JP2571405B2 - Traveling waveform SAW light modulator - Google Patents

Traveling waveform SAW light modulator

Info

Publication number
JP2571405B2
JP2571405B2 JP62289893A JP28989387A JP2571405B2 JP 2571405 B2 JP2571405 B2 JP 2571405B2 JP 62289893 A JP62289893 A JP 62289893A JP 28989387 A JP28989387 A JP 28989387A JP 2571405 B2 JP2571405 B2 JP 2571405B2
Authority
JP
Japan
Prior art keywords
saw
light
optical
phase
same
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62289893A
Other languages
Japanese (ja)
Other versions
JPH01131530A (en
Inventor
良文 高橋
幸一郎 宮城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP62289893A priority Critical patent/JP2571405B2/en
Publication of JPH01131530A publication Critical patent/JPH01131530A/en
Application granted granted Critical
Publication of JP2571405B2 publication Critical patent/JP2571405B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、光の位相を超音波を使用して変調する光
変調装置に係り、特に、固体基板表面を伝搬する表面弾
性波(SAW:Surface Acoustic Wave)を回折格子として
利用し、かつ、該SAWの発生面を入射光の光軸方向にほ
ぼ平行間隔で積層するように配置することにより高能率
で光波面の位相変調が行えるようにした進行波形SAW光
変調装置に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical modulator that modulates the phase of light using ultrasonic waves, and more particularly, to a surface acoustic wave (SAW: By using Surface Acoustic Wave as a diffraction grating and arranging the SAW generation surface so as to be stacked at almost parallel intervals in the optical axis direction of the incident light, the phase modulation of the light wavefront can be performed with high efficiency. The present invention relates to a traveling wave SAW optical modulator.

〔従来の技術〕[Conventional technology]

光の位相面を空間的に変調する光変調装置には光学的
反射格子のように光の反射点の幾何学的空間位置を設定
し、それらの位置のずれから各々の反射光に光路差を発
生させて所望の位相遅れ(位相変調)を生じさせるもの
と、光学レンズのように光の透過する部分の材質の厚さ
や、屈折率を変化させて光の速さを遅らせ、その結果、
位相遅れを生ぜしめるものとがある。
In a light modulator that spatially modulates the phase plane of light, the geometrical spatial positions of the light reflection points are set like an optical reflection grating, and the optical path difference is given to each reflected light from the deviation of those positions. It causes the desired phase delay (phase modulation), and changes the thickness of the material of the light transmitting part such as an optical lens and the refractive index to reduce the speed of the light. As a result,
Some cause a phase delay.

光を透過させる媒質の屈折率を変化する方式の位相変
調装置では光透過媒質に異方性結晶などを用い電界や磁
界を加えることによって容易に、しかも高速に位相遅れ
を生じさせることが可能であり、圧電結晶基板上の光導
波路などに電界を加えて位相変調を行う変調素子や、さ
らに2つの素子の変調光を干渉させて光の点滅を行う光
スイッチなど多くの実用的な光学素子が開発されてき
た。
A phase modulation device that changes the refractive index of a medium that transmits light can easily and quickly generate a phase lag by applying an electric field or a magnetic field using an anisotropic crystal or the like as the light transmitting medium. There are many practical optical elements such as a modulation element that performs phase modulation by applying an electric field to an optical waveguide on a piezoelectric crystal substrate, and an optical switch that blinks light by interfering the modulated light of two elements. Has been developed.

また、電解、磁界等の変化では顕著な屈折率変化の生
じない物質に、あるいは、光の透過する部分の面積が広
く、その部分全体に、例えば正弦波格子状の位相変化分
布を発生させたいような場合には、光透過媒質中に超音
波を放射し、超音波による媒質の密度変化によって屈折
率変化を生じさせる音響光学的な手法がとられてきた。
Also, it is desired to generate, for example, a sinusoidal lattice phase change distribution over a material that does not cause a remarkable change in the refractive index due to changes in electrolysis, magnetic field, or the like, or that has a large light-transmitting area. In such a case, an acousto-optical method has been employed in which ultrasonic waves are emitted into a light transmitting medium and a change in the refractive index is caused by a change in the density of the medium due to the ultrasonic waves.

この音響光学的な位相変調の方法は、大別すると、媒
質の内部を進行するバルク波を使用するものと、媒質の
表層にエネルギーの大部分が集中している表面弾性波
(SAW)を利用する方法とに分けられる。
This acousto-optic phase modulation method can be roughly classified into those using bulk waves traveling inside the medium and those using surface acoustic waves (SAW) in which most of the energy is concentrated on the surface layer of the medium. And how to do it.

バルク波を用いるものは、超音波の中を長い距離にわ
たって光を進行させることが可能であり、この結果、超
音波と光の相互干渉の時間(距離)を長くとることがで
き、位相変化量が大きい(変調効率が高い)特徴がある
が、しかし光透過部分の面積を広くし難く、また超音波
の発生帯域が構造上狭い等の作製面での問題とバルク波
により生じた立体的な格子状の屈折率変化領域に対する
光の入射角度がBragg(ブラッグ)の条件によって制限
され、入射光の波長若しくは超音波の波長が変化すると
それに従って入射角度も調整する必要があった。しかし
ながら、固定周波数の光変調装置としては、小形、高効
率であり、最も実用化されているものの1つである。
In the case of using a bulk wave, light can travel in an ultrasonic wave over a long distance, and as a result, the time (distance) of mutual interference between the ultrasonic wave and the light can be increased, and the phase change amount can be increased. Is large (high modulation efficiency), but it is difficult to increase the area of the light transmitting part, and there is a problem on the manufacturing surface such as the structure of the ultrasonic wave generation band is narrow, and the three-dimensional wave caused by the bulk wave. The incident angle of light with respect to the lattice-shaped refractive index change region is limited by the Bragg condition, and when the wavelength of the incident light or the wavelength of the ultrasonic wave changes, the incident angle needs to be adjusted accordingly. However, as a fixed-frequency light modulator, it is small, highly efficient, and one of the most practically used.

一方、SAWを利用する光変調装置は、SAWの発生機構が
高周波、広帯域に向くものであって、かつ、前記Bragg
(ブラッグ)の条件に適したようにSAWの発射方向を変
化させる方法も開発されてきたため、高周波、広帯域の
光変調装置として用いられてきた。
On the other hand, an optical modulator using SAW has a SAW generation mechanism suitable for high frequency and broadband, and the Bragg
Since a method of changing the launch direction of the SAW has been developed so as to be suitable for the (Bragg) condition, it has been used as a high-frequency, wideband optical modulator.

SAWと光との組合せ方法には、光をSAWの発生している
基板表面に薄膜状に導いてSAWの中を長時間(長い距
離)伝搬させて変調効率を高める方法と、SAWの発生面
に垂直に光を透過させて短時間(短距離)で位相変調さ
せる方法とがある。SAW発生面に光を導波する方法は、
主に薄膜光ICの位相変調素子として多用され利用価値が
高い。一方、SAW発生面に垂直に光を入射する方法は、
幅の広い光束全体に位相変調をかけることが可能で、一
般的な空間伝搬形の光学系において位相回折格子のよう
に使用されることが多い。この場合、同一出願人、一部
同一の発明者による「進行波形表面弾性波光変調装置」
(特願昭62−77893号)にあるように、SAWによる光の変
調効率を高めるため、SAWの発生面の入射光の光軸方向
にほぼ平行な間隔で積層する方法が採られている。これ
らの光を入射する方法は、SAWの周波数を変化させて格
子定数を変化させることが可能で可変格子間隔を有する
相違回折格子として注目を集めている。ここで言う変調
効率とは、位相変調後の光を結像させ、位相変化で生じ
た回折光の強度を測定して、入射光の何%が回折したか
を求めたものである。
There are two ways to combine SAW and light: a method in which light is guided in a thin film onto the surface of the substrate where SAW is generated and propagated through the SAW for a long time (long distance) to increase the modulation efficiency. There is a method in which light is transmitted vertically to phase modulation in a short time (short distance). The method of guiding light to the SAW generation surface is
It is widely used mainly as a phase modulation element for thin-film optical ICs and has high utility value. On the other hand, the method to make light incident on the SAW generation surface
Phase modulation can be applied to the entire light beam having a wide width, and is often used like a phase diffraction grating in a general space propagation type optical system. In this case, a "progressive waveform surface acoustic wave light modulator" by the same applicant and partly the same inventor
As disclosed in Japanese Patent Application No. 62-77893, in order to increase the modulation efficiency of light by SAW, a method of laminating at an interval substantially parallel to the optical axis direction of incident light on the SAW generation surface is adopted. The method of making these lights incident has attracted attention as a different diffraction grating having a variable grating interval, which can change the lattice constant by changing the frequency of the SAW. Here, the modulation efficiency is obtained by forming an image of the phase-modulated light, measuring the intensity of the diffracted light generated by the phase change, and determining what percentage of the incident light is diffracted.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら、SAWの発生面を入射光の光軸方向にほ
ぼ平行間隔で積層する方法はSAWのエネルギーが変換し
て生じた熱が、積層構造であるがゆえに蓄積され易く、
基材の劣化あるいはSAW速度の変化による動作帯域の変
動、さらには波長変化による回折角度の変動の原因とな
っていた。
However, the method of laminating the SAW generation surface at a substantially parallel interval in the optical axis direction of the incident light is easy because heat generated by converting the energy of the SAW is easily accumulated because of the laminated structure,
This caused fluctuations in the operating band due to deterioration of the base material or changes in the SAW speed, and fluctuations in the diffraction angle due to wavelength changes.

この発明の目的は、上記問題点を解決し、変調効率が
高く、かつ、動作が安定しており、寿命の長い光変調装
置を実現することである。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and to realize an optical modulator having a high modulation efficiency, stable operation, and a long life.

〔問題点を解決するための手段〕[Means for solving the problem]

その解決の手段として、光を透過し、かつ、SAWが伝
搬する光学平面を表裏にもつ複数個の基材を、各々の表
裏面が互いにほぼ平行な間隔をもちながら対向するよう
に配置し、それら基材の間隙に音響振動を発生させるた
めの音響波発生装置を介在させ、これら音響波発生装置
で発生した音響振動が、これら発生装置を挟む2つの光
学平面に、同一周波数で同一位相のSAWとなって同一方
向に伝搬するようにし、かつ、複数の基材のSAW伝搬方
向の両端にSAWを吸収して熱に変換する吸音材と、この
吸音材で変換した熱を放出する放熱器とを備えた構成と
した。
As a means of solving the problem, a plurality of base materials that transmit light, and have an optical plane on which the SAW propagates on the front and back, are arranged so that each front and back face each other with an interval substantially parallel to each other, An acoustic wave generator for generating acoustic vibration is interposed in the gap between the base materials, and the acoustic vibration generated by the acoustic wave generator is applied to two optical planes sandwiching these generators at the same frequency and the same phase. A sound absorbing material that becomes SAW and propagates in the same direction, and absorbs SAW at both ends in the SAW propagation direction of a plurality of substrates and converts it into heat, and a radiator that emits heat converted by this sound absorbing material And a configuration including:

また、複数個の基材には、それぞれ同一の音響特製を
有し、かつ、人射光の透過性が十分良好な材質のものを
用いた。さらにまた、各音響波発生装置から発せられた
SAWは、それぞれ同一周波数、同一進行方向を有するも
のであって、なおかつ、入射光の光軸方向から見透した
場合に、それら複数のSAWの位相が同位相になるように
前記発生装置のそれぞれの設定場所を定めた。
Further, a plurality of base materials each having the same acoustic specialty and having a sufficiently high transmittance of human light were used. Furthermore, it was emitted from each acoustic wave generator.
SAWs each have the same frequency and the same traveling direction, and when viewed through the optical axis direction of the incident light, each of the generators so that the phases of the plurality of SAWs are the same. The setting place of was decided.

〔作用〕[Action]

SAWの発生面が入射光の光軸方向に積層されているの
で、光の変調効率が高くなり、各基材を伝搬するSAWは
吸音材で吸収され、熱に交換されて、放熱器によって外
部に放出される。
Since the SAW generation surface is stacked in the direction of the optical axis of the incident light, the light modulation efficiency increases, and the SAW propagating through each base material is absorbed by the sound absorbing material, exchanged for heat, and externally radiated by the radiator. Will be released.

〔実施例〕〔Example〕

第1図は本発明に係る進行波形SAW光変調装置の一実
施例における構成を示す。
FIG. 1 shows a configuration of an embodiment of a traveling-wave SAW light modulator according to the present invention.

本発明は、SAWを伝搬する基材1a、基材1b、基材1c
と、基材1a及び基材1bの間に挟まれ、基材1aと基材1bの
対向する両面にSAWを発生する音響波発生装置2aと、基
材1b及び基材1cの間に挟まれ、基材1bと基材1cの対向す
る両面にSAWを発生する音響波発生装置2bと、基材1a及
び基材1bの音響波発生装置2aが設けられた側のそれぞれ
の表面にSAWが伝搬するように空間を創り出すために設
けられたスペーサ3aと、同様に基材1b及び基材1cの音響
波発生装置2bが設けられた側のそれぞれの表面にSAWが
伝搬するように空間を創り出すために設けられたスペー
サ3bと、基材1a、基材1b、基材1cをそれぞれ伝搬するSA
Wを吸収して熱に変換する吸音材4a及び吸音材4bと、吸
音材4a及び吸音材4bで変換された熱を外部に放出する放
熱器5a及び放熱器5bより構成される。スペーサ3a、スペ
ーサ3bはSAWが伝搬する面が互いにほぼ平行となるよう
な厚さとしている。
The present invention provides a substrate 1a, a substrate 1b, and a substrate 1c that propagate SAW.
And, between the base material 1a and the base material 1b, the acoustic wave generator 2a that generates SAW on both opposing surfaces of the base material 1a and the base material 1b, and is sandwiched between the base material 1b and the base material 1c. The acoustic wave generator 2b that generates SAW on both opposing surfaces of the base 1b and the base 1c, and the SAW propagates to the respective surfaces of the base 1a and the base 1b on which the acoustic wave generator 2a is provided. In order to create a space so that SAW propagates on the respective surfaces of the base 1b and the base 1c on the side where the acoustic wave generator 2b is provided, similarly to the spacer 3a provided to create a space so that Spacers 3b provided on the base material 1a, the base material 1b, and the SA that propagates through the base material 1c, respectively.
It is composed of a sound absorbing material 4a and a sound absorbing material 4b that absorb W and convert it to heat, and a radiator 5a and a radiator 5b that emit the heat converted by the sound absorbing material 4a and the sound absorbing material 4b to the outside. The spacers 3a and 3b have a thickness such that surfaces through which the SAW propagates are substantially parallel to each other.

基材表面にSAWを発生させ伝搬させるには、光透過性
を有する基材に圧電性基板を使用し、その基板表面に音
響波発生装置として交差指形電極を金属の蒸着薄膜で形
成する方法がある。この場合、交差指形電極は発生した
SAWが吸音材に吸収されたとき、発生する熱による影響
を防ぐため吸音材からできるだけ離れた位置に設ける。
In order to generate and propagate SAW on the surface of a substrate, a piezoelectric substrate is used as a substrate having optical transparency, and an interdigital electrode is formed as an acoustic wave generator on the surface of the substrate with a metal thin film of metal deposition There is. In this case, an interdigital electrode occurred
When SAW is absorbed by the sound absorbing material, it is provided as far away from the sound absorbing material as possible to prevent the influence of the heat generated.

また、交差指形電極を形成するには、金属薄膜の蒸着
技術及び半導体微細加工技術を用いることができる。
In addition, in order to form the interdigital electrode, a metal thin film deposition technique and a semiconductor fine processing technique can be used.

このような圧電性基板の交差指形電極を用いる方法
は、SAW発生面に垂直入射する光を広い面積で位相変調
する素子として最も簡単な構造である。
Such a method using the interdigital electrodes of the piezoelectric substrate has the simplest structure as an element for phase-modulating light vertically incident on the SAW generation surface in a wide area.

交差指形電極を基材の間に形成する方法は2つ考えら
れる。1つは基材1bの両面にSAWを発生する音響波発生
装置2a及び音響波発生装置2bを形成し、その後、この両
面を基材1a及び基材1cで挾む方法である。もう1つの方
法は、基材1a、基材1b、基材1cの内2つの基材の表面に
音響波発生装置2aと音響発生2bを形成し、3枚の基材を
重ねる方法である。
There are two possible methods for forming the interdigital electrodes between the substrates. One is a method in which an acoustic wave generator 2a and an acoustic wave generator 2b for generating SAW are formed on both surfaces of a substrate 1b, and then both surfaces are sandwiched between the substrates 1a and 1c. Another method is a method in which an acoustic wave generator 2a and a sound generator 2b are formed on the surface of two of the substrates 1a, 1b, and 1c, and three substrates are stacked.

スペーサ3a及びスペーサ3bは前記音響波発生装置2a、
2bと同様に金属薄膜の蒸着技術及び半導体微細加工技術
を用いて製作することができる。
Spacer 3a and spacer 3b are the acoustic wave generator 2a,
Like 2b, it can be manufactured using a metal thin film deposition technique and a semiconductor fine processing technique.

吸音材4a及び吸音材4bは3枚の基材の両端に設け、個
々の基材を伝搬するSAWを吸収しSAWの反射を防ぎ、か
つ、SAWを熱に交換する。スペーサ3a及びスペーサ3bを
吸音材4aで取り囲みSAWを反射しないようにする。
The sound absorbing material 4a and the sound absorbing material 4b are provided at both ends of the three base materials, absorb the SAW propagating through each base material, prevent the reflection of the SAW, and exchange the SAW with heat. The spacer 3a and the spacer 3b are surrounded by the sound absorbing material 4a so that the SAW is not reflected.

放射器5a及び放熱器5bは、それぞれ吸音材4aと吸音材
4bの近くに設け、接着剤で基材1a、基材1b、基材1cに固
定する。固定した放熱器5a及び放熱器5bには熱の放散を
良くするため前記吸音材4aと吸音材4bを接着する。この
場合、吸音剤が接着剤を兼ねるようにしてもよい。
The radiator 5a and the radiator 5b are a sound absorbing material 4a and a sound absorbing material, respectively.
It is provided near 4b, and is fixed to the base material 1a, the base material 1b, and the base material 1c with an adhesive. The sound absorbing material 4a and the sound absorbing material 4b are bonded to the fixed radiator 5a and radiator 5b in order to improve heat dissipation. In this case, the sound absorbing agent may also serve as the adhesive.

次に、第2図を用いて各基材の表面に発生したSAWの
伝搬の状態と、光の入射及び位相変調について説明す
る。第2図は本実施例の入射光の光軸を含む平面での断
面図である。
Next, the state of propagation of SAW generated on the surface of each base material, the incidence of light, and the phase modulation will be described with reference to FIG. FIG. 2 is a cross-sectional view of a plane including the optical axis of the incident light according to the present embodiment.

第1図に示したように、本実施例では、3つの基材と
2つの音響波発生装置によって基材の4つの光学平面に
SAWが発生する。
As shown in FIG. 1, in this embodiment, three substrates and two acoustic wave generators are used to cover four optical planes of the substrate.
SAW occurs.

これら4面のSAWに、第2図に示すようにSAW1、SAW
1′、SAW2、SAW2′と名前を付ける。各音響波発生装置
の発振周波数とSAW発射方向、及び各基板の音響特性が
同一であれば、すべてのSAWは同一波長で平行した位相
面(光軸方向から見透せば格子面)を持って同一速度で
進行する。よって、各SAWが、入射光6に対して同等の
位相変調作用を与えるようにするには、各SAWの位相面
が光軸方向から見透した場合に同相で揃っていれば良い
ことになる。前記SAW1とSAW1′は、同一の音響波発生装
置2aより発射されたSAWであるから、完全に空間的な同
位相を保っている。また同様にSAW2、SAW2′についても
空間的な同位相であることは明白である。
As shown in FIG. 2, SAW1 and SAW
Name them 1 ', SAW2, SAW2'. If the oscillation frequency of each acoustic wave generator, the SAW emission direction, and the acoustic characteristics of each substrate are the same, all SAWs have the same wavelength and parallel phase plane (lattice plane when viewed from the optical axis direction). At the same speed. Therefore, in order for each SAW to give an equivalent phase modulation action to the incident light 6, it is only necessary that the phase plane of each SAW is in phase when seen through the optical axis direction. . Since SAW1 and SAW1 'are SAWs emitted from the same acoustic wave generator 2a, they completely maintain the same spatial phase. Similarly, it is apparent that SAW2 and SAW2 'have the same spatial phase.

ゆえに、音響波発生装置2a、2bについて、その発射す
る音響波(SAW)が、空間的な同位相であるようにすれ
ば、すべてのSAWが光軸方向から見て同相で揃うことに
なる。
Therefore, if the acoustic waves (SAW) emitted from the acoustic wave generators 2a and 2b are spatially in-phase, all the SAWs will be in phase when viewed from the optical axis direction.

位相調整の方法はいくつか考えられるが、最も簡単で
確実な方法は、各音響波発生装置の発生機構である交差
指形電極の配置を調整し、SAWの位相を合わせることで
ある。すなわち、実施例のような交差指形電極では、各
電極のSAW伝搬方向の位置をSAW波長の数〜数10分の1の
精度で調整できれば良く、実際に必要な精度は数μmで
ある。この程度の精度内での位置決めは現在の半導体素
子製造用のマスクアライナーで十分実現できるものであ
る。
There are several methods for adjusting the phase, but the simplest and most reliable method is to adjust the arrangement of the interdigital electrodes, which are the generating mechanisms of the acoustic wave generators, to match the phase of the SAW. That is, in the interdigital electrode as in the embodiment, it is sufficient that the position of each electrode in the SAW propagation direction can be adjusted with an accuracy of several to several tens of SAW wavelengths, and the actually required accuracy is several μm. Positioning within this degree of accuracy can be sufficiently realized with a current mask aligner for manufacturing semiconductor devices.

この他の方法として、交差指形電極の交差指方向の平
行度のみを精密に整合させ、SAWの位相調整はそれぞれ
の電極に加える電気信号の位相を個々に遅らせて調整す
る方法もある。この方法は変調素子の外部回路がやや複
雑化するものの、光変調装置の組立後、光を実際に入射
し、その変調された出力光を観察しながら調整可能であ
るといった特長もあり、実用上有効な手段となってい
る。
As another method, there is a method in which only the parallelism in the interdigital direction of the interdigital electrode is precisely matched, and the phase adjustment of the SAW is performed by individually delaying the phase of an electric signal applied to each electrode. Although this method slightly complicates the external circuit of the modulation element, it has the advantage that light can be actually incident after the light modulator is assembled and adjusted while observing the modulated output light. It is an effective means.

以上、本発明の基本となるSAWの位相調整法について
2つの実施例を述べたが、本発明のように、SAWによる
基材の密度変化で屈折率変化を生じさせる形の光変調装
置では、使用される基材の屈折率が大きくなることが多
く、これに空気中で光入射を行う場合には、表面あるい
は内部反射率が数10%といった高率になる可能性が高
い。よって、積層構成による光の多重反射を防止する意
味において光学平面の光学的反射防止膜の形成(光学コ
ーティング)が必要である。
As described above, the two embodiments of the phase adjustment method of SAW, which is the basis of the present invention, have been described. In many cases, the refractive index of the substrate used is large, and when light is incident on the substrate in the air, the surface or internal reflectance is likely to be as high as several tens of percent. Therefore, it is necessary to form an optical antireflection film (optical coating) on an optical plane in the sense of preventing multiple reflection of light due to the laminated structure.

第3図に、本発明の簡単な応用例として、光の偏向装
置に用いた例を示す。
FIG. 3 shows an example in which the present invention is applied to a light deflecting device as a simple application example.

周波数f0の正弦波の電気信号によって基材1a、基材1
b、基材1cの表面に発生したSAWは、格子定数にあたる空
間周期dを有し、速度vで矢印の方向に進行する。同図
左の方向から入射光6がこの基材を通過すると、この入
射光はSAWによる基材表面の凸凹と基材表面直下の屈折
率変化によって位相変調を受ける。この位相変調は、空
間周期dの繰返しによる周期的なものであるから、この
光は通常の正弦波位相格子を透過した光と同じく、レン
ズ7でレンズの焦点面8に結像させると回折像を生ず
る。ここで、入射光が波長λの単色光であれば、該回折
像は前記格子定数dで位置の定まる±1次の回折輝点と
なる。この回折輝点の発生位置は、焦点面8上の光軸よ
り距離αだけ離れた位置となり、方向はSAWの伝搬方向
と等しい。αの値はレンズ7の焦点距離をFとすれば α=Fλ/d=f0Fλ/v ……(1) で表わされる。
Substrate 1a by an electrical signal of a sine wave of frequency f 0, the substrate 1
b, SAW generated on the surface of the substrate 1c has a spatial period d corresponding to a lattice constant, and travels in the direction of the arrow at a speed v. When the incident light 6 passes through the base material from the left direction in the figure, the incident light undergoes phase modulation due to the unevenness of the surface of the base material due to the SAW and a change in the refractive index immediately below the base material surface. Since this phase modulation is periodic due to the repetition of the spatial period d, this light, like light transmitted through a normal sinusoidal phase grating, forms a diffracted image when focused on the focal plane 8 of the lens by the lens 7. Is generated. Here, if the incident light is monochromatic light having a wavelength λ, the diffraction image is a ± 1st-order diffraction luminescent spot whose position is determined by the lattice constant d. The position at which the diffraction luminescent spot is generated is located at a distance α from the optical axis on the focal plane 8, and the direction is equal to the SAW propagation direction. The value of α is represented by α = Fλ / d = f 0 Fλ / v (1) where F is the focal length of the lens 7.

ここで、正弦波電気信号の周波数がf0を中心に±Δf/
2変化するものとすれば、焦点面8上での±1次の回折
輝点の変化量Δαは Δα=ΔfFλ/v ……(2) となる。この(2)式で明らかなように、SAWの伝搬速
度vが小さく、レンズの焦点距離Fが長く、光の波長λ
が長いほど変位量Δαは大きく、かつ、電気信号の周波
数と直線的な関係で変化する。
Here, the frequency of the sine wave electric signal is ± around the f 0 Delta] f /
If two changes occur, the change amount Δα of the ± 1st-order diffraction luminescent spot on the focal plane 8 is Δα = ΔfFλ / v (2). As is apparent from the equation (2), the SAW propagation speed v is small, the focal length F of the lens is long, and the light wavelength λ
Is longer, the displacement amount Δα is larger, and changes in a linear relationship with the frequency of the electric signal.

本発明によれば、熱による障害が取り除かれたので、
広い面接での空間位相変調が効率良く実現でき、分光測
定装置に応用できる可変格子定数を有する正弦波位相格
子や、音響光学的相関器等の光電気信号処理装置の空間
的位相変調器の実現が容易になる。
According to the present invention, since the obstacle due to heat has been removed,
Spatial phase modulation with a variable lattice constant that can be applied efficiently to a spectrometer and a spatial phase modulator for opto-electrical signal processing devices such as acousto-optic correlators that can efficiently realize spatial phase modulation in a wide interview Becomes easier.

〔発明の効果〕〔The invention's effect〕

以上述べたように、本発明によれば、光透過性を有す
る基材を間に音響波発生装置を挾み込む形で配置し、SA
Wの空間的位相が同相に揃うように、SAWの発生面を光入
射方向に積層し、基材の両端にはSAWを吸収し熱に変換
する吸音材と、この吸音材により変換された熱を放出す
る放熱器を備えるようにしたから、高効率の光位相変調
をしつつも、基材の温度上昇は低く抑えられる。
As described above, according to the present invention, a substrate having optical transparency is arranged so as to sandwich an acoustic wave generator therebetween, and SA
The SAW generation surface is laminated in the light incident direction so that the spatial phases of W are aligned in the same phase.At both ends of the substrate, a sound absorbing material that absorbs the SAW and converts it into heat, and the heat converted by this sound absorbing material Is provided, the temperature rise of the base material can be suppressed to a low level while performing high-efficiency optical phase modulation.

その結果、SAWの伝搬速度は安定し、また、基材が受
ける熱による歪みも軽減されて、変調効率が高く、か
つ、動作が安定しており、寿命の長い光変調装置が得ら
れた。
As a result, the SAW propagation speed was stabilized, and distortion due to heat applied to the base material was reduced, so that an optical modulator having high modulation efficiency, stable operation, and long life was obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の進行波形SAW光変調装置の実施例を示
す。第2図は第1図の実施例における積層された基材
と、複数のSAW及び入射光との位置関係を示す。第3図
は本発明を光偏向に応用した場合の光の偏向状態を示
す。 図において、1aと1b及び1cは基材、2aと2bは音響波発生
装置、3aと3bはスペーサ、4aと4bは吸音材、5aと5bは放
熱器、6は入射光、7はレンズ、8は焦点面をそれぞれ
示す。
FIG. 1 shows an embodiment of a traveling-wave SAW light modulator according to the present invention. FIG. 2 shows a positional relationship between the laminated substrate, a plurality of SAWs, and incident light in the embodiment of FIG. FIG. 3 shows a light deflection state when the present invention is applied to light deflection. In the figure, 1a and 1b and 1c are base materials, 2a and 2b are acoustic wave generators, 3a and 3b are spacers, 4a and 4b are sound absorbing materials, 5a and 5b are radiators, 6 is incident light, 7 is a lens, Reference numeral 8 denotes a focal plane.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】光透過性を有し、かつ同一の音響特性を備
え、表裏にそれぞれ光学平面を持ち、互いに光学平面を
対向させながら積層された複数の基材(1a,1b,1c)と、
該複数の基材の対向する光学平面間に介在し、かつ、対
向するそれぞれの光学平面に同一進行方向に同一波長及
び同一位相の表面弾性波を発生させる音響波発生装置
(2a,2b)と、該音響波発生装置より発生された表面弾
性波を吸収し熱に変換する吸音材(4a,4b)と、該吸音
材により変換された熱を放出するための放熱器(5a,5
b)とを備え、積層された光学平面を透過する光を変調
させる積層形の進行波形SAW光変調装置。
1. A plurality of substrates (1a, 1b, 1c) having optical transparency, having the same acoustic characteristics, having optical planes on both sides, and being laminated with the optical planes facing each other. ,
An acoustic wave generator (2a, 2b) interposed between opposing optical planes of the plurality of base materials, and configured to generate surface acoustic waves having the same wavelength and the same phase in the same traveling direction on each of the opposing optical planes; A sound absorbing material (4a, 4b) for absorbing surface acoustic waves generated by the acoustic wave generating device and converting the same into heat; and a radiator (5a, 5) for releasing the heat converted by the sound absorbing material.
b) a stacked traveling-wave SAW light modulator that modulates light transmitted through the stacked optical planes.
JP62289893A 1987-11-17 1987-11-17 Traveling waveform SAW light modulator Expired - Fee Related JP2571405B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62289893A JP2571405B2 (en) 1987-11-17 1987-11-17 Traveling waveform SAW light modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62289893A JP2571405B2 (en) 1987-11-17 1987-11-17 Traveling waveform SAW light modulator

Publications (2)

Publication Number Publication Date
JPH01131530A JPH01131530A (en) 1989-05-24
JP2571405B2 true JP2571405B2 (en) 1997-01-16

Family

ID=17749132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62289893A Expired - Fee Related JP2571405B2 (en) 1987-11-17 1987-11-17 Traveling waveform SAW light modulator

Country Status (1)

Country Link
JP (1) JP2571405B2 (en)

Also Published As

Publication number Publication date
JPH01131530A (en) 1989-05-24

Similar Documents

Publication Publication Date Title
EP0015685A1 (en) Acousto-optical modulator
JPH087355B2 (en) Wavelength conversion element
JPH041890B2 (en)
JPH02179626A (en) Light wavelength converter
JP2571405B2 (en) Traveling waveform SAW light modulator
US6885491B2 (en) Diffraction-optical component, illumination system and exposure system comprising such a diffraction-optical component as well as an exposure method employing such an exposure system
JP2571406B2 (en) Standing waveform SAW light modulator
JPS63121829A (en) Harmonic generating device
JPH03189631A (en) Waveguide apparatus
JPH06100740B2 (en) Progressive waveform surface acoustic wave optical modulator
JP3633045B2 (en) Wavelength filter
JPS6150291B2 (en)
JPS58125025A (en) Two-dimensional optical deflector
JP2948645B2 (en) Two-wavelength light source element
JPS63239425A (en) Surface acoustic wave variable diffraction grating
JPS63244018A (en) Standing wave type surface acoustic wave light modulator
JPH11231359A (en) Surface elastic wave high-speed optical deflecting element
JPS6210411B2 (en)
JPS60112024A (en) Light wavelength converter
JPS61140927A (en) Acoustooptic modulator
JPS6232458B2 (en)
JPS63147140A (en) Acoustooptic element
JPH0320818Y2 (en)
JPH01276117A (en) Acoustooptic element
JPS63118711A (en) Acoustooptic element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees