JPS63243871A - Method and instrument for direct analysis of molten metal by vertically movable type formation of fine particle by ultrasonic oscillation - Google Patents

Method and instrument for direct analysis of molten metal by vertically movable type formation of fine particle by ultrasonic oscillation

Info

Publication number
JPS63243871A
JPS63243871A JP62079029A JP7902987A JPS63243871A JP S63243871 A JPS63243871 A JP S63243871A JP 62079029 A JP62079029 A JP 62079029A JP 7902987 A JP7902987 A JP 7902987A JP S63243871 A JPS63243871 A JP S63243871A
Authority
JP
Japan
Prior art keywords
molten metal
horn
fine particles
probe
inert gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62079029A
Other languages
Japanese (ja)
Inventor
Akihiro Ono
小野 昭紘
Masao Saeki
佐伯 正夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP62079029A priority Critical patent/JPS63243871A/en
Publication of JPS63243871A publication Critical patent/JPS63243871A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • G01N1/12Dippers; Dredgers
    • G01N1/125Dippers; Dredgers adapted for sampling molten metals

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Abstract

PURPOSE:To permit quick and direct analysis of various kinds of components by inserting a horn for ultrasonic oscillation into a molten metal and carrying the fine particles of the molten metal formed by the ultrasonic oscillation to an emission spectrochemical analysis instrument by inert gaseous flow. CONSTITUTION:The horn 6 is immediately heated to the temp. of a molten steel 2 and an ultrasonic oscillator 3 is operated when a probe 1 for forming fine particles is immersed into the molten steel 2. The ultrasonic oscillation generated from the oscillator 4 is transmitted via a transmission bar 5 to the horn 6 and a small amt. of the molten steel sticking to the surface of the horn 6 is splahed to form the fine particles. The fine particles of the molten steel are carried from a discharge port 15 of a fine particle forming chamber 23 through a transport pipe 8 by the inert gas supplied from an inert gas introducing pipe 7 to the plasma emission spectrochemical analysis instrument 11. The fine particles introduced into a plasma torch 20 are excited by a plasma flame 12 to emit light and the emission spectra thereof are spectrally split. The emission intensities of the respective elements are simultaneously measured by a photomultiplier 21 and the contents of the respective elements in the steel are determined by a data processor 22.

Description

【発明の詳細な説明】 (産業上の利用分野1 本発明は、溶融金属中に超音波発振用のホーンを挿入し
て超音波撮動によって生成する溶融金属の微粒子を離れ
た場所に設置しであるプラズマ励起源を有する発光分光
分析装置に不活性ガス気流によって搬送し、溶融金属中
の各種成分の含有率をオンラインリアルタイムで分析す
る方法及び装置に関するものである。
Detailed Description of the Invention (Industrial Application Field 1) The present invention involves inserting a horn for ultrasonic oscillation into molten metal and placing fine particles of molten metal generated by ultrasonic imaging at a remote location. The present invention relates to a method and apparatus for analyzing the content of various components in molten metal in real time online by transporting the molten metal by an inert gas stream to an optical emission spectrometer having a plasma excitation source.

金属の精錬、製鋼プロセスなどの操業の管理には、可能
な限り迅速に分析して成分含有率を把握し、その結果に
よって対応処fkとる必要がある。
To manage operations such as metal refining and steel manufacturing processes, it is necessary to analyze as quickly as possible to understand the component content, and take appropriate action based on the results.

本発明は上記のように、溶融金属を直接分析する技術で
あり、製鉄業あるいは非鉄金属製造業などにおける製造
工程管理分析や品質管理分析の分野で利用されるもので
ある。
As described above, the present invention is a technology for directly analyzing molten metal, and is used in the fields of manufacturing process control analysis and quality control analysis in the steel industry, non-ferrous metal manufacturing industry, and the like.

(従来の技術J 金属製造業における製造工程管理分析には、溶融金属を
サンプリングして固化させたブロック試料を対象とする
ス、e−り発光分光分析法が多用されている。しかし、
近年とくに鉄鋼業に見られるように、より迅速な製造工
程管理あるいは多段精錬製鋼法などの新製造プロセスの
操業管理の次めKX宕銑や宕鋼のような溶融金属を直接
対象とするオンラインリアルタイムの分析手法の開発が
強く要請されている。
(Prior art J) In the manufacturing process control analysis in the metal manufacturing industry, e-emission spectroscopy, which targets block samples obtained by sampling and solidifying molten metal, is often used. However,
In recent years, especially in the steel industry, online real-time technology has been used to directly target molten metals such as KX iron and iron, as well as faster manufacturing process control or operational control of new manufacturing processes such as multi-stage refining steelmaking. There is a strong demand for the development of analytical methods.

上記のような目的から、これまで溶融金属をArガスを
用いた特殊な噴霧器によって微粉化して発光分光分析す
る方法(BISRA Annual Reportニア
8(19663,65,78(1967)、35(19
687など各種の手法が研究されてきた。しかし、いず
れもこれまで実際に製造現場で実用されておらず、実験
室規模で試みられたにすぎない。本発明者らも溶融金属
にプラズマアーク、スパーク等の電気的放電あるいはレ
ーザービーム等の照射を行って、溶融金属の組成を代表
する微粒子を蒸発させて発光分光分析する方法(特開昭
58−104152号。
For the above-mentioned purposes, a method has been developed in which molten metal is pulverized using a special atomizer using Ar gas and then subjected to emission spectroscopic analysis (BISRA Annual Report Near 8 (19663, 65, 78 (1967), 35 (19
Various methods such as 687 have been studied. However, none of these methods have ever been actually put into practical use at manufacturing sites, and have only been attempted on a laboratory scale. The present inventors have also applied a method of performing emission spectroscopic analysis by irradiating molten metal with electrical discharge such as plasma arc or spark, or laser beam, etc., to evaporate fine particles representative of the composition of molten metal (Japanese Patent Laid-Open No. 1983-1993). No. 104152.

特開昭59−157541号J1あるいは不活性ガスを
吹き込んで溶融金属の微粒子を生成して発光分光分析す
る方法(%開昭60−219538号]などを発明し、
さきに出願を行なった。
Invented JP-A No. 59-157541 J1 and a method of generating fine particles of molten metal by blowing inert gas and performing emission spectroscopic analysis (% JP-A No. 60-219538).
I just applied.

これらの発明は、溶融金属表面とスパーク放電用電極先
端など加熱源装置との間隔を一定に保つ必要があり、湯
面変動が比較的緩慢な場合には有効であるが、湯面変動
が激しい場合には変動を抑制する念めの種々の工夫が必
要である。
These inventions require a constant distance between the molten metal surface and the heating source device such as the tip of a spark discharge electrode, and are effective when the molten metal level fluctuates relatively slowly, but when the molten metal level fluctuates rapidly. In some cases, various measures must be taken to suppress fluctuations.

(発明が解決しようとする問題点J 実際の製造現場でより実用的な溶融金属の直接分析装置
を開発するにあたっては、製造現場が、高温、振動、ダ
スト等測定環境が非常に悪い点を考慮しなければならな
い。従って、悪い測定環境下では、トラブルが起る分光
・検出器等の精密測定機器は溶融金属の存在する場所か
ら離れた建屋内に設置する必要がある。また、溶融金属
は電気的放電など外部エネルギーの供与によって微粒子
として蒸発させることができるが、可能ならば高温の溶
融金属自体から更に簡易な物理的手法による微粉化など
によって微粒子を発生させ、かつ微粒子の回収、搬送を
簡単な方法で行うことが望ましい。
(Problem to be solved by the invention J) In developing a more practical direct analysis device for molten metal at actual manufacturing sites, we must take into consideration the fact that manufacturing sites have very poor measurement environments such as high temperatures, vibrations, and dust. Therefore, precision measurement equipment such as spectrometers and detectors that can cause trouble under adverse measurement environments must be installed in a building away from the location where molten metal is present. It is possible to evaporate the fine particles by applying external energy such as electric discharge, but if possible, the fine particles should be generated from the high-temperature molten metal itself by a simple physical method such as pulverization, and the fine particles can be collected and transported. It is preferable to do it in a simple way.

このような事情から本発明は、溶融金属の製造工程管理
分析におけるオンラインリアルタイム分析を目的とし、
溶融金属から物理的手段により微粒子を発生させ、プラ
ズマ励起源を有する発光分光分析装置へ不活性ガス流で
搬送し、溶融金属中に含まれる各種成分を簡単に迅速分
析する実用的な分析方法および装置を提供するものであ
る。
Under these circumstances, the present invention aims at online real-time analysis in manufacturing process control analysis of molten metal.
A practical analytical method for easily and quickly analyzing various components contained in molten metal by generating fine particles from molten metal by physical means and transporting them by an inert gas flow to an emission spectrometer having a plasma excitation source. It provides equipment.

(問題点を解決するための手段J 本発明は、溶融金属から物理的手法によって微粒子を生
成する場合に、その手法として超音波照射を採用した点
に特徴がある。
(Means for Solving the Problems J) The present invention is characterized in that when producing fine particles from molten metal by a physical method, ultrasonic irradiation is employed as the method.

すなわち本発明では、先ずプローブ内に捕集した高融金
属中に超音波振動子に接続するホーン金浸漬し、超音波
をかけながらホーンを引き上げ、再び浸漬する上下動作
中にホーン表面に残留した溶融金属を飛散させる方法で
微粒子を生成する。
That is, in the present invention, first, the horn connected to the ultrasonic vibrator is immersed in the high-melt metal collected in the probe, and the horn is pulled up while applying ultrasonic waves, and the horn is immersed again. Fine particles are generated by scattering molten metal.

次にこの微粒子を不活性ガス気流によってプラズマ発光
分光分析装置へ搬送して導入し、励起発光したスペクト
ルを分光分析する。これらの原理に基づく分析方法及び
装置によって溶融金属中の含有成分をオンラインリアル
タイムで求めるものである。
Next, the fine particles are transported and introduced into a plasma emission spectrometer using an inert gas stream, and the spectrum of the excited and emitted light is analyzed spectroscopically. The components contained in molten metal are determined online in real time using an analytical method and apparatus based on these principles.

(実施例) 第1図から第5図に示す本発明の実施装置例及び分析結
果例をもとに本発明の構成2作用について説明する。
(Example) The second structure of the present invention will be described based on examples of the apparatus for implementing the present invention and examples of analysis results shown in FIGS. 1 to 5.

第1図は生成した微粒子のプラズマ発光分析部を含め九
本発明例の全体システムの説明図、第2図〜第4図は超
音波振動によって溶融金属の微粒子を生成する部分の説
明図、第5図は分析結果の説明図をそれぞれ示した。こ
れらの図には溶融金属として製鋼プロセスにおける処理
鍋中の溶鋼を対象とした例を示した。
FIG. 1 is an explanatory diagram of the entire system of nine examples of the present invention, including a plasma emission analysis section for the generated fine particles. FIGS. Figure 5 shows explanatory diagrams of the analysis results. These figures show an example in which the molten metal is molten steel in a processing ladle in a steelmaking process.

本発明例の装置は、超音波振動子4を保有してWI@2
中に浸漬した微粒子生成プローブ1と、微粒子搬送管8
を介して接続される高周波訪導結合プラズマ発光分光分
析装置11とを主体に構成される。
The device according to the example of the present invention has an ultrasonic transducer 4 and a WI@2
A particulate generation probe 1 immersed therein and a particulate transport pipe 8
It is mainly composed of a high-frequency coupled plasma emission spectrometer 11 connected through a

微粒子生成プローブは、高温耐食性やヒートショック性
に優れる耐火材、例えば炭化けい素糸。
The particle-generating probe is made of a refractory material that has excellent high-temperature corrosion resistance and heat shock resistance, such as silicon carbide thread.

アルミナ−炭素系の耐火材でできた円筒で、上部中央に
金属製などの超音波伝達棒51r:設け、下部内壁に微
粒子搬送用のArガスなどの不活性ガス排出口13、お
よび上部に微粒子排出口15を取りつけ、内部は溶鋼を
取り入れるために空洞となっている。従って、微粒子生
成プローブ1を溶鋼2中に浸漬すると、内部に微粒子生
成室23の空間を有した密閉状容器となる。超音波伝達
棒5もプローブ1にオーリングt7を用いるなどして密
閉状態で宅すつけである。伝達棒5の上部にはコーンを
介して超音波振動子4が結合されているう振動子4には
ケーブル24によって超音波発振機3が接続されている
。、振動子4の下部には溶鋼2からの熱輻射を防ぐ遮へ
い板16を設け、更に振動子4の周囲に空気を吹きつけ
て冷却している。
It is a cylinder made of alumina-carbon based refractory material, with an ultrasonic transmission rod 51r made of metal etc. installed at the center of the upper part, an inert gas outlet 13 such as Ar gas for transporting fine particles on the lower inner wall, and an inert gas outlet 13 for transporting fine particles at the upper part. A discharge port 15 is attached, and the inside is hollow to take in molten steel. Therefore, when the particle generation probe 1 is immersed in the molten steel 2, it becomes a closed container having a space for the particle generation chamber 23 inside. The ultrasonic transmission rod 5 is also attached to the probe 1 in a sealed state by using an O-ring T7 or the like. An ultrasonic oscillator 4 is coupled to the upper part of the transmission rod 5 via a cone, and the ultrasonic oscillator 3 is connected to the oscillator 4 by a cable 24. A shielding plate 16 is provided below the vibrator 4 to prevent heat radiation from the molten steel 2, and air is further blown around the vibrator 4 for cooling.

一方伝達棒5の下部には、溶鋼2中に浸漬するホーン6
がねじ込みによって結合されている。ホーンは溶鋼に対
する宕損が少なく、ヒートショックにも強い反面緻密で
超音波を伝播しやすい材質、例えばZr−Mo−0系の
セラミックスなどで製作される。ただし、溶融金属がア
ルミニウム、錫、鉛のように融点が低い場合には、ホー
ン材質はステンレス鋼などの金属がよい。
On the other hand, a horn 6 immersed in the molten steel 2 is located at the bottom of the transmission rod 5.
are connected by screwing. The horn is made of a material that has little corrosion resistance against molten steel and is resistant to heat shock, but is dense and allows ultrasonic waves to easily propagate, such as Zr-Mo-0 ceramics. However, when the molten metal has a low melting point, such as aluminum, tin, or lead, the horn material is preferably a metal such as stainless steel.

プローブ1を溶鋼2中に浸漬すると、プローブ内に取り
込まれている1600℃付近の高温の溶鋼の容積よりも
はるかに小容積であるホーン6は直ちに溶鋼温度に加熱
される。ホー/6が加熱されたならば、超音波発振機3
を作動させて超音波をかけながらホーン6を溶鋼表面か
ら上昇させる。
When the probe 1 is immersed in the molten steel 2, the horn 6, which has a much smaller volume than the volume of the high temperature molten steel of around 1600° C. contained in the probe, is immediately heated to the molten steel temperature. Once Ho/6 is heated, ultrasonic oscillator 3
The horn 6 is raised from the surface of the molten steel while applying ultrasonic waves.

振動子4から発生した超音波の振動は、伝達棒を介して
ホーン6に伝達される。ホーン6表面に付着残留した少
量の溶鋼は、超音波の作用により飛散して微粒子となる
。ホーン6は前述のような特性をもつ材料が適当である
が、宕融金属全ホーン6表面に薄い膜状に残留させる目
的から、ぬれ性のよいものがより適している。
Ultrasonic vibrations generated from the vibrator 4 are transmitted to the horn 6 via the transmission rod. A small amount of molten steel remaining on the surface of the horn 6 is scattered by the action of the ultrasonic waves and becomes fine particles. It is appropriate for the horn 6 to be made of a material having the above-mentioned characteristics, but a material with good wettability is more suitable for the purpose of leaving a thin film on the entire surface of the melting metal horn 6.

ホーン表面に溶融金属を残留させるために、ホーン表面
に浅い溝などの凹凸を形成させると、更に微粒子の生成
効率が向上する。ホーン6を溶鋼2表面に接触させるか
、あるいは溶鋼中に浸漬する方法でも、ホーン表面と溶
鋼との接触弁面から溶鋼の微粒子は生成する。しかし、
溶鋼表面の位置は変動するために、ホーン先端を溶鋼表
面に安定して接触させるのは実際上困難であす、溶鋼中
に浸漬し次場合には微粒子生成効率は低下する。
Forming irregularities such as shallow grooves on the horn surface in order to leave molten metal on the horn surface further improves the efficiency of generating fine particles. Even when the horn 6 is brought into contact with the surface of the molten steel 2 or immersed in the molten steel, fine particles of molten steel are generated from the contact valve surface between the horn surface and the molten steel. but,
Since the position of the molten steel surface fluctuates, it is actually difficult to bring the tip of the horn into stable contact with the molten steel surface.If the horn tip is immersed in the molten steel, the particle generation efficiency decreases.

従ってホーン6を容融金属表面付近を上昇さぜながら、
あるいは上下動しながら超音波によ、る微粒子生成を行
う方法が最も有効な方法となる。
Therefore, while moving the horn 6 up near the surface of the molten metal,
Alternatively, the most effective method is to generate fine particles using ultrasonic waves while moving up and down.

第2図には超音波伝達棒5を微粒子生成プローブ1に固
定し、微粒子生成装置保持台25に保持されているプロ
ーブ1をプローブ昇降装置26によって上下動させ、ホ
ーン6を溶鋼2に浸漬し、次に引き上げる動作を行う場
合全示し次。
In FIG. 2, the ultrasonic transmission rod 5 is fixed to the particle generation probe 1, the probe 1 held on the particle generation device holding stand 25 is moved up and down by the probe lifting device 26, and the horn 6 is immersed in the molten steel 2. , then when performing the pull-up operation, all the following are shown.

第3図には超音波伝達棒5を微粒子生成プローブ1にオ
ーリング17でシールし、かつ上下に可動な機構で取り
つけ、プローブは溶鋼に浸漬したままにしておき、振動
子4を保持する保持台25に取りつけた超音波ホーン昇
降装置27によって、ホーン6を溶鋼から引き上げるな
どの上下動を行う方式を示した。
In Fig. 3, the ultrasonic transmission rod 5 is sealed to the particle generation probe 1 with an O-ring 17 and attached with a vertically movable mechanism, the probe remains immersed in the molten steel, and a holder that holds the vibrator 4 is attached. A method is shown in which an ultrasonic horn elevating device 27 attached to a stand 25 is used to move the horn 6 up and down, such as lifting it out of the molten steel.

生成しfc溶鋼微粒子を分析装置11へ搬送するために
、プローブ1の微粒子生成室23には微粒子搬送用の不
活性ガスか不活性ガス導入管7より供給される。不活性
ガスには、Ar以外にN2やHeなどが適している。ガ
スの種類は、分析装置11のプラズマ炎12の安定性の
面から規制されるが、現在空気を用いるプラズマ炎の開
発も進められており、これが可能になれば不活性ガスの
代りに大気を用いてもよく、微粒子は酸化物になるが問
題はない。ただし、ホーン6が酸化されるとホーン6の
固有振動数が変化し、共振しにくくなるので、ホーンに
は酸化しにくい材質を選ぶとか超音波発振機の同調機構
に工夫が必要になる。
In order to transport the generated fc molten steel fine particles to the analyzer 11, the fine particle generation chamber 23 of the probe 1 is supplied with an inert gas for transporting the fine particles through the inert gas introduction pipe 7. In addition to Ar, N2, He, and the like are suitable for the inert gas. The type of gas is regulated in terms of the stability of the plasma flame 12 of the analyzer 11, but plasma flames that use air are currently being developed, and if this becomes possible, it will be possible to use air instead of inert gas. It may be used, and the fine particles become oxides, but there is no problem. However, when the horn 6 is oxidized, the natural frequency of the horn 6 changes and it becomes difficult to resonate, so it is necessary to select a material that is difficult to oxidize for the horn or to devise a tuning mechanism for the ultrasonic oscillator.

吹き込んだ不活性ガスは、第2図、第3図に示すように
ポーラスレンガ14を通過させ、小気泡としてプローブ
1内壁より溶鋼2中に排出させると、プローブ1内に取
り込んだ溶鋼の攪拌をかねることができる。ただしこの
不活性ガスの導入は、微粒子の搬送が主目的であるので
、かならずしも排出口13は溶鋼2表面より下方になく
てもよい5第4図には、不活性ガスの導入管7′lt超
音波伝達棒5およびホーン6の内部に設け、ホーン6の
下端に排出口13を設けた場合を示した。この方法によ
れば、耐火物性のプローブ1に導入管を設ける必要がな
くなり、プローブの製作が容易になる。また、超音波伝
達棒5は溶鋼の熱伝導にコり加熱され、何らかの冷却が
必要となるが1.吹き込も不活性ガスによる冷却効果を
得ることができる7゛−どの利点がある。
The blown inert gas passes through the porous brick 14 as shown in FIGS. 2 and 3, and is discharged as small bubbles from the inner wall of the probe 1 into the molten steel 2, thereby stirring the molten steel taken into the probe 1. It can be done. However, since the main purpose of introducing this inert gas is to transport fine particles, the discharge port 13 does not necessarily have to be located below the surface of the molten steel 25. A case is shown in which the ultrasonic transmission rod 5 and the horn 6 are provided inside, and the discharge port 13 is provided at the lower end of the horn 6. According to this method, there is no need to provide an introduction tube to the refractory probe 1, and the probe can be manufactured easily. In addition, the ultrasonic transmission rod 5 is heated due to heat conduction of molten steel and requires some kind of cooling.1. Blowing also has the advantage of being able to obtain the cooling effect of inert gas.

溶鋼表面からは、溶鋼自身の高熱によって溶鋼の微粒子
が自然蒸発している。この蒸発量は、超音波振動のよう
な物理的手法によって生成する微粒子の量に比べると格
段に少ない。1!た蒸発によって溶融金属から微粒子を
生成する場合には、各元素の蒸気圧に基づく選択蒸発が
問題となシ、溶融金属の温度変化の影響を直接受ける。
Fine particles of molten steel naturally evaporate from the surface of the molten steel due to the high heat of the molten steel itself. This amount of evaporation is much smaller than the amount of fine particles generated by physical methods such as ultrasonic vibration. 1! When fine particles are generated from molten metal by evaporation, selective evaporation based on the vapor pressure of each element is a problem and is directly affected by changes in the temperature of the molten metal.

自然蒸発は特にこの問題が大きいが、非常に高い温度が
得られるプラズマアークなどの外部エネルギーによって
高熱を供与して過熱状態で微粒子を蒸発させる場合にお
いても、この問題は完全には解消されない。この選択蒸
発の問題を避ける最もよい方法は、蒸発によって微粒子
を生成するのではなく、物理的方法によって溶鋼そのも
のを微粉化し、微粒子として発生させる方法である。
This problem is particularly serious in natural evaporation, but even when fine particles are evaporated in a superheated state by providing high heat using external energy such as a plasma arc that can obtain extremely high temperatures, this problem cannot be completely resolved. The best way to avoid this problem of selective evaporation is not to generate fine particles through evaporation, but to pulverize the molten steel itself by a physical method to generate fine particles.

また本発明は、岩融金属中の各元素の定量分析が目的で
あるために、生成される微粒子は、プラズマ発光分析に
おいて容易にしかも安定して励起発光できるように微細
な粒子でなければならない。
Furthermore, since the purpose of the present invention is quantitative analysis of each element in molten metal, the generated fine particles must be so fine that they can be easily and stably excited to emit light in plasma emission spectrometry. .

本発明はこれらの点について種々の検討を行い、溶鋼2
に超音波を作用させることによって、溶鋼表面から溶鋼
の微粒子を生成させる方法を新規に見い出したものであ
る。
The present invention has conducted various studies on these points, and has developed molten steel 2.
A new method has been discovered for generating fine particles of molten steel from the surface of the molten steel by applying ultrasonic waves to the surface of the molten steel.

超音波照射によって生成する溶鋼の微粒子は、直径約1
0μm以下の微細なもので、粒度分布の幅も小さく、プ
ラズマ発光分光分析に適した微粒子であつ危。
The fine particles of molten steel generated by ultrasonic irradiation have a diameter of approximately 1
They are fine particles of 0 μm or less and have a narrow particle size distribution, making them suitable for plasma emission spectroscopic analysis.

このようにして生成したG鋼の微粒子は、微粒子生成室
23上部に設けられた微粒子排出口15から微粒子搬送
管8を介してプラズマ発光分光分析装置11へ搬送され
る。搬送管8は、ステンレスパイプなどからできており
、冷却によって微粒子が搬送管8内壁に付着することを
防止するために加熱装置ts’を設けるのがよい。
The G steel particles thus generated are transported from the particle outlet 15 provided at the upper part of the particle generation chamber 23 to the plasma emission spectrometer 11 via the particle transfer pipe 8. The transport pipe 8 is made of a stainless steel pipe or the like, and is preferably provided with a heating device ts' to prevent fine particles from adhering to the inner wall of the transport pipe 8 due to cooling.

微粒子は搬送管8末端の搬送管出口から搬送ガス分配器
9の中に送り込まれる。微粒子を搬送する不活性ガス流
量とプラズマトーチ20へ導入する流量とが同じであれ
ば、搬送ガス分配器9は不要である。しかし、プラズマ
炎12へ微粒子を導入する流量は通常1t/min程度
であるが、搬送管8の微粒子搬送流量は、搬送時間の短
縮等からこれよりも多い流量にする場合がある。このよ
うな場合にガス分配器下部の弁19f、調節して微粒子
搬送ガスの一部を系外に逃し、必要流量を導入管10を
経由してプラズマトーチ20へ導入する。
The fine particles are sent into the carrier gas distributor 9 from the carrier pipe outlet at the end of the carrier pipe 8 . If the flow rate of the inert gas that transports the particles is the same as the flow rate introduced into the plasma torch 20, the carrier gas distributor 9 is not necessary. However, although the flow rate for introducing particulates into the plasma flame 12 is usually about 1 t/min, the flow rate for transporting particulates through the transport pipe 8 may be higher than this in order to shorten the transport time. In such a case, the valve 19f at the bottom of the gas distributor is adjusted to release part of the particle carrier gas to the outside of the system, and the required flow rate is introduced into the plasma torch 20 via the introduction pipe 10.

搬送管8に内径4■ψ、長さ40mのステンレスパイプ
を用い、Arガス流量を2t/minとした場合には、
微粒子生成室23中の内圧は約150請H20となり、
湯面は約2傭降下したが、晦鋼の微粒子は短時間でプラ
ズマトーチ20へ到達し、プラズマ炎12中で励起発光
した各元素のスペクトル強度を光電子増倍管21により
測定し、約10秒間の積分を行うことにより、各元素と
も再現性よく定量できた。搬送管内壁には微粒子のわず
かな残留が起るが、約30秒間を要する1回の分析が終
了後に5〜10t/minの流量でArガスを搬送管8
中に吹き込むことにより、残留微粒子を除去する方法を
採った。
When a stainless steel pipe with an inner diameter of 4 ψ and a length of 40 m is used as the conveying pipe 8, and the Ar gas flow rate is 2 t/min,
The internal pressure in the particulate generation chamber 23 is approximately 150cmH20,
Although the hot water level fell by about 2 hours, the fine particles of Kogane reached the plasma torch 20 in a short time, and the spectral intensity of each element excited and emitted in the plasma flame 12 was measured by the photomultiplier tube 21. By performing integration over seconds, each element could be quantified with good reproducibility. A small amount of fine particles may remain on the inner wall of the transport tube, but after one analysis, which takes about 30 seconds, is completed, Ar gas is introduced into the transport pipe 8 at a flow rate of 5 to 10 t/min.
A method was adopted to remove residual fine particles by blowing into the tank.

次にArガス流量を10〜2017m1nに増加し、微
粒子生成室23中の溶鋼を同室から排除し、流量を1〜
2t/minの通常の状態に戻すことにより、取鍋中の
新たな溶鋼2を生成室23中へ取り込むことができる。
Next, the Ar gas flow rate was increased to 10~2017 m1n, the molten steel in the particle generation chamber 23 was removed from the same chamber, and the flow rate was increased to 1~2017 m1n.
By returning to the normal state of 2 t/min, new molten steel 2 in the ladle can be taken into the production chamber 23.

このような方法により、処理鍋中の溶鋼の精錬処理過程
のオンライン分析を容易に行うことができる。
With such a method, online analysis of the refining process of molten steel in the processing pot can be easily performed.

プラズマトーチ20に導入された微粒子は、プラズマ炎
12の高熱で励起発光され、その発光スペクトルは分光
され、各波長位置に設定した光電子増倍管21により各
元素の発光強度が同時に測定され、溶鋼中の複数元素の
同時迅速分析が行える。
The fine particles introduced into the plasma torch 20 are excited by the high heat of the plasma flame 12 and emit light.The emission spectrum is separated, and the emission intensity of each element is simultaneously measured by the photomultiplier tube 21 set at each wavelength position. Simultaneous and rapid analysis of multiple elements in a substance can be performed.

超音波照射による6鋼微粒子の生成量に多少の  ゛変
動があってもその影響を受けないように、各元素の発光
強度は鉄の発光強度との比をとるなど鉄の発光強度を基
準にする補正計算の採用が適当である。このような計算
をデータ処理装置22で行い、各元素の鋼中含有率が求
められる。本発明によれば、溶鋼中に含まれるC、P、
S、Si、Mn。
In order to avoid being affected by slight fluctuations in the amount of 6 steel fine particles produced by ultrasonic irradiation, the luminescence intensity of each element was determined based on the luminescence intensity of iron, such as by taking the ratio to the luminescence intensity of iron. It is appropriate to adopt a correction calculation based on the following. Such calculations are performed by the data processing device 22, and the content of each element in the steel is determined. According to the present invention, C, P, contained in molten steel,
S, Si, Mn.

Ni 、 Cr 、などO,N、Hのガス成分を除くほ
とんどの元素の同時分析が行えた。ま念蒸発によって微
粒子を生成する方法では蒸発しにくいために、分析に不
利な高融点金属でおるTi、V、W等の分析も本発明で
は十分に行え次。
Simultaneous analysis of most elements such as Ni, Cr, and other elements except O, N, and H gas components could be performed. The present invention can also adequately analyze high melting point metals such as Ti, V, and W, which are difficult to evaporate using methods that generate fine particles by careful evaporation.

分析装置には、多元素を同時に迅速にしかも高い精度で
定量できるプラズマ励起源を有する発光分光分析装置が
適している。現在では、分析精度が良く取扱い易いAr
プラズマを用いる高周波誘導結合プラズマ発光分光分析
装置が最適である。
As the analyzer, an optical emission spectrometer having a plasma excitation source that can quantify multiple elements simultaneously and quickly and with high precision is suitable. At present, Ar is highly accurate and easy to handle.
A high-frequency inductively coupled plasma emission spectrometer using plasma is optimal.

製鉄プロセスの真空脱ガス処理に際して、第1図に示し
た装置を用い本発明を実施した例を述べる。
An example will be described in which the present invention is implemented using the apparatus shown in FIG. 1 during vacuum degassing treatment in a steel manufacturing process.

微粒子生成プローブ1及びホーン6を予めガスノ々−ナ
一式の加熱炉で加熱しておき、プローブ下端に鉄製のキ
ャップを取り付け、プローブ1を保持したプローブ昇降
装置26によりプローブ1を処理鍋中に挿入する。スラ
グ層を通過して溶鋼中に浸漬すると直ちにキャップは尋
解し、プローブ1の内部にはスラグを除い+g鋼2が浸
入してくる。この操作はArガスを不活性ガス導入管7
から1 t/ m i nの流量で通気しながら行い、
プローブ141鋼中に浸漬後30秒程度でプローブ1の
下部、ホーン6などの予熱はなされ、微粒子生成室23
内も確実にAr雰囲気となり、微粒子生成のための準備
は終了する。
The particulate generation probe 1 and the horn 6 are heated in advance in a heating furnace with a set of gas nozzles, an iron cap is attached to the lower end of the probe, and the probe 1 is inserted into the processing pot using the probe lifting device 26 that holds the probe 1. do. Immediately after passing through the slag layer and immersing the probe in molten steel, the cap dissolves and the +g steel 2 enters into the interior of the probe 1, excluding the slag. This operation is performed by introducing Ar gas into the inert gas introduction pipe 7.
Performed with ventilation at a flow rate of 1 t/min from
About 30 seconds after immersing the probe 141 in the steel, the lower part of the probe 1, the horn 6, etc. are preheated, and the particulate generation chamber 23 is heated.
The interior is also reliably made into an Ar atmosphere, and preparations for the generation of fine particles are completed.

次に超音波発振機3を働らかせて超音波振動子4に発生
した超音波を伝達棒5に伝達させ、溶鋼中に全長の半分
程度を浸漬したホーン6で超音波を最大出力として発生
させる。それと同時にプローブ昇降装置26を作動させ
、ホーン6がm鋼界面を出たり入ったシするように昇降
、下降を繰り返した。ホーンが俗鋼面から引き上げられ
た際、ホーン6表面に残留した溶鋼が、ホーンから発生
させられる超音波によって飛散させられ微粒子が生成す
るものと考えられる。ホーン表面に凹凸を形成させた場
合は、微粒子生成量が増すことから、溶鋼微粒子はホー
ン表面からも生成されているものと考えられる。
Next, the ultrasonic oscillator 3 is activated to transmit the ultrasonic waves generated by the ultrasonic vibrator 4 to the transmission rod 5, and the horn 6, which has about half its total length immersed in the molten steel, generates ultrasonic waves at maximum output. let At the same time, the probe elevating device 26 was activated, and the horn 6 was repeatedly moved up and down so that it moved in and out of the m-steel interface. It is thought that when the horn is pulled up from the common steel surface, the molten steel remaining on the surface of the horn 6 is scattered by the ultrasonic waves generated from the horn, producing fine particles. Since the amount of fine particles produced increases when irregularities are formed on the horn surface, it is considered that molten steel fine particles are also generated from the horn surface.

生成した溶鋼微粒子は、吹き込んだArガス気流によっ
て、内径4Wψのステンレススチール製の管で50m離
れたプラズマ発光分光分析装置11へ搬送した。
The generated molten steel fine particles were transported to a plasma emission spectrometer 11 located 50 m away using a stainless steel tube with an inner diameter of 4 Wψ by a blown Ar gas stream.

真空脱ガス処理現場は、高温、ダスト、撮動等の悪い測
定環境から、精密測定機器である分光分析装置を溶鋼の
存在場所近くに設置することができないが、本発明は溶
鋼の微粒子を生成して長距離を搬送後分析できる特徴を
もち、このような目的に特に適している。
At vacuum degassing processing sites, it is not possible to install a spectroscopic analyzer, which is a precision measurement device, near the location where molten steel exists due to the poor measurement environment such as high temperature, dust, and photography. It has the feature that it can be transported over long distances and then analyzed, making it particularly suitable for such purposes.

上記のような条件でm鋼中のiンガンを分析した結果の
一例′1jI:第5図に示した。第5図は、厚板や薄板
など各種鋼種を対象に真空脱ガス処理中に本発明によっ
て測定しfcMnの発光強度とFeの発光強度からMn
/F6の強度比全計算し、その値QY軸にとり、同時に
サンプリングして固化し九試料の従来法であるスパーク
発光分光分析法で求めたMn分析値をX軸にとってプロ
ットし念ものである。
An example of the results of analyzing an in-gun in an m-steel under the above conditions is shown in Figure 5. Figure 5 shows Mn from the fcMn emission intensity and Fe emission intensity measured by the present invention during vacuum degassing treatment of various steel types such as thick plates and thin plates.
/F6 intensity ratio is calculated, the value is plotted on the QY axis, and the Mn analysis value obtained by the conventional method of spark emission spectrometry of nine samples sampled and solidified at the same time is plotted on the X axis.

このように両者間には非常に良好な相関性があり、本発
明が従来の方法と同様に実用できることがわかり、しか
も従来のように溶鋼をサンプリングする必要もなく、従
来法では分析試料の気送管による分析センターへの輸送
、切断、研摩等の前処理も必要なかった。従来法では通
常全分析所要時間が4〜5分かかつていたが、本発明は
最初2分以内で分析でき、しかも、そのあとは連続して
分析値を得ることができた。
In this way, there is a very good correlation between the two, and it can be seen that the present invention can be put to practical use in the same way as the conventional method, and there is no need to sample molten steel as in the conventional method. There was no need for transportation to an analysis center via conduit, or for pretreatment such as cutting or polishing. In the conventional method, the total analysis time usually took 4 to 5 minutes, but with the present invention, the initial analysis could be performed within 2 minutes, and furthermore, analysis values could be obtained continuously thereafter.

第5図にはMn分析の結果を示したが、本発明では多元
素を同時に分析でき、鼎鋼分析で必要なP、S、Si 
、At、Ti 、Ni 、Cr等多くの成分がMn分析
とほぼ同様に良好な精度で分析できた。
Figure 5 shows the results of Mn analysis, but the present invention can analyze multiple elements simultaneously, including P, S, and Si, which are required for steel analysis.
, At, Ti, Ni, Cr, and many other components could be analyzed with good accuracy, almost the same as the Mn analysis.

(発明の効果J 以上説明し次ように本発明は、これまで溶融金属試料中
の含有成分の分析にあたって実施してきたサンプリング
、冷却固化、切断、研摩等の煩雑な前処理操作を行なわ
ずに迅速かつ精度よく直接分析することができ、金属の
精錬や製鋼プロセスにおける品質管理や操業管理に極め
て効果が大きい。
(Effects of the Invention J As explained above and as follows, the present invention enables quick analysis of components contained in molten metal samples without the complicated pretreatment operations such as sampling, cooling solidification, cutting, and polishing that have been carried out in the past when analyzing components contained in molten metal samples. Moreover, it can be directly analyzed with high precision, making it extremely effective for quality control and operational management in metal refining and steelmaking processes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例装置の説明図、第%2図〜第4図
は本発明装置の微粒子生成プローブの部分の各種の態様
の説明図、第5図は本発明装置による溶鋼分析結果の説
明図である。 1・・・微粒子生成プローブ、2・・・溶鋼、3・・・
超音波発振機、4・・・超音波撮動子、5・・・超音波
伝達棒、6・・・ホーン、7・・・不活性ガス導入管、
8・・・微粒子搬送管、9・・・搬送ガス分配器、11
・・・高周波誘導結合プラズマ発光分光分析装置、20
・・・プラズマトーチ、23・・・微粒子生成室、25
・・・微粒子生成装置保持台、26・・・微粒子生成プ
ローブ昇降装置、27・・・超音波ホーン昇降装置。 代理人 弁理士  秋  沢  政  光他1名 才2図 73図 オ乙図 第5図 Mn (%)
Fig. 1 is an explanatory diagram of the apparatus according to the present invention, Figs. FIG. 1... Fine particle generation probe, 2... Molten steel, 3...
Ultrasonic oscillator, 4... Ultrasonic camera, 5... Ultrasonic transmission rod, 6... Horn, 7... Inert gas introduction pipe,
8... Particulate transport pipe, 9... Carrier gas distributor, 11
...High frequency inductively coupled plasma emission spectrometer, 20
...Plasma torch, 23...Particle generation chamber, 25
. . . Particle generation device holding stand, 26 . . . Particle generation probe lifting device, 27 . . . Ultrasonic horn lifting device. Agent: Patent attorney Masaaki Akizawa and 1 talented figure 73 figure Otsu figure 5 figure Mn (%)

Claims (7)

【特許請求の範囲】[Claims] (1)底部開口部が溶融金属によって塞がれて密閉状と
なるプローブ内に捕集した溶融金属中に、超音波振動子
に接続されたホーンを発振させながら挿入し、次に溶融
金属から引き上げるホーンの上下動作中にホーン表面に
付着した溶融金属を超音波振動によって微粒子として飛
散生成させ、生成した溶融金属の微粒子を同プローブ中
に吹き込んだ不活性ガスにより同プローブ上部より排出
し、プラズマ発光分光分析装置に搬送導入して微粒子中
の各元素の発光強度を測定し、溶融金属中に含まれる各
元素の濃度を求めることを特徴とする上下可動式超音波
振動微粒子生成による溶融金属の直接分析方法。
(1) A horn connected to an ultrasonic vibrator is inserted while oscillating into the molten metal collected in the probe whose bottom opening is closed by the molten metal, and then the molten metal is removed. During the vertical movement of the lifting horn, the molten metal adhering to the horn surface is scattered and generated as fine particles by ultrasonic vibration, and the generated fine particles of molten metal are discharged from the top of the probe by an inert gas blown into the probe, creating a plasma. Molten metal is transported and introduced into an emission spectrometer to measure the luminescence intensity of each element in the particles and determine the concentration of each element contained in the molten metal. Direct analysis method.
(2)ホーンを溶融金属中から引き上げ再び浸漬する上
下動作を繰り返しながら、ホーン表面に付着した溶融金
属を超音波振動によって微粒子と成すことを特徴とする
特許請求の範囲第1項記載の上下可動式超音波振動微粒
子生成による溶融金属の直接分析方法。
(2) The vertical movement according to claim 1, characterized in that the molten metal adhering to the surface of the horn is turned into fine particles by ultrasonic vibration while repeating the vertical movement of lifting the horn out of the molten metal and dipping it again. A method for direct analysis of molten metal by ultrasonic vibration particle generation.
(3)表面に凹凸を形成させたホーンを用いる特許請求
の範囲第1項または第2項記載の上下可動式超音波振動
微粒子生成による溶融金属の直接分析方法。
(3) A method for direct analysis of molten metal by vertically movable ultrasonic vibration particle generation according to claim 1 or 2, which uses a horn with an uneven surface.
(4)下部内壁に不活性ガス導入口と上部に微粒子排出
口とを有し、底部を溶融金属中に浸漬して密閉状態とす
る微粒子生成プローブと、上下動作が可能な昇降機構を
もち超音波発振機とケーブルで接続する超音波振動子を
上部に有し下部に溶融金属中に浸漬するホーンとを結合
した超音波伝達棒を前記微粒子生成プローブの上部に取
りつけた微粒子生成装置と、および前記微粒子排出口を
搬送管を介して接続したプラズマ発光分光分析装置とを
備えたことを特徴とする上下可動式超音波振動微粒子生
成による溶融金属の直接分析装置。
(4) A particulate generation probe that has an inert gas inlet on the lower inner wall and a particulate discharge port on the upper part, the bottom part of which is immersed in molten metal to create a sealed state, and a lifting mechanism that can move up and down. a particle generation device in which an ultrasonic transmission rod is attached to the upper part of the particle generation probe, the ultrasonic transducer having an ultrasonic transducer connected to a sonic oscillator and a cable connected to the upper part and a horn immersed in molten metal in the lower part; A direct analysis device for molten metal by vertically movable ultrasonic vibration particle generation, comprising a plasma emission spectrometer to which the particle discharge port is connected via a conveying pipe.
(5)超音波伝達棒に不活性ガス供給口を設け、該伝達
棒内に不活性ガス導通孔を貫通させ、さらに該伝達棒先
端に接続され溶融金属中に浸漬されるホーンに不活性ガ
ス導入口を設けたことを特徴とする特許請求の範囲第4
項記載の上下可動式超音波振動微粒子生成による溶融金
属の直接分析装置。
(5) An inert gas supply port is provided in the ultrasonic transmission rod, an inert gas passage hole is passed through the transmission rod, and an inert gas is supplied to a horn connected to the tip of the transmission rod and immersed in the molten metal. Claim 4 characterized in that an introduction port is provided.
A device for directly analyzing molten metal by vertically movable ultrasonic vibration generating fine particles as described in 2.
(6)下部内壁に不活性ガス導入口を、上部に微粒子排
出口をそれぞれ設け、 底部を溶融金属中に浸漬して密閉状態とする微粒子生成
プローブに上下動作が可能な昇降機構を取りつけたこと
を特徴とする特許請求の範囲第4項記載の上下可動式超
音波振動微粒子生成による溶融金属の直接分析装置。
(6) An inert gas inlet is provided on the lower inner wall and a particulate discharge port is provided at the upper part, and the particulate generation probe, whose bottom part is immersed in molten metal to form a sealed state, is equipped with an elevating mechanism that can move up and down. A direct analysis device for molten metal by vertically movable ultrasonic vibration particle generation according to claim 4.
(7)表面に凹凸を形成させたホーンを用いる特許請求
の範囲第4項または第5項記載の上下可動式超音波振動
微粒子生成による溶融金属の直接分析装置。
(7) A direct analysis device for molten metal by vertically movable ultrasonic vibration particle generation according to claim 4 or 5, which uses a horn having an uneven surface.
JP62079029A 1987-03-31 1987-03-31 Method and instrument for direct analysis of molten metal by vertically movable type formation of fine particle by ultrasonic oscillation Pending JPS63243871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62079029A JPS63243871A (en) 1987-03-31 1987-03-31 Method and instrument for direct analysis of molten metal by vertically movable type formation of fine particle by ultrasonic oscillation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62079029A JPS63243871A (en) 1987-03-31 1987-03-31 Method and instrument for direct analysis of molten metal by vertically movable type formation of fine particle by ultrasonic oscillation

Publications (1)

Publication Number Publication Date
JPS63243871A true JPS63243871A (en) 1988-10-11

Family

ID=13678503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62079029A Pending JPS63243871A (en) 1987-03-31 1987-03-31 Method and instrument for direct analysis of molten metal by vertically movable type formation of fine particle by ultrasonic oscillation

Country Status (1)

Country Link
JP (1) JPS63243871A (en)

Similar Documents

Publication Publication Date Title
US3521959A (en) Method for direct spectrographic analysis of molten metals
US4730925A (en) Method of spectroscopically determining the composition of molten iron
RU2664485C1 (en) Method of spectral analysis of chemical composition of molten metals and device for its implementation
JPS6211130A (en) Field analysis of liquefied conductive material
JPS6146773B2 (en)
JPS63243871A (en) Method and instrument for direct analysis of molten metal by vertically movable type formation of fine particle by ultrasonic oscillation
JPH0151939B2 (en)
JPS63243872A (en) Method and instrument for direct analysis of molten metal by formation of fine particle by ultrasonic oscillation
JPS60219538A (en) Inert gas blow-in type fine particle recovering and molten metal analytical method and apparatus therefor
JPS5890150A (en) Emission spectrochemical analyzing method for plasma arc directly molten small size group sample and device thereof
JPH0215816B2 (en)
JPH0238901B2 (en)
JPH0215817B2 (en)
JPS59157539A (en) Direct analyzer of molten metal in deep layer by fine particle generating plasma emission spectrochemical method
JPS59157541A (en) Direct analyzer of molten metal by fine particle generating plasma emission spectrochemical method
JPS59157542A (en) Direct analyzer of molten metal by fine particle generating plasma emission spectrochemical method
JPS5890152A (en) Direct emission spectrochemical analyzing method for small size metal sample and device thereof
JPH07128237A (en) Method and device for rapidly analyzing steel component
JPS59157540A (en) Direct analyzer of molten metal in deep layer by fine particle generating plasma emission spectrochemical method
JPS6214774B2 (en)
JPS6220496B2 (en)
JPH0827223B2 (en) Fine powder generator
JP2982602B2 (en) Method and apparatus for laser vaporization analysis of molten metal
JPS6214773B2 (en)
JPS6267430A (en) Spectral analysis of components in molten iron