JPH01131530A - Optical modulator for progressive waveform saw - Google Patents

Optical modulator for progressive waveform saw

Info

Publication number
JPH01131530A
JPH01131530A JP28989387A JP28989387A JPH01131530A JP H01131530 A JPH01131530 A JP H01131530A JP 28989387 A JP28989387 A JP 28989387A JP 28989387 A JP28989387 A JP 28989387A JP H01131530 A JPH01131530 A JP H01131530A
Authority
JP
Japan
Prior art keywords
saw
base materials
light
heat
same
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28989387A
Other languages
Japanese (ja)
Other versions
JP2571405B2 (en
Inventor
Yoshifumi Takahashi
良文 高橋
Koichiro Miyagi
宮城 幸一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP62289893A priority Critical patent/JP2571405B2/en
Publication of JPH01131530A publication Critical patent/JPH01131530A/en
Application granted granted Critical
Publication of JP2571405B2 publication Critical patent/JP2571405B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To prevent increase in the temp. of base materials having light transparency and to stabilizer the title modulator by disposing acoustic wave generators in the form of sandwiching the same between the base materials and laminating these base materials and generators in the state of matching the spacial phases with the same phase in the light incident direction, and further providing heat radiators which absorb surface acoustic waves, convert the waves to heat and release the converted heat to both ends of the base materials. CONSTITUTION:Plural pieces of the base materials 1a-1c having the optical planes which allow transmission of light and propagate the surface acoustic waves SAW on the front and rear are disposed in such a manner that the respective front and rear faces face each other while having the spacing nearly parallel with each other. The acoustic wave generators 2a, 2b are interposed in the spacings between the base materials 1a-1c so that the generated acoustic oscillation propagates in the same direction in the form of the SAW of the same frequency and the same phase on the two optical plane sandwiching these generators 2a, 2b. Furthermore, acoustical absorbents 4a, 4b which absorbs the SAW and convert the same to heat and the heat radiators 5a, 5b which release the heat converted by the acoustical absorbents 4a, 4b are provided at both ends in the SAW propagation direction of the plural base materials 1a-1c. The deterioration of the base materials by the heat or the instability of the operation by a change in the SAW speed is thereby prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、光の位相を超音波を使用して変調する光変
調装置に係り、特に、固体基板表面を伝搬する表面弾性
波(S A W : 5urface Acoutic
 Wave)を回折格子として利用し、かつ、該SAW
の発生面を入射光の光軸方向にほぼ平行間隔で積層する
よ、うに配置することにより冑能率で光波面の位相変調
が行えるようにした進行波形SAW光変調装置に関する
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an optical modulation device that modulates the phase of light using ultrasonic waves, and in particular, relates to a light modulation device that modulates the phase of light using ultrasonic waves, and in particular, the present invention relates to a light modulation device that modulates the phase of light using ultrasonic waves. W: 5 surface acoustic
wave) as a diffraction grating, and the SAW
The present invention relates to a traveling wave SAW optical modulator in which the phase modulation of a light wavefront can be performed with high efficiency by arranging the generation surfaces of the light waveforms so as to be stacked at substantially parallel intervals in the optical axis direction of the incident light.

〔従来の技術〕[Conventional technology]

光の位相面を空間的に変調する光変調装置には光学的反
射格子のように光の反射点の幾可学的空間位置を設定し
、それらの位置のずれから各々の反射光に光路差を発生
させて所望の位相遅れ(位相変調)を生じさせるものと
、光学レンズのように光の透過する部分の材質の厚さや
、屈折率を変化させて光の速さを遅らせ、その結果、位
相遅れを生ぜせしめるものとがある。
In a light modulation device that spatially modulates the phase plane of light, geometric spatial positions of light reflection points are set like an optical reflection grating, and the optical path difference of each reflected light is determined by the deviation of these positions. One is to generate a desired phase delay (phase modulation), and the other is to change the thickness and refractive index of the material of the part through which the light passes, such as in an optical lens, to slow down the speed of light. There are some things that cause phase lag.

光を透過させる媒質の屈折率を変化する方式の位相変調
装置では光透過媒質に異方性結晶などを用い電界や磁界
を加えることによって・容易に、しかも高速に位相遅れ
を生じさせることが可能であり、圧電結晶基板上の先導
波路などに電界を加えて位相変調を行う変調素子や、さ
らに2つの素子の変調光を干渉させて光の点滅を行う光
スィッチなど多くの実用的な光学素子が開発されてきた
In a phase modulation device that changes the refractive index of a medium that transmits light, it is possible to easily and quickly generate a phase delay by using an anisotropic crystal as the light transmitting medium and applying an electric or magnetic field. It is used in many practical optical elements, such as a modulation element that performs phase modulation by applying an electric field to a leading waveguide on a piezoelectric crystal substrate, and an optical switch that causes light to flicker by interfering with the modulated light of two elements. has been developed.

また、電界、磁界等の変化では顕著な屈折率変化の生じ
ない物質あるいは光の透過する部分の面積が広く、その
部分全体に例えば正弦波格子状の位相変化分布を発生さ
せたいような場合には、光透過媒質中に超音波を放射し
、超音波による媒質の密度変化によって屈折率変化を生
じさせる音響光学的な手法がとられてきた。
In addition, when there is a material whose refractive index does not change noticeably due to changes in electric field, magnetic field, etc., or where the area of the part through which light passes is large, and you want to generate, for example, a sinusoidal lattice-like phase change distribution in the entire part, An acousto-optic method has been used in which ultrasonic waves are emitted into a light-transmitting medium and the refractive index changes due to changes in the density of the medium caused by the ultrasonic waves.

この音響光学的な位相変調の方法は、大別すると、媒質
の内部を進行するバルク波を使用するものと、媒質の表
層にエネルギーの大部分が集中している表面弾性波(S
AW)を利用する方法とに分けられる。バルク波を用い
るものは、超音波の中を長い距離にわたって光を進行さ
せることが可能であり、この結果、超音波と光の相互干
渉の時間(距離)を長くとることができ、位相変化量が
大きい(変調効率が高い)特徴があるが、しかし光透過
部分の面積を広(し難く、また、超音波の発生帯域が構
造上狭い等の作成面での問題と、バルク波により生じた
立体的な格子状の屈折率変化領域に対する光の入射角度
がBragg (ブラッグ)の条件によって制限され、
入射光の波長若しくは超音波の波長が変化するとそれに
従って入射角度も調整する必要があった。
This acousto-optic phase modulation method can be roughly divided into those that use bulk waves traveling inside the medium, and those that use surface acoustic waves (S
AW). Those that use bulk waves are able to propagate light over a long distance within the ultrasound, and as a result, the time (distance) for mutual interference between the ultrasound and light can be lengthened, and the amount of phase change can be increased. However, it is difficult to widen the area of the light-transmitting part, and the ultrasonic wave generation band is structurally narrow. The angle of incidence of light on a three-dimensional lattice-like refractive index changing region is limited by Bragg's condition,
When the wavelength of the incident light or the wavelength of the ultrasonic wave changes, it is necessary to adjust the incident angle accordingly.

しかしながら、固定周波数の光変調装置としては、小形
、高効率であり、最も実用化されているものの一つであ
る。
However, as a fixed frequency optical modulation device, it is small and highly efficient, and is one of the most practically used devices.

一方、SAWを利用する光変調装置では、SAWの発生
機構が高周波、広帯域に向(ものであって、かつ、前記
Bragg (ブラッグ)の条件に適したようにSAW
の発射方向を変化させる方法も開発されてきたため高周
波、広帯域の光変調装置として用いら俄てきた。
On the other hand, in an optical modulation device that uses SAW, the SAW generation mechanism is suitable for high frequencies and wide bands, and the SAW is
As methods for changing the emission direction of light have also been developed, it has come to be used as a high-frequency, broadband optical modulation device.

SAWと光との組合せ方法には、光をSAWの発生して
いる基板表面に薄膜状に導いてSAWの中を長時間(長
い距離)伝搬させて変調効率を高める方法と、SAWの
発生面に垂直に光を透過させて短時間(短距離)で位相
変調させる方法とがある。SAW発生面に光を導波する
方法は、主に薄膜光ICの位相変調素子として多用され
利用価値が高い。また、SAW発生面に垂直に光を入射
する方法は、幅の広い光束全体に位相変調をかけること
が可能で、一般的な空間伝搬形の光学系において位相回
折格子のように使用されることが多い。この場合、SA
Wによる光の変調効率を高めるため、SAWの発生面を
入射光の光軸方向にほぼ平行な間隔で積層する方法が採
られていた。これら垂直に光を入射する方法は、SAW
の周波数を変化させて格子定数を変化させることが可能
で可変格子間隔を有する位相回折格子として注目を集め
ている。ここで言う変調効率とは、位相変調後の光を結
像させ、位相変化で生じた回折光の強度を測定して、入
射光の何%が回折したかを求めたものである。
There are two methods of combining SAW and light: one is to introduce light into a thin film onto the surface of the substrate where the SAW is generated and propagate through the SAW for a long time (long distance) to increase modulation efficiency; There is a method of transmitting light perpendicularly to the direction of the light and modulating the phase in a short time (short distance). The method of guiding light to the SAW generation surface is widely used and has high utility value mainly as a phase modulation element of thin film optical ICs. In addition, the method in which light is incident perpendicularly to the SAW generation surface can apply phase modulation to the entire wide beam, and can be used like a phase diffraction grating in general spatial propagation optical systems. There are many. In this case, SA
In order to increase the modulation efficiency of light by W, a method has been adopted in which the SAW generation surfaces are stacked at intervals substantially parallel to the optical axis direction of the incident light. These methods of vertically injecting light are SAW
It is possible to change the grating constant by changing the frequency of the phase diffraction grating, and it is attracting attention as a phase diffraction grating with variable grating spacing. The modulation efficiency referred to here is obtained by imaging the phase-modulated light, measuring the intensity of the diffracted light generated by the phase change, and determining what percentage of the incident light is diffracted.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、このようにSAWの発生面を入射光の光
軸方向にほぼ平行間隔で積層する方法はSAWエネルギ
ーが変換して生じた熱が、積層構造であるがゆえに蓄積
され易く、基材の劣化あるいはSAW速度の変化による
動作帯域の変動、さらには波長変化による回折角度の変
動の原因となっていた。
However, in this method of laminating the SAW generation surfaces at almost parallel intervals in the optical axis direction of the incident light, the heat generated by converting the SAW energy is likely to accumulate due to the laminated structure, resulting in deterioration of the base material. Alternatively, variations in the operating band due to changes in the SAW speed and further variations in the diffraction angle due to changes in wavelength have been caused.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、かかる問題点を解決すべくなされたもので、
その解決の手段として、光を透過し、かつ、SAWが伝
搬する光学平面を表裏にもつ複数個の基材を、各々の表
裏面が互いにほぼ平行な間隔をもちながら対向するよう
に配置し、それら基材の間隙に音響振動を発生させるた
めの音響波発生装置を介在させ、これら音響波発生装置
で発生した音響振動が、これら発生装置を挾む2つの光
学平面に、同一周波数で同一位相のSAWとなって同一
方向に伝搬するようにし、かつ、複数の基材のSAW伝
搬方向の両端にSAWを吸収して熱に変換する吸音材と
、この吸音材で変換した熱を放出する放熱器とを備えた
構成とした。
The present invention was made to solve such problems,
As a means of solving this problem, a plurality of base materials having optical planes on the front and back sides through which light is transmitted and SAW propagates are arranged so that each front and back surface faces each other with an interval substantially parallel to each other. Acoustic wave generators for generating acoustic vibrations are interposed in the gap between these base materials, and the acoustic vibrations generated by these acoustic wave generators are transmitted to two optical planes that sandwich these generators at the same frequency and the same phase. A sound absorbing material that absorbs the SAW and converts it into heat is installed at both ends of the SAW propagation direction of the plurality of base materials, and a heat dissipation material that releases the heat converted by this sound absorbing material. The structure is equipped with a container.

また、複数個の基材には、それぞれ同一の音響特性を有
し、かつ、入射光の透過性が十分良好な材質のものを用
いた。さらにまた、各音響波発生装置から発せられたS
AWは、それぞれ同一周波数、同一進行方向ををするも
のであって、なおかつ、入射光の光軸方向から見通した
場合に、それら複数のSAWの位相が同位相になるよう
に前記発生装置のそれぞれの設定場所を定めた。
Furthermore, the plurality of base materials used were made of materials that each had the same acoustic characteristics and had sufficiently good transmittance to incident light. Furthermore, the S emitted from each acoustic wave generator
The AWs have the same frequency and the same direction of travel, and each of the generators is arranged so that the phases of the plurality of SAWs are the same when viewed from the optical axis direction of the incident light. The setting location was determined.

〔作用〕[Effect]

以上のような手段によって、各基材を伝搬するSAWを
吸音材で吸収して熱に変換し、しかも、この吸音材の近
く、あるいはこの吸音材により基材に固定しである放熱
器に直ちに熱を伝搬することが可能となり、基材の温度
上昇を低減させることができる。この結果、SAWの伝
搬速度は安定し、光変調装置は安定に動作するようにな
る。また基材が受ける熱による歪みも軽減されることに
なるため寿命の長い装置にすることができる。
By the means described above, the SAW propagating through each base material is absorbed by the sound absorbing material and converted into heat, and moreover, it is immediately transmitted to a radiator near the sound absorbing material or fixed to the base material by the sound absorbing material. It becomes possible to propagate heat and reduce the temperature rise of the base material. As a result, the propagation speed of the SAW becomes stable, and the optical modulation device operates stably. Furthermore, since the distortion caused by the heat applied to the base material is also reduced, the device can have a long life.

〔実施例〕〔Example〕

第1図に本発明に係る進行波形SAW光変調装置の一実
施例における構成図を示す。
FIG. 1 shows a configuration diagram of an embodiment of a traveling waveform SAW optical modulator according to the present invention.

本発明は、SAWを伝搬する基材La、基材lb、基材
ICと、基材1a及び基材1bの間に挾まれ、基板1a
と基板1bの対向する両面にSAWを発生する音響波発
生装置2aと、基材1b及び基材1cの間に挾まれ、基
板1bと基板1cの対向する両面にSAWを発生する音
響波発生装置2bと、基材1a及び基材1bの音響波発
生装置2aが設けられた側のそれぞれの表面にSAWが
伝搬するように空間を創り出すために設けられたスペー
サ3aと、同様に基材1b及び基材1cの音響波発生装
置2bが設けられた側のそれぞれの表面にSAWが伝搬
するように空間を創り出すために設けられたスペーサ3
bと、基材1a、基材lb、基材ICをそれぞれ伝搬す
るSAWを吸収して熱に変換する吸音材4a及び吸音材
4bと、吸音材4a及び吸音材4bで変換された熱を外
部に放出する放熱器5a及び放熱器5bより構成される
The present invention provides a substrate 1a that is sandwiched between a substrate La, a substrate lb, and a substrate IC that propagate SAW, and a substrate 1a and a substrate 1b.
and an acoustic wave generator 2a that generates SAW on both opposing surfaces of substrate 1b, and an acoustic wave generator that is sandwiched between substrate 1b and substrate 1c and generates SAW on both opposing surfaces of substrate 1b and substrate 1c. 2b, and a spacer 3a provided to create a space for the SAW to propagate on each surface of the base material 1a and the side where the acoustic wave generator 2a of the base material 1b is provided, and similarly, the base material 1b and Spacers 3 provided to create a space for the SAW to propagate on each surface of the base material 1c on the side where the acoustic wave generator 2b is provided.
b, a sound absorbing material 4a and a sound absorbing material 4b that absorb SAW propagating through the base material 1a, base material lb, and base material IC and converting it into heat, and transmitting the heat converted by the sound absorbing material 4a and the sound absorbing material 4b to the outside. It is composed of a heat radiator 5a and a heat radiator 5b.

基材表面にSAWを発生させ伝搬させるには、光透過性
を有する基材に圧電性基板を使用し、その基板表面に音
響波発生装置として交差指形電極を金属の蒸着薄膜で形
成する方法がある。この場合、交差指形電極は発生した
SAWが吸音材に吸収されたとき、発生する熱による影
響を防ぐため吸音材からできるだけ離れた位置に設ける
In order to generate and propagate SAW on the surface of a base material, a piezoelectric substrate is used as a light-transmitting base material, and interdigital electrodes are formed on the surface of the substrate as an acoustic wave generator using a vapor-deposited metal film. There is. In this case, the interdigital electrodes are provided at a position as far away from the sound absorbing material as possible to prevent the influence of heat generated when the generated SAW is absorbed by the sound absorbing material.

また、交差指形電極を形成するには、金属薄膜の蒸着技
術及び半導体微細加工技術を用いることができる。
Furthermore, metal thin film deposition technology and semiconductor microfabrication technology can be used to form the interdigital electrodes.

このような圧電性基板と交差指形電極を用いる方法は、
SAW発生面に垂直入射する光を広い面積で位相変調す
る素子としては最も簡単な構造である。
A method using such a piezoelectric substrate and interdigital electrodes is
This is the simplest structure for an element that phase-modulates the phase of light that is perpendicularly incident on the SAW generation surface over a wide area.

交差指形電極を形成する基材の構成方法には2つの場合
が考えられる。
There are two possible ways to construct the base material forming the interdigital electrodes.

1つは基材1bの両面にSAWを発生する音響波発生装
W2a及び音響波発生装置2bを形成し、その後、この
両面を基材1a及び基材1cで挾む方法である。
One is a method in which an acoustic wave generator W2a and an acoustic wave generator 2b that generate SAW are formed on both sides of a base material 1b, and then these both sides are sandwiched between a base material 1a and a base material 1c.

もう一つの方法は、基材1a、基材1b、基材lcの内
2つの基材の表面に音響波発生装置2aと音響発生2b
を形成し、3枚の基材を重ねる方法である。スペーサ3
a及びスペーサ3bは前記音響発生装置2a、2bと同
様に金属薄膜の蒸着技術及び半導体微細加工技術を用い
て製作することができる。
Another method is to use an acoustic wave generator 2a and an acoustic wave generator 2b on the surface of two of the base materials 1a, 1b, and lc.
This is a method of forming three base materials and stacking them. Spacer 3
a and the spacer 3b can be manufactured using metal thin film deposition technology and semiconductor microfabrication technology in the same way as the sound generating devices 2a and 2b.

吸音材4a及び吸音材4bは3枚の基材の両端に設け、
個々の基板を伝搬するSAWを吸収しSAWの反射の反
射を防ぎ、かつ、SAWを熱に変換する。スペーサ3a
及びスペーサ3bはそれぞれ吸音材4aと吸音材4bで
取り囲みSAWを反射しないようにする。
The sound absorbing material 4a and the sound absorbing material 4b are provided at both ends of the three base materials,
It absorbs the SAW propagating through each substrate, prevents the reflection of the SAW, and converts the SAW into heat. Spacer 3a
and spacer 3b are respectively surrounded by sound absorbing material 4a and sound absorbing material 4b to prevent SAW from being reflected.

放熱器5a及び放熱器5bは、それぞれ吸音材4aと吸
音材4bの近くに設け、接着剤で基材1a、基材1b、
基材ICに固定する。固定した放熱器5a及び放熱器5
bには熱の放散を良くするため前記吸音材4aと吸音材
4bを接着する。
The heat radiator 5a and the heat radiator 5b are provided near the sound absorbing material 4a and the sound absorbing material 4b, respectively, and are glued to the base material 1a, base material 1b,
Fix it to the base IC. Fixed radiator 5a and radiator 5
In order to improve heat dissipation, the sound absorbing material 4a and the sound absorbing material 4b are bonded to b.

この場合、吸音剤が接着剤を兼ねる場合も考えられる。In this case, the sound absorbing agent may also serve as an adhesive.

次に、第2図を用いて各基材の表面に発生したSAWの
伝搬の状態と、光の入射及び位相変調について説明する
。第2図は本実施例のSAW進行方向軸と入射光軸を含
む平面での断面図を示す。
Next, the propagation state of the SAW generated on the surface of each base material, the incidence of light, and the phase modulation will be explained using FIG. FIG. 2 shows a cross-sectional view on a plane including the SAW traveling direction axis and the incident optical axis of this embodiment.

第1図に示したように、本実施例では、3つの基材と2
つの音響発生装置によって基材の4つの光学平面にSA
Wが発生する。
As shown in Figure 1, in this example, three base materials and two
SA on the four optical planes of the base material by two acoustic generators
W occurs.

これら4面のSAWに、第2図に示すように5AWI、
5AW1′、5AW2.5AW2’  と名前を付ける
。各音響発生装置の発振周波数とSAW発射方向、及び
各基板の音響特性が同一であれば、すべてのSAWは同
一波長で平行した位相面(光軸方向から見透せば格子面
)を持って同一速度で進行する。よって、各SAWが、
入射光6に対して同等の位相変調作用を与えるようにす
るには、各SAWの位相面が光軸方向から見透した場合
に同相で揃っていれば良いことになる。前記5AWIと
5AWI’ は、同一の音響波発生装置2aより発射さ
れたSAWであるから、完全に空間的な同位相を保って
いる。また同様に5AW2.5AW2″についても空間
的な同位相であることは明白である。
As shown in Figure 2, 5AWI,
Name them 5AW1', 5AW2.5AW2'. If the oscillation frequency and SAW emission direction of each acoustic generator and the acoustic characteristics of each substrate are the same, all SAWs have the same wavelength and parallel phase planes (lattice planes when viewed from the optical axis direction). Proceed at the same speed. Therefore, each SAW is
In order to give the same phase modulation effect to the incident light 6, it is sufficient that the phase planes of each SAW are aligned in the same phase when viewed from the optical axis direction. Since the 5AWI and 5AWI' are SAWs emitted from the same acoustic wave generator 2a, they maintain completely the same spatial phase. Similarly, it is clear that 5AW2.5AW2'' also has the same spatial phase.

ゆえに、音響発生装置2a、2bについて、その発射す
る音響波(SAW)が、空間的な同位相であるようにす
れば、すべてのSAWが光軸方向から見て同相で揃うこ
とになる。
Therefore, if the acoustic waves (SAW) emitted by the sound generators 2a and 2b are made to have the same spatial phase, all the SAWs will be aligned in the same phase when viewed from the optical axis direction.

位相調整の方法はい(つか考えられるが、最も簡単で確
実な方法は、各音響波発生装置の発生機構である電極の
配置を調整し、SAWの位相を合わせることである。す
なわち、実施例のような交差指形電極では、各電極のS
AW伝搬方向位置をSAW波長の数〜数10分の1の精
度で調整できれば良く、実際に必要な数値精度は数μm
である。
Method of phase adjustment Yes (There are several possible methods, but the simplest and surest method is to adjust the arrangement of the electrodes that are the generation mechanism of each acoustic wave generator and match the phase of the SAW. In other words, the method of the embodiment In interdigital electrodes such as
It is sufficient to be able to adjust the position in the AW propagation direction with an accuracy of several to several tenths of the SAW wavelength, and the actual numerical accuracy required is several μm.
It is.

この程度の精度内での位置決めは現在の半導体素子製造
用のマスクアライナ−で十分実現できるものである。
Positioning within this level of accuracy can be fully realized with current mask aligners for manufacturing semiconductor devices.

この他の方法として、交差指形電極の交差指方向の平行
度のみを清書に整合させ、SAWの位相調整はそれぞれ
の電極に加える電気信号の位相を個々に遅らせて調整す
る方法もある。この方法は変調素子の外部回路がやや複
雑化する困難は生ずるものの、光変調装置の組立後、光
を実際に入射し、その変調された出力光を観察しながら
調整可能であるといった特徴もあり、実用上有効な手段
となっている。
Another method is to match only the parallelism of the interdigital electrodes in the interdigital direction to the fine print, and adjust the SAW phase by individually delaying the phase of the electric signal applied to each electrode. Although this method has the difficulty of making the external circuit of the modulation element somewhat complicated, it also has the advantage that after assembling the light modulation device, it can be adjusted while actually inputting light and observing the modulated output light. , it is a practically effective means.

以上、本発明の基本となるSAWの発生法について3つ
の実施例を述べたが、本発明のように、SAWによる基
材の密度変化で屈折率変化を生じさせる形の光位相変調
装置では、使用される基材の屈折率が大きくなることが
多く、これに空気中で光入射を行う場合には、表面ある
いは内部反射率が数10%といった高率になる可能性が
高い。
Above, three embodiments of the SAW generation method which is the basis of the present invention have been described. However, in the optical phase modulation device of the present invention in which the refractive index is changed by the density change of the base material due to the SAW, The refractive index of the base material used is often large, and when light is incident on it in the air, there is a high possibility that the surface or internal reflectance will be as high as several tens of percent.

よって、積層構成による光の多重反射を防止する意味に
おいて光学平面の光学的反射防止膜の形成(光学コーテ
ィング)が必要である。
Therefore, in order to prevent multiple reflections of light due to the laminated structure, it is necessary to form an optically flat optical antireflection film (optical coating).

第3図に、本発明の簡単な応用例として、光の偏向装置
に用いた例を示す。
FIG. 3 shows, as a simple application example of the present invention, an example in which the present invention is used in a light deflection device.

周波数foの正弦波の電気信号によって基材1a、基材
1bの表面に発生したSAWは、格子定数にあたる空間
周期dを有し、速度Vで矢印の方向に進行する。同図左
の方向から入射光6がこの基材を通過すると、この入射
光はSAWによる基材表面の凸凹と基材表面直下の屈折
率変化によって位相変調を受ける。この位相変調は、空
間周期dの繰返しによる周期的なものであるから、この
光は通常の正弦波位相格子を透過した光と同じく、レン
ズ7でレンズの焦点面8に結像させると回折像を生ずる
。ここで、入射光が波長λの単色光であれば、該回折像
は前記格子定数dで位置の定まる±1次の回折輝点像と
なる。この回折輝点の発生位置は、焦点面8上の光軸よ
り距離αだけ離れた位置となり、方向は5AWO伝搬方
向と等しい。αの値はレンズ7の焦点距離をFとずれば
α=Fλ/d=foFλ/ v  −・−−=−(1)
で表わされる。
The SAW generated on the surfaces of the base materials 1a and 1b by a sinusoidal electric signal having a frequency fo has a spatial period d corresponding to a lattice constant, and travels at a speed V in the direction of the arrow. When incident light 6 passes through this base material from the left direction in the figure, this incident light undergoes phase modulation due to the unevenness of the base material surface due to the SAW and the change in refractive index just below the base material surface. Since this phase modulation is periodic due to the repetition of the spatial period d, when this light is focused on the focal plane 8 of the lens by the lens 7, it forms a diffraction image, just like light transmitted through a normal sine wave phase grating. will occur. Here, if the incident light is monochromatic light with a wavelength λ, the diffraction image becomes a ±1st-order diffraction bright spot image whose position is determined by the lattice constant d. The generation position of this diffraction bright spot is a distance α from the optical axis on the focal plane 8, and the direction is equal to the 5AWO propagation direction. If the focal length of lens 7 is different from F, the value of α is α=Fλ/d=foFλ/v −・−−=−(1)
It is expressed as

ここで、正弦波電気信号の周波数がfOを中心に ±Δ
f/2  変化するものとすれば、焦点面8上での±1
次の回折輝点の変位量ΔαはΔα−ΔIFλ/V   
  ・・・・・・・・・ (2)となる。この(2)式
で明らかなように、SAWの伝搬速度■が小さく、レン
ズの焦点距離Fが長く、光の波長λが長いほど変位量Δ
αは大きく、かつ、電気信号の周波数と直線的な関係で
変化することが分かる。
Here, the frequency of the sinusoidal electrical signal is ±Δ around fO
f/2 If it changes, ±1 on the focal plane 8
The displacement amount Δα of the next diffraction bright spot is Δα−ΔIFλ/V
・・・・・・・・・(2) becomes. As is clear from equation (2), the smaller the SAW propagation speed ■, the longer the focal length F of the lens, and the longer the wavelength λ of the light, the more the displacement Δ
It can be seen that α is large and changes in a linear relationship with the frequency of the electrical signal.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、光透過性を存する
基材の間に音響波発生装置を挾み込む形で配置したため
、1つの音響波発生装置で2つの面に同一周波数、同一
位相のSAWを効果的に発生させることができ、さらに
、これらを光入射方向に、空間的位相を同相に揃えて積
層し、しかも基材の両端にはSAWを吸収し熱に変換す
る吸音材と、この吸音材により変換された熱を放出する
放熱器を備えているため、従来装置では得られなかった
高効率の光位相変調を実現することが可能となった。こ
れにより、本発明では、広い面積での空間位相変調が効
率良く実現でき、分光測定装置に応用できる可変格子定
数を有する正弦波位相格子や、音響光学的相関器等の光
電気信号処理装置の空間的位相変調器の実現が容易にな
った。
As described above, according to the present invention, since the acoustic wave generator is placed between the light-transmitting base materials, one acoustic wave generator can generate the same frequency and the same frequency on two surfaces. It can effectively generate phase SAW, and furthermore, these are stacked in the light incident direction with their spatial phases aligned in the same phase, and sound absorbing materials are provided at both ends of the base material to absorb SAW and convert it into heat. Since it is equipped with a radiator that releases the heat converted by this sound-absorbing material, it has become possible to achieve highly efficient optical phase modulation that was not possible with conventional devices. As a result, in the present invention, spatial phase modulation can be efficiently realized over a wide area, and it can be applied to a sine wave phase grating with a variable grating constant that can be applied to spectroscopic measurement equipment, and an optoelectrical signal processing device such as an acousto-optic correlator. The realization of a spatial phase modulator has become easier.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の進行波形SAW光変調装置の実施例を
示す。第2図は第1図の実施例における積層された基材
と、複数のSAW及び入射光との位置関係を示す。第3
図は本発明を光偏向に応用した場合の光の偏向状態を示
す。 図において、1aと1b及び1cは基材、2aと2bは
音づ波発生装置、3aと3bはスペーサ、4aと4bは
吸音材、5aと5bは放熱器、6は入射光、7はレンズ
、8は焦点面をそれぞれ示す。
FIG. 1 shows an embodiment of a traveling waveform SAW optical modulator according to the present invention. FIG. 2 shows the positional relationship between the laminated base materials, a plurality of SAWs, and incident light in the embodiment of FIG. 1. Third
The figure shows the polarization state of light when the present invention is applied to light deflection. In the figure, 1a, 1b and 1c are base materials, 2a and 2b are sound wave generators, 3a and 3b are spacers, 4a and 4b are sound absorbing materials, 5a and 5b are radiators, 6 is incident light, and 7 is a lens. , 8 indicate focal planes, respectively.

Claims (1)

【特許請求の範囲】[Claims] 光透過性を有し、かつ同一の音響特性を備え、表裏にそ
れぞれ光学平面を持ち、互いに光学平面を対向させなが
ら積層された複数の基材(1a、1b、1c)と;該複
数の基材の対向する光学平面間に介在されていて、対向
するそれぞれの光学平面に同一進行方向に同一波長及び
同一位相の表面弾性波を発生させる複数の音響波発生装
置(2a、2b)と;該複数の音響波発生装置より発生
された表面波を吸収し熱に変換する複数の吸音材(4a
、4b)と;該複数の吸音材により変換された熱を放出
するための複数の放熱器(5a、5b)とを備え、積層
された光学平面を透過する光を変調させる積層形の進行
波形SAW光変調装置。
A plurality of substrates (1a, 1b, 1c) having optical transparency and having the same acoustic properties, each having an optical plane on the front and back sides, and laminated with the optical planes facing each other; a plurality of acoustic wave generators (2a, 2b) that are interposed between opposing optical planes of the material and generate surface acoustic waves of the same wavelength and phase in the same traveling direction on each of the opposing optical planes; A plurality of sound absorbing materials (4a
, 4b); and a plurality of radiators (5a, 5b) for discharging heat converted by the plurality of sound absorbing materials, and a laminated traveling waveform modulating light transmitted through the laminated optical planes. SAW optical modulator.
JP62289893A 1987-11-17 1987-11-17 Traveling waveform SAW light modulator Expired - Fee Related JP2571405B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62289893A JP2571405B2 (en) 1987-11-17 1987-11-17 Traveling waveform SAW light modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62289893A JP2571405B2 (en) 1987-11-17 1987-11-17 Traveling waveform SAW light modulator

Publications (2)

Publication Number Publication Date
JPH01131530A true JPH01131530A (en) 1989-05-24
JP2571405B2 JP2571405B2 (en) 1997-01-16

Family

ID=17749132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62289893A Expired - Fee Related JP2571405B2 (en) 1987-11-17 1987-11-17 Traveling waveform SAW light modulator

Country Status (1)

Country Link
JP (1) JP2571405B2 (en)

Also Published As

Publication number Publication date
JP2571405B2 (en) 1997-01-16

Similar Documents

Publication Publication Date Title
US7894125B2 (en) Acousto-optic devices
JPS6290618A (en) Light modulator
JP2571405B2 (en) Traveling waveform SAW light modulator
JP2571406B2 (en) Standing waveform SAW light modulator
JPH0623819B2 (en) Optical waveguide device
JP2829411B2 (en) Surface acoustic wave high-speed optical deflection element
JPH06100740B2 (en) Progressive waveform surface acoustic wave optical modulator
JP3633045B2 (en) Wavelength filter
JPS58125025A (en) Two-dimensional optical deflector
JP2948645B2 (en) Two-wavelength light source element
JPS6150291B2 (en)
JPS63244018A (en) Standing wave type surface acoustic wave light modulator
JP2553367B2 (en) Multiple reflection type surface acoustic wave optical diffraction element
JPS63239425A (en) Surface acoustic wave variable diffraction grating
JP2787345B2 (en) Two-wavelength light source element
JPS6232458B2 (en)
JPS6210411B2 (en)
JPH03248488A (en) Coherent light distribution feedback type mirror
Fan et al. A single-layered elastic metasurface for switching wide-angle asymmetric transmission of flexural waves
JPS60112024A (en) Light wavelength converter
JPS6294831A (en) Light diffracting device utilizing surface acoustic wave
KR101075695B1 (en) Second harmonic generator and apparatus of laser light source using the same
JPS60136719A (en) Acoustooptic device
JPS6210731Y2 (en)
JPS6343728B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees