JPS63244018A - Standing wave type surface acoustic wave light modulator - Google Patents

Standing wave type surface acoustic wave light modulator

Info

Publication number
JPS63244018A
JPS63244018A JP7789487A JP7789487A JPS63244018A JP S63244018 A JPS63244018 A JP S63244018A JP 7789487 A JP7789487 A JP 7789487A JP 7789487 A JP7789487 A JP 7789487A JP S63244018 A JPS63244018 A JP S63244018A
Authority
JP
Japan
Prior art keywords
saw
light
acoustic wave
optical
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7789487A
Other languages
Japanese (ja)
Other versions
JPH06100741B2 (en
Inventor
Koichiro Miyagi
宮城 幸一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP7789487A priority Critical patent/JPH06100741B2/en
Publication of JPS63244018A publication Critical patent/JPS63244018A/en
Publication of JPH06100741B2 publication Critical patent/JPH06100741B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide modulated light which flickers with high efficiency by laminating surfaces for generating surface acoustic waves (SAW) apart at nearly a parallel spacing in the optical axis direction of incident light and disposing plural acoustic wave generators in such a manner that the progressing directions of the SAW are reversed. CONSTITUTION:Plural pieces of base materials 1a, 1b, 1c having the optical planes in which the SAWs propagate on the front and rear are disposed to face each other apart at nearly the parallel spacing and the acoustic wave generators 2a, 2b are interposed in the spacing between these base materials so that acoustic oscillations propagate in the form of the SAWs having the same frequency and the same phase in the same direction in the two optical planes sandwiching the generators 2a, 2b. The positions of plural pieces of the acoustic wave generators are so set that the SAWs between the two groups are reversed in the direction only in the progressing direction and intersect with each other spacially in the light transmission regions on the SAW propagation base materials. The intermittent phase modulation function at a high frequency is thereby permitted.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、光の位相を超音波を使用して変調する光変
調装置に係り、特に、固体基板表面を伝搬する表面弾性
波(S A W : 5urface  Acoust
icWave)を回折格子として利用し、かつ、該SA
Wの発生面を入射光の光軸方向にほぼ平行間隔で積層す
るように配置し、さらにまた、SAWを発生させる複数
の音響波発生装置をSAWの進行方向が逆向きになるよ
うに配置して、光軸方向から見透すとあたかもSAWの
定在波が発生、消滅を繰り返しているような効果を発生
させ、これらの結果、高効率で点滅する変調光を得るこ
とができる定在波形表面弾性波光変調装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an optical modulation device that modulates the phase of light using ultrasonic waves, and in particular, relates to a light modulation device that modulates the phase of light using ultrasonic waves, and in particular, the present invention relates to a light modulation device that modulates the phase of light using ultrasonic waves. W: 5surface Acoust
icWave) as a diffraction grating, and the SA
The generation surfaces of W are arranged so as to be stacked at substantially parallel intervals in the optical axis direction of the incident light, and the plurality of acoustic wave generators that generate SAW are arranged so that the traveling directions of the SAWs are opposite to each other. When viewed from the optical axis direction, the SAW standing wave produces an effect that looks as if it is repeating the generation and disappearance of a SAW standing wave, and as a result, it is possible to obtain modulated light that flickers with high efficiency. The present invention relates to a surface acoustic wave optical modulator.

〔従来の技術〕[Conventional technology]

光の位相面を、空間的に変調する光変調装置には、光学
的反射格子のように光の反射点の幾可学的空間位置を設
定し、それらの位置のずれから各々の反射光に光路差を
発生させて所望の位相遅れ(位相変調)を生じさせるも
のと、光学レンズのように光の透過する部分の材質の厚
さや、屈折率を変化させて光の速さを遅らせ、その結果
1位相遅れを生ぜせしめるものとがある。光を透過させ
る媒質の屈折率を変化する方式の位相変調装置では、光
透過媒質に異方性結晶などを用い、電界や磁界を加える
ことによって容易に、しかも高速に位相遅れを生じさせ
ることが可能であり、圧電結晶基板上の光導波路などに
電界を加えて位相変調を行う変調素子や、さらに2つの
素子の変調光を干渉させて光の点滅を行う光スィッチな
ど多くの実用的な光学素子が開発されてきた。
A light modulation device that spatially modulates the phase plane of light has the geometrical spatial positions of the light reflection points set like an optical reflection grating, and the difference in each reflected light from the deviation of those positions. There are those that create a desired phase delay (phase modulation) by creating an optical path difference, and those that slow the speed of light by changing the thickness and refractive index of the material of the part through which the light passes, such as optical lenses. As a result, there are cases where a one-phase delay occurs. In a phase modulation device that changes the refractive index of a medium that transmits light, an anisotropic crystal or the like is used as the light transmission medium, and by applying an electric or magnetic field, it is possible to easily and quickly generate a phase delay. This is possible, and there are many practical optical applications such as modulators that perform phase modulation by applying an electric field to optical waveguides on piezoelectric crystal substrates, and optical switches that cause light to flicker by interfering with the modulated light of two elements. devices have been developed.

また、電界、磁界等の変化では顕著な屈折率変化の生じ
ない物質、あるいは光の透過する部分の面積が広く、そ
の部分全体に例えば正弦波格子状の位相変化分布を発生
させたいような場合には。
Also, when using a material that does not cause a noticeable change in refractive index due to changes in electric or magnetic fields, or when the area through which light passes is large, and you want to generate, for example, a sine wave lattice-like phase change distribution over the entire area, teeth.

光透過媒質中に超音波を放射し、超音波による媒質の密
度変化によって屈折率変化を生じさせる音響光学的な手
法がとられてきた。
An acousto-optic method has been used in which ultrasonic waves are emitted into a light-transmitting medium and the refractive index changes due to changes in the density of the medium caused by the ultrasonic waves.

この音響光学的な位相変調の方法は、大別すると、媒質
の内部を進行するバルク波を使用するものと、媒質の表
層にエネルギーの大部分が集中している表面弾性波(S
AW)を利用する方法とに分けられる。
This acousto-optic phase modulation method can be roughly divided into those that use bulk waves traveling inside the medium, and those that use surface acoustic waves (S
AW).

バルク波を用いるものは、超音波の中を長い距離にわた
って光を進行させることが可能であり。
Those that use bulk waves can propagate light over long distances within ultrasonic waves.

この結果、超音波と光の相互干渉の時間(距離)を長く
とることができ1位相変化量が大きい(変調効率が高い
)特徴があるが、しかし、光透過部分の面積を広くし難
く、また、超音波の発生帯域が構造上狭い等の作成面で
の問題と、バルク波により生じた立体的な格子状の屈折
率変化領域に対する光の入射角度がBragg (ブラ
ッグ)の条件によって制限され、入射光の波長もしくは
超音波の波長が変化するとそれに従って入射角度も調整
する必要があった。しかしながら、固定周波数の光変調
装置としては、小形、高効率であり、最も実用化されて
いるものの一つである。一方、SAWを利用する光変調
装置は、SAWの発生機構が高周波、広帯域に向くもの
であって、 かつ、前記Bragg  (ブラッグ)の
条件に適したようにSAWの発射方向を変化させる方法
も開発されてきたため高周波、広帯域の光変調装置とし
て用いられてきた。SAWと光との組合せ方法には、光
をSAWの発生している基板表面に薄膜状に導いてSA
Wの中を長時間(長い距離)伝搬させて変調効率を高め
る方法と、SAWの発生面に垂直に光を透過させて短時
間(短距離)で位相変調させる方法とがある。SAW発
生面に光を導波する方法は。
As a result, the time (distance) for mutual interference between ultrasonic waves and light can be lengthened, and the amount of 1 phase change is large (high modulation efficiency). However, it is difficult to increase the area of the light transmitting part. In addition, there are problems in production, such as the ultrasonic generation band being structurally narrow, and the angle of incidence of light on the three-dimensional lattice-like refractive index changing region generated by bulk waves is limited by Bragg conditions. When the wavelength of the incident light or the wavelength of the ultrasonic wave changes, it is necessary to adjust the angle of incidence accordingly. However, as a fixed frequency optical modulation device, it is small and highly efficient, and is one of the most practically used devices. On the other hand, optical modulation devices that use SAW have a SAW generation mechanism that is suitable for high frequencies and wide bands, and we have also developed a method to change the direction of SAW emission to suit the Bragg conditions. As a result, it has been used as a high-frequency, broadband optical modulator. A method of combining SAW and light involves guiding light in a thin film onto the surface of the substrate where SAW is generated.
There is a method in which light is propagated in W for a long time (long distance) to increase modulation efficiency, and a method in which light is transmitted perpendicularly to the generation surface of the SAW to perform phase modulation in a short time (short distance). How to guide light to the SAW generation surface?

主に薄膜光ICの位相変調素子として多用され利用価値
が高い。また、SAW発生面に垂直に光を入射する方法
は1幅の広い光束全体に位相変調をかけることが可能で
、一般的な空間伝搬形の光学系において位相回折格子の
ように使用されることが多い。この場合、SAWの周波
数を変化させて格子定数を変化させることが可能で可変
格子間隔を有する位相回折格子として注目を集めている
It is mainly used as a phase modulation element in thin-film optical ICs and has high utility value. In addition, the method in which light is incident perpendicularly to the SAW generation surface can apply phase modulation to the entire wide beam, and can be used like a phase diffraction grating in general spatial propagation optical systems. There are many. In this case, it is possible to change the grating constant by changing the SAW frequency, and is attracting attention as a phase diffraction grating having a variable grating interval.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、このようなSAW発生面に光を垂直に入
射する方式の光変調装置では、SAWと光の相互作用時
間が他の方式のものに較べ短かく位相変調の効率を高め
ることが困難であった。
However, in such an optical modulation device in which light is perpendicularly incident on the SAW generation surface, the interaction time between the SAW and the light is shorter than in other methods, making it difficult to increase the efficiency of phase modulation. Ta.

前記バルク波を使用する変調装置では、前記Bragg
  (ブラッグ)の条件を満足させれば、80%程度の
変調効率が期待できるが、SAWに垂直に光を入射する
変調装置では、数%程度と極端に低く、実用面も非常に
限られたものとなっていた。
In the modulation device using the bulk wave, the Bragg
If the (Bragg) condition is satisfied, a modulation efficiency of about 80% can be expected, but in a modulation device that injects light perpendicularly to the SAW, it is extremely low at only a few percent, and its practical use is extremely limited. It had become a thing.

(注:ここで言う変調効率とは、位相変調後の光を結像
させ9位相変化で生じた回折光の強度を測定して、入射
光の何%が回折したかを求めたものである。) 〔問題点を解決するための手段〕 本発明は、かかる問題点を解決すべくなされたもので、
その解決の手段として、光を透過し、かつ、SAWが伝
搬する光学平面を表裏にもつ複数個の基材を、各々の表
裏面が互いにほぼ平行な間隔をもちながら対向するよう
に配置し、それら基材の間隙に音響振動を発生させるた
めの音響波発生装置を介在させ、これら音響波発生装置
で発生した音響振動が、これら発生装置を挾む2つの光
学事面に、同一周波数で同一位相のSAWとなって同一
方向に伝搬するような構成とした。このため、複数個の
基材にはそれぞれ同一の音響特性を有し、かつ、入射光
の透過性が十分良好な材質のものを用いた。さらにまた
、複数個の前記音響波発生装置をほぼ半数づつの2つの
グループに分けて、各々のグループでは、SAWは同一
方向に同一周波数、同一速度で進行し、かつ、各SAW
を光軸方向より見透した場合に同相で重なるよう。
(Note: The modulation efficiency referred to here is determined by imaging the light after phase modulation and measuring the intensity of the diffracted light generated by 9 phase changes to determine what percentage of the incident light is diffracted. ) [Means for solving the problems] The present invention has been made to solve the problems,
As a means of solving this problem, a plurality of base materials having optical planes on the front and back sides through which light is transmitted and SAW propagates are arranged so that each front and back surface faces each other with an interval substantially parallel to each other. Acoustic wave generators for generating acoustic vibrations are interposed in the gap between these base materials, and the acoustic vibrations generated by these acoustic wave generators are transmitted to the two optical surfaces that sandwich these generators at the same frequency and in the same manner. The configuration is such that the SAW becomes a phase SAW and propagates in the same direction. For this reason, a plurality of base materials were used that each had the same acoustic characteristics and had sufficiently good transmittance for incident light. Furthermore, the plurality of acoustic wave generators are divided into two groups of approximately half each, and in each group, the SAWs advance in the same direction at the same frequency and at the same speed, and each SAW
When viewed from the optical axis direction, they overlap in phase.

前記複数の発生装置のSAW発生機能(特性)並びに配
置場所を設定した。さらに、この2つのグループ間での
SAWは1周波数、進行速度は等しく、かつ2位相面は
空間的に平行に揃うようにし、進行方向のみ逆方向とし
てSAW伝搬基材上の光透過領域にて空間的に交差する
よう、前記各グループの音響発生装置の位置を設定した
The SAW generation functions (characteristics) and placement locations of the plurality of generators were set. Furthermore, the SAW between these two groups has one frequency, the traveling speed is the same, and the two phase planes are spatially aligned parallel to each other, and only the traveling direction is set to be opposite to each other in the light transmission area on the SAW propagation base material. The positions of the sound generators in each group were set so that they spatially intersected.

〔作用〕[Effect]

以上の手段によって、入射光の光軸方向に積層されたS
AW伝搬基材を、5AWO伝搬速伝搬対し無視できる程
の短時間で光が通過し、各基材表面に発生している同一
周波数で、かつ、空間的に同一平面内に揃った位相(以
後、空間的な同位相という。)を有する複数のSAWに
より同様の位相変調を繰返し受けることになり、SAW
伝搬基材の枚数に従って変調効率を増加させることが可
能となった。加うるに、複数のSAWをほぼ等分して逆
行させたため、光軸方向から重なりあっているSAWを
見透した場合に、逆行しているSAWが同相の位置で重
なった瞬間には、見かけ上。
By the above means, S
Light passes through the AW propagation base material in a short time that is negligible compared to the 5AWO propagation speed, and the same frequency and spatially aligned phase (hereinafter referred to as , spatially the same phase) is repeatedly subjected to similar phase modulation by multiple SAWs, and the SAW
It has become possible to increase modulation efficiency according to the number of propagation substrates. In addition, since multiple SAWs are divided almost equally and moved backwards, when looking through the overlapping SAWs from the optical axis direction, the moment the SAWs moving backwards overlap at the same phase position, the apparent Up.

全体のSAWが強め合って、最大強度の位相変調がかか
る状態となり、また、この逆に、逆位相で重なると互い
に弱め合い、たとえば、2つのグループの各々のSAW
振幅強度の総和が等しい場合など5位相変調が全くかか
らない状態、すなわち、見かけ上の屈折率変化の分布が
一様になる状態が出現する。このような位相変調状態の
変化は交差する2つのSAWの周波数及び速度が等しい
場合には、空間的に定在波状態となり、また9時間的に
は、相対的に2倍の速度でSAWが交差して  ゛いる
ため、前記空間的な定在波全体がSAWの2倍の時間周
波数で発生、消滅を繰り返している状態となる。ゆえに
2例えば9本装置を通過した平面波光をレンズで収束し
、フラウンホーファ回折像を観測すれば、その上第1久
輝点はSAWの時間周波数の2倍で点滅している輝点と
なる。
All the SAWs strengthen each other, resulting in a state where maximum intensity phase modulation is applied, and conversely, when they overlap with opposite phases, they weaken each other, for example, each SAW of two groups
When the sum of the amplitude intensities is equal, a state occurs in which no five-phase modulation is applied, that is, a state in which the apparent distribution of refractive index changes becomes uniform. Such changes in the phase modulation state result in a spatially standing wave state when the two intersecting SAWs have the same frequency and speed, and temporally, the SAWs move at twice the relative speed. Since they intersect, the entire spatial standing wave repeatedly generates and disappears at a time frequency twice that of the SAW. Therefore, if the plane wave light that has passed through, for example, nine devices is converged by a lens and a Fraunhofer diffraction image is observed, the first bright spot will be a bright spot blinking at twice the temporal frequency of the SAW.

よって1本発明は、基材の積層によって位相変調の効率
を増大させつつ、5AWO伝搬方向を逆行状態にして2
高周波数で断続する位相変調機部を併合させたものとな
っている。
Therefore, 1. the present invention increases the efficiency of phase modulation by laminating base materials, and 2.
It combines a phase modulator section that intermittents at a high frequency.

〔実施例〕〔Example〕

第1図に本発明の定在波形表面弾性波光変調装置の第1
の実施例における構成図を示す。
FIG. 1 shows the first part of the standing waveform surface acoustic wave optical modulator of the present invention.
1 shows a configuration diagram in an embodiment of the present invention.

本図は本発明の要旨を示し、複数の基材1a+lb、l
cと音響波発生装置2a、2bとの組合せについて図示
したものである。
This figure shows the gist of the present invention, and shows a plurality of base materials 1a+lb, l
This figure illustrates a combination of the acoustic wave generator 2a and the acoustic wave generators 2a and 2b.

複数の基材の間に音響波発生装置を配置する構造を簡単
に実現するには、従来より用いられているSAWを用い
た音響光学的位相変調素子、例えば、同一出願人・同一
発明者による発明「表面弾性波を利用した光の回折装置
」 (特願昭60−234812号)などを、本発明の
要領により他の同一音響特性を有する基材と組合せて構
成する方法が考えられる。このrSAWを利用した光の
回折装置」では、光位相変調の基本的な動作を行わせる
構造として、光透過性を有する基材に圧電性基板を使用
し、その基板表面に音響波発生装置として交差指形電極
を金属の蒸着薄膜で形成している。
In order to easily realize a structure in which an acoustic wave generator is placed between multiple base materials, a conventional acousto-optic phase modulation element using SAW, for example, by the same applicant and inventor A conceivable method is to combine the invention "Light diffraction device using surface acoustic waves" (Japanese Patent Application No. 60-234812) with another base material having the same acoustic characteristics according to the principles of the present invention. In this optical diffraction device using rSAW, a piezoelectric substrate is used as the optically transparent base material to perform the basic operation of optical phase modulation, and the surface of the substrate is used as an acoustic wave generator. The interdigital electrodes are formed from a vapor-deposited metal film.

前記第1図で示せば、基材1aは圧電性基板であり、か
つ、その片側表面に金属薄膜の蒸着技術及び半導体微細
加工技術等によって作成された交差指形電極が音響波発
生装置2aとして配置された構成である。
As shown in FIG. 1, the base material 1a is a piezoelectric substrate, and interdigital electrodes formed on one surface thereof by metal thin film deposition technology, semiconductor microfabrication technology, etc. are used as an acoustic wave generator 2a. This is the arranged configuration.

この圧電性基板と交差指形電極による光位相変調素子が
、SAW発生面に垂直入射する光を広い面積で位相変調
する素子としては最も簡単な構造であり、広く知られた
方式である。
This optical phase modulation element using a piezoelectric substrate and interdigital electrodes has the simplest structure and is a widely known system as an element that phase modulates the light incident perpendicularly to the SAW generation surface over a wide area.

さて、このような位相変調素子を基本に再度前記第1図
の実施例を説明すれば1本実施例は2つの同特性を有す
るSAWによる位相変調素子、すなわち、基材1aと音
響発生装置2a+及び基材1cと音響波発生装置2bと
の組合せで構成される2つの位相変調素子の間に、前記
基材1a、ICと同等の音響特性を有する基材1bが挾
まれた構造であると言える。この場合、前記音響波発生
装置2a、’lbの表面が基材1bの表裏の光学平面に
密着するように重ねれば、前記音響波発生装置2a、2
bにより前記基材1bの表裏面にもSAWを発生させる
ことが可能である。
Now, to explain the embodiment shown in FIG. 1 again based on such a phase modulation element, this embodiment has two SAW phase modulation elements having the same characteristics, namely, the base material 1a and the sound generating device 2a+. and a structure in which a base material 1b having acoustic characteristics equivalent to the base material 1a and the IC is sandwiched between two phase modulation elements constituted by a combination of a base material 1c and an acoustic wave generator 2b. I can say it. In this case, if the surfaces of the acoustic wave generators 2a and 'lb are stacked so that they are in close contact with the optical planes on the front and back sides of the base material 1b, the acoustic wave generators 2a and 2
b, it is possible to generate SAW on both the front and back surfaces of the base material 1b.

実験的にSAWの振動振幅は数人〜数十人であり、また
1通常用いられる交差指形電極の膜厚は数μm程度ある
ため、前記基材の間に交差指形電極のみを挾んだだけで
積層圧着しても、交差指形電極の厚さによって生ずる各
基材間の空隙は、その対向する光学平面に5AWO伝博
させるに十分な間隔を有する。
Experimentally, the vibration amplitude of SAW is from several people to several tens of people, and the film thickness of the commonly used interdigital electrodes is about several μm, so only the interdigital electrodes are sandwiched between the base materials. Even when laminated and crimped by itself, the gap between each base material caused by the thickness of the interdigital electrodes is sufficient to allow 5AWO propagation on the opposing optical planes.

また、この空隙の幅を一定に保ち、各基材をほぼ平行に
積層配置する簡便な方法は、同図にも示されているよう
に、交差指形電極を形成するに際し、光透過領域の反対
側にスペーサ3a、3bとして蒸着膜の小片を形成する
のが良い。本実施例では、このスペーサ3a、3bをS
AWの進行方向に対して斜めになるように形成し、SA
Wの不要反射が音響波発生装置2a、2bに戻らないよ
うにしである。
In addition, as shown in the same figure, a simple method of keeping the width of this gap constant and stacking each base material almost in parallel is when forming an interdigital electrode. It is preferable to form small pieces of vapor deposited film as spacers 3a and 3b on the opposite side. In this embodiment, these spacers 3a and 3b are
The SA is formed obliquely to the direction of movement of the AW.
This is to prevent unnecessary reflection of W from returning to the acoustic wave generators 2a and 2b.

さらにまた、前記音響波発生装置2a、2bの配置場所
は、基材中央部分の光透過領域を挟んで対向する位置と
し、透過させる入射光の光束の大きさを考慮して、その
間隔を決定する。この間隔の実用的な最大値は、基材に
ニオブ酸リチウム等の圧電基板を用いSAWの周波数を
200MHz程度と仮定すれば、伝m損失が0.3dB
/cm程度と推定でき、現状で使用可能な基板の最大直
径及びマスクアライナ−等の製造装置の能力を考え合せ
ると10cm程度と思われる。この値は、現在使用され
ているガラス材に刻線した形の光学回折格子の形状より
はるかに大きく、十分実用に耐えうるものである。
Furthermore, the acoustic wave generators 2a and 2b are placed at positions facing each other across the light transmission area in the center of the base material, and the spacing thereof is determined in consideration of the size of the luminous flux of the incident light to be transmitted. do. The practical maximum value of this distance is, assuming that the base material is a piezoelectric substrate such as lithium niobate and the SAW frequency is approximately 200 MHz, the transmission loss is 0.3 dB.
It can be estimated that the diameter is about 10 cm, considering the maximum diameter of currently usable substrates and the capacity of manufacturing equipment such as mask aligners. This value is much larger than the shape of optical diffraction gratings currently used in the form of scored lines on glass materials, and is sufficient for practical use.

次に5本実施例のSAW進行方向軸と入射光軸を含む平
面での断面図を示した第2図を用いて、5AWO伝搬の
状態と、光の入射及び位相変調について説明する。
Next, the state of 5AWO propagation, light incidence, and phase modulation will be explained using FIG. 2, which shows a cross-sectional view on a plane including the SAW traveling direction axis and the incident optical axis of the fifth embodiment.

前記第1図で示したように、本実施例では、3つの基材
と2つの音響波発生装置によって基材の4つの光学平面
にSAWが発生する。
As shown in FIG. 1, in this embodiment, three base materials and two acoustic wave generators generate SAW on four optical planes of the base materials.

これら4面のSAWに、第2図に示すように5AWL、
5AWI° 、5AW2.5AW2° と名前を付ける
。前記5AWIと5AWI′は同一の音響波発生装置2
a発射されたSAWであるから完全に空間的な同位相を
保っている。また、同様に5AW2.5AW2’ につ
いても空間的な同位相であることは明白である。ゆえに
、音響波発生装置2a、2bについてその発射する音響
波(SAW)が、空間的に逆方向を向いて進行し、基材
のほぼ中央に位置する光透過領域で、光軸方向から見過
した場合に位相面の方向(格子方向)が同一方向に揃っ
た状態で交差するように配置調整する必要がある。
As shown in Fig. 2, 5AWL,
Name them 5AWI° and 5AW2.5AW2°. The 5AWI and 5AWI' are the same acoustic wave generator 2
Since it is a fired SAW, it maintains completely the same spatial phase. Similarly, it is clear that 5AW2.5AW2' also has the same spatial phase. Therefore, the acoustic waves (SAW) emitted by the acoustic wave generators 2a and 2b travel in spatially opposite directions, and are visible from the optical axis direction in the light transmission area located approximately in the center of the base material. In this case, it is necessary to adjust the arrangement so that the directions of the phase planes (lattice directions) are aligned in the same direction and intersect.

位相調整の方法はいくつか考えられるが、最も簡単で確
実な方法は、・各音響波発生装置の発生機構の配置を調
整し、SAWの位相面を合わせることである。
There are several methods for phase adjustment, but the simplest and most reliable method is to adjust the arrangement of the generation mechanism of each acoustic wave generator to match the phase planes of the SAWs.

実施例のような交差指形電極では、各電極のSAW伝搬
方向位置をSAW波長の数〜数10分の1の精度で調整
できれば良く、実際に必要な数値精度は数μmである。
In the interdigital electrodes as in the embodiment, it is only necessary to adjust the position of each electrode in the SAW propagation direction with an accuracy of several to several tenths of the SAW wavelength, and the actual numerical accuracy required is several μm.

この程度の精度内での位置決めは現在の半導体素子製造
用のマスクアライナ−で十分実現できるものである。
Positioning within this level of accuracy can be fully realized with current mask aligners for manufacturing semiconductor devices.

第3図に第2の実施例における構成図を示す。FIG. 3 shows a configuration diagram of the second embodiment.

こ、の実施例は、両面に音響波発生装置2a、2bを備
えた両面形の位相変調素子6に、同質の基材la、lc
を密着させた構成で、2つの音響波発生装置2a、2b
と光透過性を有する3つの基材la、lb、lcで、4
面にSAWを発生させる動作は、前記第1図に示した第
1の実施例と同様である。しかしながら、製造過程で用
いる技術は異なり、第1の実施例では、2つの位相変調
素子を組合せる段階で音響波発生装置2a、’lbの位
置を整合させ、SAWの進行方向と位相面(格子方向)
を調整するアッセンブリー技術が必要であり、一方、本
実施例では、両面形の位相変調素子6を製造する際に、
前記音響波発生装置2a、2bの空間的な位相を整合さ
せるための両面マスクアライメントの技術が重要である
。現状では、技術的に第1の実施例の構成法が優位であ
るが、製造工程の簡略化や、完成品の品質の均一化には
本実施例で示した構成法が有力と考えられる。
In this embodiment, a double-sided phase modulation element 6 equipped with acoustic wave generators 2a and 2b on both sides is provided with homogeneous base materials la and lc.
Two acoustic wave generators 2a and 2b are arranged in close contact with each other.
and three base materials la, lb, and lc having light transmittance, 4
The operation of generating SAW on the surface is similar to that of the first embodiment shown in FIG. 1 above. However, the technology used in the manufacturing process is different, and in the first embodiment, the positions of the acoustic wave generators 2a and 'lb are matched at the stage of combining the two phase modulation elements, and the SAW traveling direction and phase plane (grating direction)
On the other hand, in this embodiment, when manufacturing the double-sided phase modulation element 6,
A double-sided mask alignment technique for spatially matching the phases of the acoustic wave generators 2a and 2b is important. At present, the construction method of the first embodiment is technically superior, but the construction method shown in this embodiment is considered to be effective in simplifying the manufacturing process and making the quality of the finished product uniform.

以上、本発明の基本となるSAWの発生法について、そ
の実施例を述べたが、本発明の実用化に当たっては、前
記引用した発明「表面弾性波を利用した光の回折装置」
にも示されているように、SAWの不要反射を防止する
超音波吸収部材の配置や、SAWが熱として消滅する際
の発熱に対する対策なども重要な項目である。さらに、
本発明のように、SAWによる基材の密度変化で屈折率
変化を生じさせる形の光位相変調装置では、使用される
基材の屈折率が大きくなることが多く、これに空気中で
光入射を行う場合には、表面あるいは内部反射率が数l
O%といった高率になる可能性が高い。
Examples of the SAW generation method which is the basis of the present invention have been described above, but in practical application of the present invention, the above-cited invention "Light diffraction device using surface acoustic waves"
As shown in the above, important items include the arrangement of ultrasonic absorbing members to prevent unnecessary reflection of the SAW, and measures against heat generation when the SAW is dissipated as heat. moreover,
In optical phase modulators that change the refractive index by changing the density of the base material due to SAW, as in the present invention, the refractive index of the base material used is often large. When performing
There is a high possibility that the rate will be as high as 0%.

よって、積層構成による光の多重反射を防止する意味に
おいて光学平面の光学的反射防止膜の形成(光学コーテ
ィング)が必要である。
Therefore, in order to prevent multiple reflections of light due to the laminated structure, it is necessary to form an optically flat optical antireflection film (optical coating).

第4図に、本発明の簡単な応用例として、光の偏向装置
に用いた例を示す。
FIG. 4 shows, as a simple application example of the present invention, an example in which the present invention is used in a light deflection device.

周波数toの正弦波の電気信号によつて基材1a、lb
の向い合った面及び基板1b、lcの向い合った面に発
生した2組のSAWは、格子定数にあたる空間周期dを
有し、速度Vで矢印の方向に互いに交差するように進行
する。同図左の方向から入射光4がこの基材を通過する
と、この入射光はSAWによる基材表面の凹凸と基材表
面直下の屈折率変化によって位相変調を受ける。この位
相変調は、空間周期dの繰返しによる周期的なものであ
るから、この光は通常の正弦波位相格子を透過した光と
同じく、レンズ7でレンズの焦点面8に結像させると回
折像を生ずる。ここで、入射光が波長λの単色光であれ
ば、該回折像は前記格子定数dで位置の定まる±1次の
回折輝点像となる。この回折輝点の発生位置は、焦点面
8上の光軸より距離αだけ離れた位置となり、方向はS
AWの伝搬方向と等しい。αの値はレンズ7の焦点距離
をFとすれば α=Fλ/d=foFλ/v  ・・・= ”  (1
)で表わされる。ここで、正弦波電気信号の周波数がf
oを中心に ±Δf/2  変化するものとすれば、焦
点面8上での±1次の回折輝点の変位量Δαは Δα;
ΔfFλ/V  ・・・・・・・・・ 〔2)となる。
The base materials 1a and lb are
The two sets of SAWs generated on the opposing surfaces of the substrates 1b and lc have a spatial period d corresponding to the lattice constant, and advance at a speed V in the direction of the arrow so as to intersect with each other. When incident light 4 passes through this base material from the left direction in the figure, this incident light undergoes phase modulation due to the unevenness of the base material surface due to the SAW and the change in the refractive index just below the base material surface. Since this phase modulation is periodic due to the repetition of the spatial period d, when this light is focused on the focal plane 8 of the lens by the lens 7, it forms a diffraction image, just like light transmitted through a normal sine wave phase grating. will occur. Here, if the incident light is monochromatic light with a wavelength λ, the diffraction image becomes a ±1st-order diffraction bright spot image whose position is determined by the lattice constant d. The generation position of this diffraction bright spot is a distance α from the optical axis on the focal plane 8, and the direction is S
It is equal to the propagation direction of AW. The value of α is α=Fλ/d=foFλ/v...='' (1
). Here, the frequency of the sine wave electrical signal is f
If it changes by ±Δf/2 around o, the displacement Δα of the ±1st-order diffraction bright spot on the focal plane 8 is Δα;
ΔfFλ/V . . . [2).

(2)式で明らかなように、SAWの伝搬速度Vが小さ
く、レンズの焦点比1iffFが長く、光の波長λが長
いほど変位量Δαは大きく、かつ、電気信号の周波数と
直線的な関係で変化することが分かる。
As is clear from equation (2), the smaller the propagation speed V of the SAW, the longer the focal ratio 1iffF of the lens, and the longer the wavelength λ of light, the larger the displacement Δα, and it has a linear relationship with the frequency of the electrical signal. You can see that it changes.

また、前記〔作用〕の部分でも述べたように。Also, as mentioned in the [effect] section above.

交差して進行する2組のSAWは、見かけ上、光軸方向
からは波長dの定在波として考えることができ、この定
在波は全体的にSAWの2倍の周波数で発生、消滅を繰
り返しているものである。
The two sets of SAWs that intersect and travel can be thought of as standing waves with wavelength d from the optical axis direction, and this standing wave overall occurs and disappears at twice the frequency of the SAWs. It is something that is repeated.

よって、前記回折輝点もこの定在波の発生周期と同周期
で点滅を繰り返すものである。
Therefore, the diffraction bright spot also repeats blinking at the same period as the generation period of this standing wave.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、2つ以上の音響波
発生装置を光透過性を有する基材の間にそれぞれ挾み込
む形とし、1つの音響波発生装置で2つの基材面に同一
周波数、同一位相のSAWを発生させ、かつ、音響波発
生装置の半数づつを光透過領域を挟んで対向した位置に
配置し、それらより発生するSAWが、光透過領域で空
間的に同じ位相面(格子方向)をもって交差、すれ違う
ようにしたため、従来装置では得られなかった高効率の
位相変調が実現でき、加えて、交差するSAWによって
発生、消滅を周期的に繰り返す定在波状の位相格子を形
成することができた。この位相格子で空間的及び時間的
に変調のかけられた平面波光を、たとえば、レンズ等で
回折像に変換すれば、SAWの2倍の周波数(数百MH
z〜数GHz)で高速点滅を繰り返えす回折輝点が得ら
れる。
As described above, according to the present invention, two or more acoustic wave generators are sandwiched between light-transmitting base materials, and one acoustic wave generator can generate two or more base material surfaces. generate SAWs with the same frequency and the same phase, and half of the acoustic wave generators are placed at opposing positions across the light transmission area, so that the SAWs generated by them are spatially the same in the light transmission area. By making the phase planes (lattice directions) intersect and pass each other, it is possible to achieve highly efficient phase modulation that could not be obtained with conventional devices.In addition, the intersecting SAWs can generate and dissipate a standing wave-like phase that periodically repeats generation and disappearance. We were able to form a lattice. If the plane wave light spatially and temporally modulated by this phase grating is converted into a diffraction image using a lens, for example, the frequency is twice that of the SAW (several hundreds of MHz).
z to several GHz), a diffraction bright spot that can repeatedly blink at high speed is obtained.

この点滅周期はSAWの周期と同期しているため、光情
報処理系では、高速光チョッパとしての利用が考えられ
る。また2本装置では、広い面積を有する光(光束)を
取扱えることが特徴で、  SAWの周波数可変性と併
用して可変格子定数の位相格子としても利用できる。
Since this blinking cycle is synchronized with the SAW cycle, it can be used as a high-speed optical chopper in optical information processing systems. Furthermore, the two devices are characterized by being able to handle light (luminous flux) having a wide area, and can be used in conjunction with the frequency tunability of SAW to also be used as a phase grating with a variable lattice constant.

さらにまた、光偏向装置として用いたり、高速点滅を繰
り返えす回折光をストロボ光源として活用する方法も考
えられる。
Furthermore, it is also possible to use it as a light deflection device or to utilize diffracted light that can repeatedly blink at high speed as a strobe light source.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の定在波形表面弾性波光変調装置に係
る第1実施例における構成を示す。 第2図は、第1図の第1実施例における積層された基材
と複数のSAW及び入射光との位置関係を示す。 第3図は、本発明の第2実施例における構成を示す。 第4図は、本発明を光偏向に応用した場合の光の偏向状
態を示す。 図において、1aと1b及びICは基材、2aと2bは
音響波発生装置、3aと3bはスペーサ、4は入射光、
6は1bと2a及び2bを合せた両面形の位相変調素子
、7はレンズ、8は焦点面をそれぞれ示す。
FIG. 1 shows the configuration of a first embodiment of a standing waveform surface acoustic wave optical modulator according to the present invention. FIG. 2 shows the positional relationship between the laminated base materials, a plurality of SAWs, and incident light in the first embodiment shown in FIG. FIG. 3 shows the configuration of a second embodiment of the invention. FIG. 4 shows the polarization state of light when the present invention is applied to light deflection. In the figure, 1a, 1b and IC are base materials, 2a and 2b are acoustic wave generators, 3a and 3b are spacers, 4 is incident light,
Reference numeral 6 indicates a double-sided phase modulation element including 1b, 2a, and 2b, 7 indicates a lens, and 8 indicates a focal plane.

Claims (1)

【特許請求の範囲】 光透過性を有し、かつ同一の音響特性を備え、表裏にそ
れぞれ光学平面を持ち、互いに光学平面を対向させなが
ら積層された複数の基材と、該複数の基材の対向する光
学平面間の少なくとも1つに介在されていて、所定の進
行方向に所定波長及び所定位相をもつ第1の表面弾性波
を光学平面に発生させる第1の音響波発生装置と、前記
複数の基材の対向する光学平面間の少なくとも1つに介
在されていて、前記所定の進行方向と逆方向に前記所定
波長と同一波長をもち、かつ1つ又は互いに同位相をも
つ2つ以上の第2の表面弾性波を光学平面に発生させる
第2の音響波発生装置とを備え、 前記第1及び第2の表面弾性波から作られる格子により
透過する光を変調させる定在波形表面弾性波光変調装置
[Scope of Claims] A plurality of base materials that have optical transparency, have the same acoustic properties, have optical planes on the front and back sides, and are laminated with the optical planes facing each other, and the plurality of base materials. a first acoustic wave generating device that is interposed between at least one of the opposing optical planes and generates a first surface acoustic wave having a predetermined wavelength and a predetermined phase in a predetermined traveling direction on the optical plane; one or more two or more that are interposed between opposing optical planes of a plurality of base materials, have the same wavelength as the predetermined wavelength in a direction opposite to the predetermined traveling direction, and have one or the same phase with each other; a second acoustic wave generating device that generates a second surface acoustic wave on an optical plane; Wave light modulator.
JP7789487A 1987-03-31 1987-03-31 Standing waveform surface acoustic wave optical modulator Expired - Lifetime JPH06100741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7789487A JPH06100741B2 (en) 1987-03-31 1987-03-31 Standing waveform surface acoustic wave optical modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7789487A JPH06100741B2 (en) 1987-03-31 1987-03-31 Standing waveform surface acoustic wave optical modulator

Publications (2)

Publication Number Publication Date
JPS63244018A true JPS63244018A (en) 1988-10-11
JPH06100741B2 JPH06100741B2 (en) 1994-12-12

Family

ID=13646785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7789487A Expired - Lifetime JPH06100741B2 (en) 1987-03-31 1987-03-31 Standing waveform surface acoustic wave optical modulator

Country Status (1)

Country Link
JP (1) JPH06100741B2 (en)

Also Published As

Publication number Publication date
JPH06100741B2 (en) 1994-12-12

Similar Documents

Publication Publication Date Title
US3435228A (en) Light beam controlling system
EP0867744B1 (en) Multi-channel acousto-optic modulator
US4491384A (en) Optical switch device
US3531184A (en) Monochromatic light beam deflection apparatus having two trains of frequency scanned acoustic waves for effecting bragg diffraction
KR100300793B1 (en) Laser system for texturing both surfaces of the substrate simultaneously
JPH041890B2 (en)
JPS63244018A (en) Standing wave type surface acoustic wave light modulator
JPS5924831A (en) Light-optical light deflector
JP2571406B2 (en) Standing waveform SAW light modulator
JPS63244017A (en) Progressive wave type surface acoustic wave light modulator
JP2829411B2 (en) Surface acoustic wave high-speed optical deflection element
JPH01131530A (en) Optical modulator for progressive waveform saw
JP3324083B2 (en) Optical element fabrication method
JP2553367B2 (en) Multiple reflection type surface acoustic wave optical diffraction element
JPH06118458A (en) Optical beam deflector having bragg lattice
JPS6294831A (en) Light diffracting device utilizing surface acoustic wave
JPS60136719A (en) Acoustooptic device
JPH02250041A (en) Demultiplexing device and beam deflecting device
JP2697038B2 (en) Acousto-optic effect type waveguide frequency shifter
JPS6210411B2 (en)
JP4012698B2 (en) Acoustooptic device
JP2678456B2 (en) Optical modulation method and back surface reflection type surface acoustic wave optical modulator using the optical modulation method
JP2948645B2 (en) Two-wavelength light source element
JPH03248488A (en) Coherent light distribution feedback type mirror
Fan et al. A single-layered elastic metasurface for switching wide-angle asymmetric transmission of flexural waves