn, braids, or a mole, attach one end of the long to a support rod for adsorption, and after use, rotate the support rod and wind the yarn with a reel. It is possible to take out while rotating. If the liquid is drained by holding it in the air for a predetermined time, the weight can be reduced. Thereafter, the support rod can be stored in the storage container.

繊維状吸着材が綿塊状であれば、ネット状の袋に収納して吸着操作を行い、使用後はフック等で引掛けて取出し、液切り後同様に保管容器に収納できる。適宜、クレーン車を利用することもできる  If the fibrous adsorbent is in the form of a lump, it can be stored in a net-shaped bag, adsorbed, taken out with a hook or the like after use, and stored in a storage container after draining. A crane truck can be used as appropriate.

基本的に繊維状吸着材、繊維状吸着材の固定具、巻取り装置及び巻き取った繊維状吸着材を収納するための遮蔽容器から構成され、タンク、ポンプ、電源、吸着塔などが不要である。  Basically, it consists of a fibrous adsorbent, a fixing device for the fibrous adsorbent, a winding device and a shielding container for storing the wound fibrous adsorbent, and does not require a tank, pump, power supply, adsorption tower, etc. is there.

本発明で利用する基材の有機高分子繊維であり、グラフト重合によって生成するグラフト鎖も有機高分子である。使用後の繊維状吸着材は減容固化や焼却処理が可能である。  The organic polymer fiber of the base material used in the present invention, and the graft chain formed by graft polymerization is also an organic polymer. The fibrous adsorbent after use can be reduced in volume and incinerated.

発明の効果The invention's effect

従来の粒状吸着材を吸着塔に充填して通水処理をする方法や、粉末を添加して凝集沈殿を行う方法では適用範囲が限られていた。本発明は、放射性物質吸着性能の優れた繊維状吸着材を単に汚染液体に浸漬するだけでよく、適用場所が格段に増える。例えば、プール、ピット、タンク、水田、農業用水、湖沼、河川、閉鎖的な海域又は除染工事によって発生した除染廃液などの処理にも利用できる。しかも、除染済みの吸着材の処理・処分も容易となった。  The range of application has been limited by the conventional method of filling an adsorption tower with a granular adsorbent and conducting water treatment, or the method of adding powder and performing coagulation precipitation. In the present invention, it is only necessary to immerse the fibrous adsorbent having excellent radioactive substance adsorbing performance in the contaminated liquid, and the application place is greatly increased. For example, it can be used for treatment of pools, pits, tanks, paddy fields, agricultural water, lakes, rivers, closed sea areas, or decontamination waste liquid generated by decontamination work. In addition, it became easy to treat and dispose of the decontaminated adsorbent.

以下、本発明による除染方法を放射線グラフト重合法を利用して製造した繊維状のセシウム吸着材  Hereinafter, a fibrous cesium adsorbent produced by using the radiation graft polymerization method as a decontamination method according to the present invention.

(1)セシウム吸着材の製造
約40μmの直径のナイロン繊維から成る撚糸を用い、ガンマ線を30kGy照射した。この照射済みの繊維をN、N−ジメチルアミノエチルメタクリレート20%水溶液に浸漬し、40℃で4時間グラフト重合を行った。グラフト率は46%であった。次に、グラフト重合後のナイロン繊維撚糸を0.5N塩酸水溶液で処理した。次にフェロシアン酸カリウム2%水溶液に1時間浸漬し、織布にフェロシアン化物イオンを吸着させた。このフェロシアン化物イオンを吸着したアニオン交換繊維撚糸を塩化コバルト3%水溶液に浸漬し、フェロシアン酸コバルトを主要成分とする結晶を生成保持させた。この際、塩化コバルト溶液に塩化カリウムを1.9%添加し調製した。この繊維から成る撚糸1mの重量は約0.8gであった。
(1) Production of cesium adsorbent A gamma ray was irradiated at 30 kGy using a twisted yarn made of nylon fibers having a diameter of about 40 μm. This irradiated fiber was immersed in a 20% aqueous solution of N, N-dimethylaminoethyl methacrylate and subjected to graft polymerization at 40 ° C. for 4 hours. The graft ratio was 46%. Next, the nylon fiber twisted yarn after the graft polymerization was treated with a 0.5N hydrochloric acid aqueous solution. Next, it was immersed in a 2% potassium ferrocyanate aqueous solution for 1 hour to adsorb ferrocyanide ions on the woven fabric. The anion exchange fiber twisted yarn adsorbing the ferrocyanide ions was immersed in a 3% aqueous solution of cobalt chloride to produce and hold crystals containing cobalt ferrocyanate as a main component. At this time, it was prepared by adding 1.9% of potassium chloride to the cobalt chloride solution. The weight of 1 m of twisted yarn made of this fiber was about 0.8 g.

(2)分配係数の測定
この繊維0.1gをセシウムイオン濃度10mg/lに調製した液10mlに浸漬し、2時間後の液中のセシウムイオン濃度を測定したところ、セシウムイオン濃度は定量限界である0.1mg/l以下であった。即ち、液樹脂比100で分配係数9900であった。
(2) Measurement of distribution coefficient When 0.1 g of this fiber was immersed in 10 ml of a liquid prepared to a cesium ion concentration of 10 mg / l, and the cesium ion concentration in the liquid after 2 hours was measured, the cesium ion concentration was at the limit of quantification. It was below 0.1 mg / l. That is, the liquid resin ratio was 100 and the distribution coefficient was 9900.

(3)セシウムイオン吸着試験
ドラム缶に水道水200lを加え、塩化セシウムを溶解してセシウム濃度1mg/lの合成原水を調製した。(1)で製造したセシウム吸着材の撚糸250本(約200g)の一端を糸で縛り、第6図に示すようにドラム缶の上部に渡した支持棒からセシウム吸着材の束を懸架した。他端は縛っていないため、水中で任意の方向に広がったが、そのまま吸着を行った。5日間経過後のセシウム濃度は0.04mg/lと低下していた。液樹脂比1000で繊維吸着材を浸漬させるだけで、24時間経過後のセシウム除去率が96%となった。この繊維を巻き上げるだけで、200lドラム缶中のセシウム濃度がほとんど除去できた。カラム、ポンプ、処理水槽や電源など不要であった。
(3) Cesium ion adsorption test 200 l of tap water was added to a drum, and cesium chloride was dissolved to prepare synthetic raw water having a cesium concentration of 1 mg / l. One end of 250 cesium adsorbent yarns (about 200 g) produced in (1) was tied with a yarn, and a bundle of cesium adsorbents was suspended from a support rod passed to the top of the drum as shown in FIG. Since the other end was not tied, it spread in any direction in water, but adsorption was performed as it was. The cesium concentration after 5 days had decreased to 0.04 mg / l. By simply immersing the fiber adsorbent at a liquid resin ratio of 1000, the cesium removal rate after 24 hours was 96%. By simply winding up this fiber, the cesium concentration in the 200-liter drum was almost eliminated. There was no need for columns, pumps, treated water tanks or power supplies.

(4)吸着後の処理
吸着終了後の繊維はドラム缶上に1時間程度保持することによって水切りが可能であった。その時点での重量は480gであり、吸着材の120%水分が付着していたが、水が垂れることはなく、取扱が容易で1Lのポリ瓶に収納できた。放射性セシウムを含む実液の場合にも保管容器への収納が容易であることが窺い知れた。1mの繊維束を支持棒に巻き取り、巻いた状態で収納できるので、手に触れなかった。

Figure 2014102240
Figure 2014102240
(4) Treatment after adsorption Fiber after adsorption was drained by holding the fiber on a drum can for about 1 hour. The weight at that time was 480 g, and 120% moisture of the adsorbent was attached, but water did not sag, it was easy to handle and could be stored in a 1 L plastic bottle. It has been known that the actual liquid containing radioactive cesium can be easily stored in a storage container. Since a 1 m fiber bundle was wound around a support rod and stored in a wound state, it was not touched.
Figure 2014102240
Figure 2014102240

Claims (6)

放射性物質を含有する液体と放射性物質を捕捉する繊維状吸着材とを接触させて滞留した放射性液体からの放射性物質を除去する方法であって、繊維状吸着材の特性が
1. 外部表面積が0.5m/g以上
2. 放射性物質除去性能が、液樹脂比100の回分式吸着試験において、24時間経過 の分配係数が1000以上
である繊維状吸着材を液樹脂比100000以下で放射性液体に浸漬させることを特徴とする滞留した放射性液体からの放射性物質除去方法。
A method of removing a radioactive substance from a radioactive liquid that has accumulated by bringing a liquid containing the radioactive substance into contact with a fibrous adsorbent that captures the radioactive substance. 1. External surface area of 0.5 m 2 / g or more In a batch adsorption test with a liquid resin ratio of 100, the radioactive material removal performance is characterized by immersing a fibrous adsorbent having a distribution coefficient of 1000 or more after 24 hours in a radioactive liquid at a liquid resin ratio of 100,000 or less. Of removing radioactive material from a radioactive liquid.
請求項1記載の放射性物質除去方法において、放射性物質を含有する放射性液体と繊維状吸着材とを接触させる間、放射性液体を流動させる操作を行うことを特徴とする請求項1記載の滞留した放射性液体からの放射性物質除去方法。  The radioactive substance removing method according to claim 1, wherein the radioactive liquid is made to flow while the radioactive liquid containing the radioactive substance is brought into contact with the fibrous adsorbent. A method for removing radioactive substances from liquids. 請求項2記載の放射性液体を撹拌させる操作を、撹拌羽根を有する撹拌装置、ポンプ循環、エアレーション及び繊維状吸着材自体の上下左右動及び回転動から選択される手段で行われる請求項1又は2記載の滞留した放射性液体からの放射性物質除去方法。  The operation of stirring the radioactive liquid according to claim 2 is performed by means selected from a stirring device having a stirring blade, pump circulation, aeration, vertical and horizontal movements and rotation movements of the fibrous adsorbent itself. A method for removing a radioactive substance from a staying radioactive liquid. 繊維状吸着材が放射線グラフト重合法を利用して製造されたものである請求項1、2、又は3記載の滞留した放射性液体からの放射性物質除去方法。  The method for removing a radioactive substance from a staying radioactive liquid according to claim 1, 2, or 3, wherein the fibrous adsorbent is produced by using a radiation graft polymerization method. 前記繊維状吸着材の形状が単繊維、単繊維の集合体である撚糸、それらを巻いたボビン状構造物、ワインド型構造物、加工品である組みひも状、ロープ状、モール状繊維構造物、不織布や織布などのシート状の繊維集合体、その切断加工品より選択された請求項1−6記載の滞留した放射性液体からの放射性物質除去方法  The shape of the fibrous adsorbent is a single fiber, a twisted yarn that is an aggregate of single fibers, a bobbin-like structure wound around them, a wind-type structure, a braided shape that is a processed product, a rope-like shape, a mole-like fiber structure The method for removing a radioactive substance from a staying radioactive liquid according to claim 1, selected from sheet-like fiber aggregates such as nonwoven fabric and woven fabric, and cut and processed products thereof 繊維状吸着材、繊維状吸着材の固定具、巻取り装置及び巻き取った繊維状吸着材を収納するための遮蔽容器からなる滞留した放射性液体からの放射性物質除去装置  Fibrous adsorbent, fixing device for fibrous adsorbent, take-up device, and apparatus for removing radioactive material from a staying radioactive liquid comprising a shielding container for storing the taken-up fibrous adsorbent
JP2012267666A 2012-11-20 2012-11-20 Method for decontaminating accumulated radioactive liquid and device for the same Pending JP2014102240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012267666A JP2014102240A (en) 2012-11-20 2012-11-20 Method for decontaminating accumulated radioactive liquid and device for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012267666A JP2014102240A (en) 2012-11-20 2012-11-20 Method for decontaminating accumulated radioactive liquid and device for the same

Publications (1)

Publication Number Publication Date
JP2014102240A true JP2014102240A (en) 2014-06-05

Family

ID=51024848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012267666A Pending JP2014102240A (en) 2012-11-20 2012-11-20 Method for decontaminating accumulated radioactive liquid and device for the same

Country Status (1)

Country Link
JP (1) JP2014102240A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018155702A (en) * 2017-03-21 2018-10-04 東洋紡株式会社 Method for laying radioactive-matter adsorbing member under water and leakage prevention facilities
JP2019132650A (en) * 2018-01-30 2019-08-08 日本製紙株式会社 Cesium adsorption material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS614530A (en) * 1984-06-15 1986-01-10 Nippon Bunseki Center Radioactive nuclide and heavy metal collecting material
JPH05288896A (en) * 1992-04-07 1993-11-05 Japan Atom Energy Res Inst Method for volume reduction of radioactive waste
JPH0915389A (en) * 1995-06-27 1997-01-17 Japan Atom Energy Res Inst Radioactive nuclide adsorbent and its production method and volume reduction processing method for radioactive waste
US20060249461A1 (en) * 2001-05-31 2006-11-09 Australian Nuclear Science & Technology Organisation Inorganic ion exchangers for removing contaminant metal ions from liquid streams
JP2007070706A (en) * 2005-09-08 2007-03-22 Central Res Inst Of Electric Power Ind Mooring and recovering system for material for collecting metal from seawater
JP4919528B1 (en) * 2011-10-09 2012-04-18 株式会社太平洋コンサルタント Storage container for contaminants caused by radioactive cesium, and storage method for contaminants caused by radioactive cesium

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS614530A (en) * 1984-06-15 1986-01-10 Nippon Bunseki Center Radioactive nuclide and heavy metal collecting material
JPH05288896A (en) * 1992-04-07 1993-11-05 Japan Atom Energy Res Inst Method for volume reduction of radioactive waste
JPH0915389A (en) * 1995-06-27 1997-01-17 Japan Atom Energy Res Inst Radioactive nuclide adsorbent and its production method and volume reduction processing method for radioactive waste
US20060249461A1 (en) * 2001-05-31 2006-11-09 Australian Nuclear Science & Technology Organisation Inorganic ion exchangers for removing contaminant metal ions from liquid streams
JP2007070706A (en) * 2005-09-08 2007-03-22 Central Res Inst Of Electric Power Ind Mooring and recovering system for material for collecting metal from seawater
JP4919528B1 (en) * 2011-10-09 2012-04-18 株式会社太平洋コンサルタント Storage container for contaminants caused by radioactive cesium, and storage method for contaminants caused by radioactive cesium

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
斎藤恭一: "吸着繊維を使う水中からのセシウム除去", 日本海水学会誌, vol. Vol.65 No.5 , JPN7016002210, 2011, pages 280 - 284, ISSN: 0003369423 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018155702A (en) * 2017-03-21 2018-10-04 東洋紡株式会社 Method for laying radioactive-matter adsorbing member under water and leakage prevention facilities
JP7032862B2 (en) 2017-03-21 2022-03-09 東洋紡株式会社 Method of laying radioactive material adsorption member in water and leakage prevention equipment
JP2019132650A (en) * 2018-01-30 2019-08-08 日本製紙株式会社 Cesium adsorption material

Similar Documents

Publication Publication Date Title
JP6156832B2 (en) Method for producing radioactive material collection material
Huang et al. Bifunctional phosphorylcholine-modified adsorbent with enhanced selectivity and antibacterial property for recovering uranium from seawater
JP6093942B2 (en) Radioactive liquid decontamination method
JP6532053B2 (en) Soil solidifying agent and method for spreading contamination of radioactive material using the solidifying agent, method for decontaminating contaminated soil and method for creating vegetation base
CN105618472B (en) A kind of permanent method for removing available heavy metal in heavy-metal contaminated soil
Li et al. Efficient removal of Cs+ and Sr2+ ions by granulous (Me2NH2) 4/3 (Me3NH) 2/3Sn3S7· 1.25 H2O/polyacrylonitrile composite
JP5667120B2 (en) Cesium removal material
CN108144954B (en) The method that the ecological blanket of fixed heavy metal combines removal heavy metal-polluted soil with plant
JP2013212484A (en) Radioactive strontium adsorbing material, method for producing the same and method for removing radioactive substance by using the same
JP2014102240A (en) Method for decontaminating accumulated radioactive liquid and device for the same
CN106975466A (en) A kind of big particle diameter is recycled heavy metal adsorption functional microsphere and its application
Rahman et al. Life cycle of ion exchangers in nuclear industry: application and management of spent exchangers
JP2015118010A (en) Decontamination method for soil contaminated with radioactive materials, and decontamination device
JP6210404B2 (en) Method for removing radioactive cesium and radioactive strontium
JP5789317B2 (en) Soil composition and its use for coating plants contaminated with radioactive material and planting plants
JP2016206164A (en) Filter vent device
JP2015114315A (en) Method for removing strontium using crystallization
JP2016024183A (en) Radioactive iodine removal material and method for producing the same, and radioactive iodine removal method
JP2020041941A (en) System and method for decontaminating radioactive material contaminated waste
JP2013061220A (en) Radioactive cesium adsorptive cloth
JP6651113B2 (en) Radioactive substance decontamination method and decontamination system
Oszczak et al. Sorption of Sr-85 and Am-241 from liquid radioactive wastes by alginate beads
AU2017203118A1 (en) Water purification using xylitol fibres
CN107188382A (en) A kind of method in situ for removing polycyclic aromatic hydrocarbons in sediments
Vivas et al. Fiber-supported layered magnesium phosphate exhibits high caesium (I) capture capacity in water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151009

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20151009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20151009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170301

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170912