JPS59157539A - Direct analyzer of molten metal in deep layer by fine particle generating plasma emission spectrochemical method - Google Patents

Direct analyzer of molten metal in deep layer by fine particle generating plasma emission spectrochemical method

Info

Publication number
JPS59157539A
JPS59157539A JP3077683A JP3077683A JPS59157539A JP S59157539 A JPS59157539 A JP S59157539A JP 3077683 A JP3077683 A JP 3077683A JP 3077683 A JP3077683 A JP 3077683A JP S59157539 A JPS59157539 A JP S59157539A
Authority
JP
Japan
Prior art keywords
molten metal
counter electrode
particulate
probe
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3077683A
Other languages
Japanese (ja)
Other versions
JPH0149891B2 (en
Inventor
Akihiro Ono
小野 昭紘
Masao Saeki
佐伯 正夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3077683A priority Critical patent/JPS59157539A/en
Publication of JPS59157539A publication Critical patent/JPS59157539A/en
Publication of JPH0149891B2 publication Critical patent/JPH0149891B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/73Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited using plasma burners or torches

Abstract

PURPOSE:To analyze directly molten metal constituents simply and rapidly at an operating working site by taking in the deep layer part of the molten metal under a probe through a refractory cylinder and introducing the fine particle evaporated and generated by a spark discharge to an analyzer together with inert gas. CONSTITUTION:The molten metal in the deep layer is taken in under the probe 1 by lowering the refractory cylinder 39, the spark discharge is performed between a counter electrode 8 and a sample electrode 17 while blowing gaseous Ar. The evaporated and generated ultrafine particles are sent to a plasma torch 29 together with gaseous Ar, and are excited and emitted to measure each constituent content. Thus the molten metal constituent in the deep layer can be analyzed directly, simply and rapidly in working site.

Description

【発明の詳細な説明】 本発明は、溶融金属表面と対電極間に高電圧を2− かけて、スパークなどの電気的放電を行わせ、溶融金属
中の成分組成を代表する超微粒子を蒸発させ、これを前
ノ1.だ場所に設定しであるプラズマ発光分光分析装置
に不活性ガス流で搬送し、溶融金・域中の各種成分含有
率を、オンラインリアルタイムで分析することを目的と
子る溶融金属の直接発光分光分析装置に関するものであ
る。
Detailed Description of the Invention The present invention applies a high voltage between the surface of the molten metal and a counter electrode to cause electrical discharge such as sparks to evaporate ultrafine particles representative of the component composition in the molten metal. and repeat this in the previous section 1. Direct emission spectroscopy of molten metal is carried out using an inert gas flow to analyze the content of various components in the molten metal in real time online. This relates to an analytical device.

金属製造業における製造工程管理には、サンプリングし
て固化させたブロック試料を対象とするスパーク発光分
光分析が多用されている。しかし−近年とくに鉄鋼業に
見られるように、より迅速な製造工程管理あるいは多段
精錬製鋼法などの新製造プロセスの操業管理のために、
溶銑や溶鋼のような溶融金属を直接対象とするオンライ
ンリアルタイムの分析手法の開発が強く要請されている
Spark emission spectrometry analysis of sampled and solidified block samples is often used for manufacturing process control in the metal manufacturing industry. However, in recent years, especially in the steel industry, for faster manufacturing process control or operational management of new manufacturing processes such as multi-stage refining and smelting methods,
There is a strong demand for the development of online real-time analysis methods that directly target molten metals such as hot metal and molten steel.

これ寸で、溶融金属をA、rガスを用いた特殊な噴霧器
によって微粉化して5発光分光分析する方法(BISR
A、 Annua] Report : ’78 (1
966) 、 65゜78 (1967)、35 (1
968))など各種の手法により研究開発が試みられて
きた。しかし、これ3− らの方法はこねまで実際に製造現場で実用されたことは
なく、いずれも実験室規模で試みられたに過ぎ々い。
At this size, molten metal is pulverized using a special atomizer using A and R gases and then analyzed using 5 emission spectroscopy (BISR).
A, Anna] Report: '78 (1
966), 65°78 (1967), 35 (1
Research and development has been attempted using various methods such as 968)). However, none of these three methods has ever been put to practical use in a manufacturing site, and all have only been attempted on a laboratory scale.

実際の製造現場で実用可能な溶融金属の直接分析装置の
実現をはかるには、先ず、その製造現場は高温、振動、
ダストなど測定環境が非常に悪い点を考慮しなければな
らない。このような劣悪な測定環境下ではトラブルが起
る分光、検出器等の精密測定機器は、溶融金属の存在場
所から離して設置し、溶融金属は、電気的放電などによ
って微粉比して搬送するなどの方法が有望になる。
In order to realize a direct analysis device for molten metal that can be put to practical use at actual manufacturing sites, the manufacturing site must first be exposed to high temperatures, vibrations, and
The fact that the measurement environment is extremely poor due to dust must be taken into consideration. Precision measuring instruments such as spectrometers and detectors, which can cause problems in such poor measurement environments, should be installed away from the location where molten metal is present, and molten metal should be transported as a fine powder using electrical discharge, etc. Such methods are promising.

本発明は、溶融金属を0.1/zm 以下で1粒度分布
域が狭い超微粒子を安定して発生させる方法。
The present invention is a method for stably generating ultrafine particles having a narrow particle size distribution range of 0.1/zm or less from molten metal.

搬送管内壁への微粒子の付着残留を防止して数1.0m
の長距離を効率よく搬送する方法及び分析装置への導入
方法等を中心に研究開発を進め、簡単迅速に高い精度感
度で分析でき、実用的な新規分析装置を提供するにいた
ったものである。
Preventing fine particles from adhering to the inner wall of the conveyor pipe and reducing the length of several 1.0 m.
We have conducted research and development focusing on how to efficiently transport long-distance materials and how to introduce them into analytical equipment, and we have now provided a practical new analytical equipment that can be analyzed easily, quickly, and with high precision and sensitivity. .

第]−図、第2図に示す本発明実施例装置により。By the apparatus according to the embodiment of the present invention shown in FIG.

本発明の詳細について説明する。The details of the present invention will be explained.

4一 本発明装置は、大別すると微粒子生成プローブ1、湯面
レベル計38と連動する同プローブの上下位置i節装置
20、深層部の溶融金属をプローブ下部に取り込む附大
物円筒39.スパーク放電装置IB、微粒子搬送管22
.搬送ガス分配装置24及びプラズマ励起源を有する発
光分光分析装置37から構成される。微粒子生成プロー
ブlは。
41 The device of the present invention can be roughly divided into a fine particle generation probe 1, a vertical position i-joint device 20 of the probe that is linked with a hot water level gauge 38, and an attached large cylinder 39 that takes molten metal from deep layers into the lower part of the probe. Spark discharge device IB, particulate transport pipe 22
.. It consists of a carrier gas distribution device 24 and an optical emission spectrometer 37 having a plasma excitation source. Particulate generation probe l.

溶融金属13と対電極8間に高電圧をかけてスノく−ク
放電を行わせ、溶融金属を局部的に更に高温の過熱状態
に保ち、金属の組成を代表する微粒子を煙状に蒸発させ
る働きをする部分である。対電極8は、先端をとがらせ
た2〜5關φ程度の小径の丸棒が適切であり、材質は蒸
発剖耗の少ない高融点金属であるタングステンなどが適
している。
A high voltage is applied between the molten metal 13 and the counter electrode 8 to cause a snoke discharge to locally maintain the molten metal in a superheated state at a higher temperature, thereby vaporizing fine particles representing the composition of the metal in the form of smoke. It is the part that does the work. The counter electrode 8 is suitably a round bar with a small diameter of about 2 to 5 diameters with a pointed tip, and the suitable material is tungsten, which is a high melting point metal with little wear and tear due to evaporation.

先端を円錐状にとがらせた形状は、微粒子を常時一定速
度で蒸発させる上で重要である。
The conical shape of the tip is important for evaporating fine particles at a constant rate.

対電極8先端部と溶融金属13表面との間隙を5 m1
llとして、スパーク放電を飛ばすと約1.Ommφの
範囲内でパルス放電が繰り返され、放電カラム14も安
定して形成され、微粒子の蒸発量も常時5− 安定し、良好な分析結果が得られる。湯面レベルが多少
変動しても、常に対電極先端からの放電カラム14が形
成され、微粒子の蒸発量の変動もごくわずかに抑えるこ
とができた。電極間間隙を5m、mに設定した場合、±
2 m、mの湯面の変動が起っても、微粒子の生成量の
変動は5係以内に抑制できた。
The gap between the tip of the counter electrode 8 and the surface of the molten metal 13 is 5 m1.
ll, when the spark discharge is blown, it is about 1. Pulse discharge is repeated within the range of Ommφ, the discharge column 14 is also formed stably, the amount of evaporated particles is always stable, and good analytical results can be obtained. Even if the hot water level fluctuated somewhat, a discharge column 14 was always formed from the tip of the counter electrode, and fluctuations in the amount of evaporation of fine particles could be suppressed to a very small amount. When the electrode gap is set to 5m, m, ±
Even if the hot water level fluctuated by 2 m or 2 m, the fluctuation in the amount of fine particles produced could be suppressed to within a factor of 5.

しかし、対電極先端を丸棒の断面としたり、微粒子導入
管3のパイプ断面を直接電極先端として用いた場合は、
安定した放電カラムが形成されず。
However, when the tip of the counter electrode is made into a cross section of a round bar or the cross section of the pipe of the particle introduction tube 3 is used directly as the tip of the electrode,
A stable discharge column is not formed.

とくに湯面の変動が起った場合は放電カラムが移動し、
微粒子の蒸発量の再現性が得られなくなり。
In particular, when fluctuations occur in the hot water level, the discharge column moves,
It becomes impossible to obtain reproducibility of the amount of evaporation of fine particles.

分析精度を極端に低下させた。Analysis accuracy was extremely reduced.

このような理由から、微粒子導入管3は対電極8の電導
体としては用いるが、スパーク放電用の対電極は、この
導入管3の先端に固設するようにした。この固設の方法
はいくつかあるが、第2図に示すように、微粒子導入管
3の下端に円筒状の電極ホルダー6を溶接々どによって
接続し、電極ホルダー6の中心部に対電極8を垂直に挿
入し。
For these reasons, the particle introduction tube 3 is used as a conductor for the counter electrode 8, but the counter electrode for spark discharge is fixed at the tip of the introduction tube 3. There are several methods for fixing this, but as shown in FIG. Insert vertically.

6− 微粒子導入ロアを開けるようにして、ビス9などで固定
する方法が適当である。
6- A suitable method is to open the particulate introduction lower and fix it with screws 9 or the like.

微粒子導入管3は、鋼や銅製の内径2〜3 m、mφ程
度の小径の管を用いるが、上部は耐熱絶縁材を介して冷
却筒2頂部に固定保持される。微粒子導入管3の外側に
は、アルミナやマグネシアなどの面4熱絶縁管4が被覆
されるが、その外周には同心円状にわずかな間隙5がで
きるように、冷却筒2内部には穴があけられており、こ
の間隙5の上部はArなとの不活性ガス供給管]5が取
りつけられ。
The particulate introduction tube 3 is made of steel or copper and has an inner diameter of 2 to 3 m, with a small diameter on the order of mφ, and its upper portion is fixedly held at the top of the cooling cylinder 2 via a heat-resistant insulating material. The outside of the particulate introduction tube 3 is coated with a four-sided heat insulating tube 4 made of alumina, magnesia, etc., but holes are formed inside the cooling cylinder 2 so that a slight gap 5 is formed concentrically around the outer circumference. An inert gas supply pipe such as Ar is attached to the upper part of this gap 5.

下部はガス吹き出し口10につながっている。The lower part is connected to a gas outlet 10.

冷却筒2自体は、溶融金属の副射熱による加熱を防止す
るために、空冷あるいは水冷によって冷却できる機構を
備えている。又、冷却筒2の下部周囲には窒化ホウ素な
どの絶縁耐火材でできた円筒11が取り付けられており
、下端を溶融金属6中に浸漬して内部に小空間室12を
形成している。
The cooling cylinder 2 itself is equipped with a mechanism capable of being cooled by air cooling or water cooling in order to prevent heating of the molten metal due to side radiation heat. A cylinder 11 made of an insulating refractory material such as boron nitride is attached around the lower part of the cooling cylinder 2, and the lower end is immersed in the molten metal 6 to form a small chamber 12 inside.

上記の微粒子導入管3の下端に、対電極8を取り付けた
電極ホルダ一部6は、この小空間室12につきでており
、対電極8の先端部は溶融金属人−ツー 而13に垂直に対向し、5〜]、 Om、mの範囲で一
定間隔をもって設定され、対電極先端部のわずか」二部
に、微粒子導入ロアが下向きに開口している。
An electrode holder part 6 with a counter electrode 8 attached to the lower end of the particle introduction pipe 3 protrudes from the small space chamber 12, and the tip of the counter electrode 8 is perpendicular to the molten metal body 13. Opposed to each other, the electrodes are set at regular intervals in the range of 5 to 50 m, and a particulate introduction lower opens downward at only 2' part of the tip of the counter electrode.

ガス吹き出し口]−〇は小空間室12の頂部に位置し、
微粒子導入ロアよりも上部位置にある方が。
Gas outlet]-〇 is located at the top of the small space chamber 12,
It should be located above the particulate introduction lower part.

蒸発した微粒子の効率的導入に適している。Suitable for efficient introduction of evaporated fine particles.

対電極8先端部と溶融金属表面13間に高電圧をかけて
、スパーク放電を飛ばし、蒸発生成した溶融金属の超微
粒子は、Arガス吹き出し口10から吐出したArガス
流に乗って、対電極8先端直上に位置する微粒子導入ロ
アに迅速に運び適寸れる。
A high voltage is applied between the tip of the counter electrode 8 and the molten metal surface 13 to cause a spark discharge, and the evaporated ultrafine particles of the molten metal are carried by the Ar gas flow discharged from the Ar gas outlet 10 and are transferred to the counter electrode. 8. The particles are quickly transported to the fine particle introduction lower located directly above the tip.

小空間室12は直径30 m、mφ、高さ30 m、m
以下の小容積であり、蒸発微粒子の拡散は起りに<<。
The small space chamber 12 has a diameter of 30 m, mφ, and a height of 30 m, m.
The volume is small, and the diffusion of evaporated particles occurs at <<.

生成すると同時に効率よく導入ロマヘ導入される。It is efficiently introduced into Roma at the same time as it is generated.

吹き込まれる不活性ガスは、小空間室12内の大気を追
い出してスパーク放電が起り易い雰囲気をつくるだめと
、生成した微粒子を分析計へ搬送するために必要となる
The inert gas blown into the small space chamber 12 is necessary to expel the atmosphere in the small space chamber 12 to create an atmosphere conducive to spark discharge, and to transport the generated particulates to the analyzer.

ガスの種類は、生成する微粒子の粒径や計に影響し+ 
Ar 、 He 、 Ar−H2などが用いられるが1
通8− 常はArガスが適当である。生成した微粒子の拡散を防
ぐために、放電を行う空間室]−2を極力小さくする必
要があるが、そのために通常]O〜207/mi、n 
 で吹き適寸れるArガスによって溶融金属表面が冷却
される弊害が起り易くなる。微粒子を伴なって導入管3
を通過するArガス温iは数100度に達するが1本発
明のArガスの吹き込みは、導入管3の外壁に作った間
隙5を通って供給されるだめに、熱交換作用によって予
熱されてから吹き込まれるので、溶融金属表面の冷却は
防止できる。
The type of gas affects the particle size and amount of fine particles generated.
Ar, He, Ar-H2, etc. are used, but 1
Generally, Ar gas is suitable. In order to prevent the dispersion of the generated fine particles, it is necessary to make the space chamber in which the discharge occurs [-2] as small as possible;
The molten metal surface is likely to be cooled by the blown Ar gas. Introductory tube 3 with fine particles
The temperature i of the Ar gas passing through reaches several hundred degrees, but the Ar gas blowing in the present invention is preheated by a heat exchange effect before it is supplied through the gap 5 made on the outer wall of the introduction pipe 3. Cooling of the molten metal surface can be prevented.

又、蒸発生成した超微粒子は、管内壁の温度が低いと即
座に内壁に付着する性質をもち、微粒子の定量的な搬送
が困難になる。あるいは、微粒子搬送管22を数]、 
Omのように長尺とした場合に起り易くなる管内などに
付着残留する微粒子を洗浄する目的で、断続的に高圧を
かけてArガスを高速で吹き込む必要がある。これらの
目的から冷却筒2内に設ける微粒子導入管3は、冷却筒
2に直接接触して冷却されず1寸だArガス吹き込み間
隙5は極力狭くするとともに、ガスが導入管3外壁9− に効率よく接触するように、微粒子導入管3の外側に狭
い間隙をもって同心円状に2重管構造とすることが必要
である。
Further, the ultrafine particles produced by evaporation have a property of immediately adhering to the inner wall of the tube when the temperature of the inner wall is low, making it difficult to quantitatively transport the fine particles. Alternatively, the number of particle transport pipes 22],
In order to clean the particulates that adhere and remain inside the pipe, which tends to occur when the pipe is long like Om, it is necessary to intermittently apply high pressure and blow Ar gas at high speed. For these purposes, the particulate introduction pipe 3 installed in the cooling cylinder 2 is not cooled by directly contacting the cooling cylinder 2, but is 1 inch. For efficient contact, it is necessary to have a concentric double tube structure with a narrow gap on the outside of the particle introducing tube 3.

壕だ、長時間連続して放電を飛ばしていると。It's a trench, if you keep emitting electrical discharge for a long time.

対電極8の先端部に蒸発生成した微粒子の一部が付着し
てくるために、断続的に極性を逆にして放電させ、付着
した微粒子を蒸発除去するなどの方法をとる。しかし、
長時間連続分析の場合には。
Since some of the evaporated particles adhere to the tip of the counter electrode 8, a method is used in which the polarity is intermittently reversed and discharge is performed to evaporate and remove the attached particles. but,
For long-term continuous analysis.

対電極の交換が必要になる。この交換は迅速に行わなけ
ればなら々いが1本発明では対電極8と微粒子導入管3
を一体化しであるだめに、冷却筒2上部の固定具を取り
はずして、上方に引きぬく簡単な操作で迅速に交換でき
る利点がある。
The counter electrode will need to be replaced. This replacement must be done quickly, but in the present invention, the counter electrode 8 and the particle introduction tube 3
By integrating the cooling cylinder 2, there is an advantage that it can be replaced quickly by simply removing the fixture on the upper part of the cooling cylinder 2 and pulling it upward.

溶融金属を直接分析する場合にもつとも問題になるのは
、湯面のレベル変動が激しいことで、レベルが静止状態
にあるものはまれである。すなわち、成分含有率を知る
分析の目的は、金属製造の工程管理であるために、製造
過程での直接分析が必要であり、製造過程における溶融
金属湯面ば通常安定していない。鉄鋼製造を例にとれば
、溶鉱−]〇− 炉から樋に流れ出てくる溶銑icl:時々刻々湯の量が
変化するし、そのあとの鍋中で行う脱リン、脱硫7脱炭
などの処理では、湯面の変動は激しく沸とう状態を呈し
ている。機械的な工夫や比較的安定し′ている時期を選
んで分析を実施することにしても、スパーク放電によっ
て微粒子を蒸発生成するときの対電極8先端と溶融金属
表面13との間隙は、通常lOrnm、IJ下にする必
要があるだめに、湯面レベル変動の対策が必須になる。
A problem with directly analyzing molten metal is that the level of the molten metal fluctuates dramatically, and it is rare for the level to remain static. That is, the purpose of analysis to know the component content is process control of metal manufacturing, so direct analysis during the manufacturing process is necessary, and the molten metal level during the manufacturing process is usually not stable. Taking steel manufacturing as an example, the amount of hot metal ICL flowing from the furnace into the gutter changes from time to time, and the subsequent dephosphorization, desulfurization, decarburization, etc. During the treatment, the water level fluctuates violently, indicating a boiling state. Even if the analysis is carried out by mechanical means or by selecting a relatively stable period, the gap between the tip of the counter electrode 8 and the molten metal surface 13 when fine particles are evaporated and generated by spark discharge is usually small. Since it is necessary to keep the temperature below lOrnm and IJ, measures against fluctuations in the hot water level are essential.

そこで1本発明では第1図に示すように、湯面レベル検
出器38を溶融金属13表面に対向して設置し、湯面レ
ベルを常時検出し、この検出信号によって対電極8を保
持した微粒子生成プローブ]の冷却筒2を一上下に駆動
する上下位置調節装置20を作動させて、対電極と溶融
金属1B1の電極間間隙を一定間隔に保持する方法をと
った。
Therefore, in the present invention, as shown in FIG. 1, a hot water level detector 38 is installed facing the surface of the molten metal 13 to constantly detect the hot water level, and this detection signal is used to detect the fine particles holding the counter electrode 8. A method was adopted in which the gap between the counter electrode and the molten metal 1B1 was maintained at a constant interval by operating the vertical position adjustment device 20 that moves the cooling cylinder 2 of the production probe up and down.

湯面レベル検出器は、静電容量ノ1.!!などのものが
適当であるが、微粒子生成プローブ1あるいは同プロー
ブの支持架台19などに固定保持する。同プローブlの
上下動の駆動源zoNニー電動機及びスクリュージヤツ
キ等を用い、同プローブの上部に取り伺ける。湯表面の
小きざみなレベル変動は。
The hot water level detector uses capacitance No. 1. ! ! etc., is suitable, and it is fixedly held on the particle generation probe 1 or the supporting frame 19 of the probe. The upper part of the probe can be accessed using a zoN knee motor and a screw jack as the drive source for vertical movement of the probe l. Small level fluctuations on the surface of the hot water.

耐火筒11を溶融金属中に浸漬して、小空間室12を形
成することによりかなり消失するが、湯面レベル計38
によるレベル検出精度は十〇、、5mm以上で、検出信
号を一ト下動動作に変換する速度も速く。
By immersing the refractory cylinder 11 in molten metal to form the small space chamber 12, it disappears considerably, but the level meter 38
The level detection accuracy is over 10.5mm, and the speed at which the detection signal is converted into one-tone downward movement is also fast.

本方式によれば電極間間隙を常時、5 rr+η1±1
mmに調節することができ、微粒子の生成を安定して行
え良好な精度で分析を実施することが可能に々っだ。
According to this method, the gap between the electrodes is always 5 rr + η1 ± 1
It is possible to adjust the size to 1 mm, stably generate fine particles, and perform analysis with good accuracy.

溶融金属の直接分析におけるもう一つの大きな問題は、
溶融金属表面に浮上するスラグの排除及び深層部溶融金
属の微粒子生成プローブ内への取り込みである。溶融金
属表面には通常スラグが浮−1ニしていたり、酸化被膜
が生成しており1分析に当ってはこれらを排除して、溶
融金属表面を露出させる必要がある。また、スラグ層直
下の溶融金属は、スラグ−メタル反応による影響で、更
に深部の溶融金属の成分組成と異なる場合が多く、スラ
グを排除すると共に、更に深層部の溶融金属を分析対象
にする必要がある。
Another major problem in direct analysis of molten metals is that
These are the removal of slag floating on the surface of the molten metal and the intake of deep molten metal into the fine particle generation probe. Usually, slag is floating on the surface of the molten metal, and an oxide film is formed on the surface of the molten metal, and it is necessary to remove these and expose the surface of the molten metal for analysis. Furthermore, the composition of the molten metal directly under the slag layer is often different from that of the molten metal in the deeper layer due to the influence of the slag-metal reaction, so it is necessary to eliminate the slag and also analyze the molten metal in the deeper layer. There is.

本発明では、第1図に示すように、微粒子生成プローブ
1及び湯面レベル計38を内包し、下端に対象とする溶
融金属と同等ないしはより低い融点の材料でできたキャ
ップ41をかぶぜたスラグ遮へい用耐火物製円筒39を
、溶融金属13中に浸入させる方法をとった。マグネシ
ア、アルミナ。
In the present invention, as shown in FIG. 1, a particulate generation probe 1 and a liquid level gauge 38 are enclosed, and a cap 41 made of a material having a melting point equal to or lower than that of the target molten metal is covered at the lower end. A method was adopted in which a refractory cylinder 39 for slag shielding was infiltrated into the molten metal 13. magnesia, alumina.

窒化ホウ素などの耐火材で製作した円筒39の上部には
、昇降装置40が取り付けてあり1分析開始前は同耐火
円筒39は微粒子生成グローブ1と同様に、溶融金属の
上方に引き上げられているが。
A lifting device 40 is attached to the top of the cylinder 39 made of a refractory material such as boron nitride, and before the start of analysis, the refractory cylinder 39 is lifted above the molten metal in the same way as the particulate generation globe 1. but.

最初にスラグ遮へい用耐火円筒39を下降させ。First, the slag shielding refractory cylinder 39 is lowered.

スラグ層42を通過してスラグを排除し、溶融金属13
中に浸入させる。
The slag is removed by passing through the slag layer 42, and the molten metal 13
let it penetrate inside.

底部に取り付けたキャップ4]−は、溶融金属13によ
って溶解され、深層部の溶融金属が耐火円筒39の内部
に取り入れられる。このあとに、微粒子生成プローブ1
−を下降させて分析を開始する。
The cap 4 attached to the bottom is melted by the molten metal 13, and the molten metal in the deep layer is taken into the refractory cylinder 39. After this, particulate generation probe 1
Start analysis by lowering -.

分析終了後は、耐火円筒39を微粒子生成プローブ1と
共に引き上げ、耐火円筒3つの下端には。
After the analysis is completed, the refractory cylinder 39 is pulled up together with the particle generation probe 1, and the lower ends of the three refractory cylinders are placed.

新しいキャップ41を取り付けて次の分析に待機13− する。Attach a new cap 41 and wait for the next analysis 13- do.

すなわち、キャップ4]は消耗品として使用するので交
換が容易な必要があるが1円筒39の下端にかるくはめ
込む装着方法でよかった。このキャップ4コ−は溶融金
属13によって溶解されて分析の対象になるが、耐火円
筒39内に取り込まれる溶融金属の全体量に比べて、キ
ャップ41の量はわずかなためにほとんど問題にならな
いが、なるべく分析対象成分を含捷ない材料を用いる。
That is, since the cap 4 is used as a consumable item, it needs to be easy to replace, but it is sufficient to attach it by slightly fitting it into the lower end of the cylinder 39. This cap 4 is melted by the molten metal 13 and becomes the subject of analysis, but since the amount of the cap 41 is small compared to the total amount of molten metal taken into the refractory cylinder 39, it hardly becomes a problem. , use a material that does not contain the component to be analyzed as much as possible.

溶融金属中に溶は込むキャップの量を減少するため及び
キャップの機械的強度を増加するためには、耐火円筒3
9の底部を耐火材でおおい、中央に小穴を開け、その外
側にキャップをかぶせるなどの方法が有効であった。上
記の本発明の方法によれば、スラグは十分に排除でき、
深層部溶融金属の採取も良好に行われた。
In order to reduce the amount of cap that penetrates into the molten metal and to increase the mechanical strength of the cap, a refractory cylinder 3 is used.
An effective method was to cover the bottom of the 9 with fireproof material, make a small hole in the center, and cover the outside with a cap. According to the above method of the present invention, slag can be sufficiently eliminated;
The collection of deep molten metal was also successful.

溶融金属13を微粒子に変換する方法は種々あるが、前
述の引用文献のように、高速のArガス流によるスプレ
ー作用で噴霧する方法では、生成した微粒子径は10〜
100μm 程度以上で粒径が14− 大きいために長1市離搬送は困難であり、又粒度分布の
幅が太きいために励起発光させた際の発光強度の変動が
大きく5分析精度が悪い等の問題がある。直流アークあ
るいはアークカラムを、水冷によるピンチ効果で収束し
たプラズマアーク照射による過熱蒸発による方法では、
対電極と溶融金属表面との電極間ギャップを、]、〜2
 mm程度の椿めて短かい距離に保たなければ、ある一
定量以」二の微粒子の蒸発が起らず、かつ蒸気圧の低い
成分の蒸発が優先するいわゆる選択蒸発が起り易く、溶
融金属の成分組成を代表する微粒子を安定して生成させ
るととが難かしい。
There are various methods for converting the molten metal 13 into fine particles, but in the method of atomizing using a spray action using a high-speed Ar gas flow, as in the above-mentioned cited document, the diameter of the generated fine particles is 10 to 10.
Because the particle size is about 100 μm or more, it is difficult to transport over a long distance due to the large particle size, and the wide particle size distribution causes large fluctuations in emission intensity when excited and emitted, resulting in poor analytical accuracy. There is a problem. In the method of superheating evaporation by irradiating a DC arc or arc column with a plasma arc converged by the pinch effect of water cooling,
The interelectrode gap between the counter electrode and the molten metal surface is ], ~2
Unless the distance between the particles is kept short, on the order of mm, evaporation of fine particles will not occur beyond a certain amount, and so-called selective evaporation will occur, in which the evaporation of components with low vapor pressure takes priority, and the molten metal It is difficult to stably produce fine particles with a representative composition.

レーザー照射による方法は、非導電性物質に適用できる
利点をもつが+ CO2レーザーのように連続レーザー
では蒸発用が少なく、ジャイアントパルスレーザ−を採
用せざるを得ないが、1秒間に数10回以上での高出力
での照射が不可能なことから、これも寸だ正確なオンラ
イン分析用にはあまり適当でない。
The method using laser irradiation has the advantage of being applicable to non-conductive materials, but continuous lasers such as CO2 lasers have little evaporation potential, so a giant pulse laser has to be used, but it can evaporate several tens of times per second. Since high power irradiation is not possible, this method is also not suitable for extremely accurate on-line analysis.

本発明者らdl、浴融金属を微粒子として蒸発生成する
エネルギー源の適正について詳細な研究を続けた結果、
最適な方法としてスパーク放電を選定した。すなわち、
溶融金属13中に浸漬した炭素や高融点金属から成る棒
状電極17を試料極として陰極とし、溶融金属13表面
に、先端がわずかな間隙をもって設置した対電極8に導
通する微粒子導入管3の上端に取り伺けた端子16を陽
極として、スパーク放電装置18に結線し1両極に高電
圧をかけてスパーク放電を行い、溶融金属]、3を微粒
子として蒸発させる。
As a result of our detailed research into the suitability of the energy source for vaporizing and producing the bath molten metal as fine particles,
Spark discharge was selected as the optimal method. That is,
A rod-shaped electrode 17 made of carbon or a high-melting point metal immersed in the molten metal 13 serves as a sample electrode and a cathode, and the upper end of the particle introduction tube 3 is connected to a counter electrode 8 whose tip is placed on the surface of the molten metal 13 with a slight gap. Using the terminal 16 that has been reached as an anode, it is connected to a spark discharge device 18, and a high voltage is applied to both poles to generate a spark discharge, thereby vaporizing the molten metal] and 3 as fine particles.

溶融金属を微粒子として蒸発搬送し、溶融金属中の各種
含有成分量を分析するためには、含有成分を代表する微
粒子を安定して発生させることがとくに重要であるが、
スパーク放電における各放電定数の設定の仕方も影響を
力える。自己誘導1.0μn−静電容量3/zF−抵抗
1Ω、電圧1000 V  に設定したスパークライク
のスパーク放電と各定数をコ、50 μI−(、81r
F、 OΩ、’700Vに設定したアークライクのスパ
ーク放電(放電電流波形からみると、前者はピーク電流
値20 OA−保持時間3゜μS、後者各々が8OA、
4.00μS)の面放電条件で、鉄鋼滅相を対象に微粒
子を発生させ、各成分を繰り返して分析した結果−0,
50%含有するSlの分析値の変動係数は前者が2.5
%、後者がコー1.6%、104%含有するMnは各々
38チ。
In order to evaporate and transport molten metal as fine particles and analyze the amount of various components contained in the molten metal, it is particularly important to stably generate fine particles that represent the contained components.
The way each discharge constant in spark discharge is set also has an influence. Self-induction 1.0 μn - capacitance 3/zF - resistance 1 Ω, voltage 1000 V.
F, OΩ, arc-like spark discharge set at 700 V (looking at the discharge current waveform, the former has a peak current value of 20 OA-holding time of 3゜μS, the latter each has a peak current of 20 OA and a holding time of 3゜μS, respectively,
The results of repeated analysis of each component by generating fine particles for steel phase loss under surface discharge conditions of 4.00 μS) were -0,
The coefficient of variation of the analytical value of 50% Sl is 2.5 for the former.
%, the latter contains 1.6% and 104% of Mn, respectively, of 38%.

]、2.6%、0.30%含“有するOuは各々5.1
 % 。
], 2.6%, and 0.30%, respectively.
%.

14.2%などの結果が得られた。Results such as 14.2% were obtained.

すなわち、上記のようにアークライクよりもスパークラ
イクのスパーク放電の方が、安定して溶融金属中の各成
分を微粒子として蒸発させるのに適している。放電周波
数については、50〜800Hz  までについて調べ
たが、200Hz  以上のように、単位時間轟りの放
電回数が多い方が分析精度の点から有利であった。
That is, as described above, spark-like spark discharge is more suitable than arc-like spark discharge for stably evaporating each component in the molten metal as fine particles. Regarding the discharge frequency, a range of 50 to 800 Hz was investigated, and it was found that a frequency of 200 Hz or higher, which has a large number of discharges per unit time, is advantageous in terms of analysis accuracy.

溶融金属中の成分分析を目的とする本発明においては、
微粒子を単に生成する場合と異カリ、蒸発微粒子を一定
流速の搬送ガスと共に、常時安定して分析装置37へ送
り適寸ねばならず、より効率の良い微粒子の搬送技術が
必要になる。本発明では、溶融金属13表面より蒸発し
て対電極8先17一 端直十方向に立ち昇った微粒子を、周囲への拡散を1E
Jjぎ、 Arガス吹き込み管、5の下端部1oより吹
き出して、微粒子導入管3下端の開口部7へ流れ込むA
rガス流に乗せて迅速に運び去る方法をとった。
In the present invention, which aims at component analysis in molten metal,
Unlike the case where fine particles are simply generated, the evaporated fine particles must be constantly and stably sent to the analyzer 37 with a constant flow rate of carrier gas, and a more efficient fine particle conveying technique is required. In the present invention, the fine particles evaporated from the surface of the molten metal 13 and rising in the vertical direction from one end of the tip 17 of the counter electrode 8 are diffused to the surroundings by 1E.
Ar gas blows out from the lower end 1o of the Ar gas blowing pipe 5 and flows into the opening 7 at the lower end of the particulate introduction pipe 3.
We adopted a method of rapidly transporting it away in the r gas flow.

微粒子が発生する小空間室12は微粒子導入管3の開口
部7以外に出口がないために、 Arガス流に引き込ま
れて、常時一定の希釈倍率をもって導入管3の開口部7
へ送り込まれる。対電極8先端部と溶融金属表面で形成
する放電カラム14の放電を乱さずに、かつ微粒子を安
定して同開口部7へ送り込むだめのArガス流を形成す
るためには、Ar  ガス吹き出し側管5の下端の吹き
出し口1゜は、微粒子導入管3下端の開口部7よりも、
わずかに上部に位置する必要がある。
Since the small space chamber 12 in which the particles are generated has no outlet other than the opening 7 of the particle introducing tube 3, they are drawn into the Ar gas flow and are always passed through the opening 7 of the introducing tube 3 at a constant dilution ratio.
sent to. In order to form an Ar gas flow that stably sends fine particles to the opening 7 without disturbing the discharge of the discharge column 14 formed by the tip of the counter electrode 8 and the surface of the molten metal, it is necessary to The outlet 1° at the lower end of the tube 5 is wider than the opening 7 at the lower end of the particle introduction tube 3.
It should be located slightly at the top.

微粒子導入管3に導入された微粒子は−Arガス流に乗
せられて、絶縁コネクター21によって接続される微粒
子搬送管22を通って、搬送ガス分配装置24に搬送さ
れるが1本発明のように微粒子を対象に分析を行う場合
には、これらの内壁に18− 微粒子を付着残留させないことが重要な問題になる。微
粒子導入管3は、溶融金属の高熱によって加熱されてい
るので、微粒子は利殖しにくくあ1り問題はないが、搬
送管22は距離が長く彦るど。
The particles introduced into the particle introduction tube 3 are carried by the -Ar gas flow and are conveyed to the carrier gas distribution device 24 through the particle transfer tube 22 connected by the insulating connector 21, as in the present invention. When analyzing fine particles, it is important to prevent 18- fine particles from adhering to and remaining on these inner walls. Since the fine particle introduction tube 3 is heated by the high heat of the molten metal, the fine particles are difficult to harvest and there is no problem, but the conveyance tube 22 is long.

温度が低下して付着残留が起り易く力る。その結果、搬
送ガス中の微粒子濃度が変動したり、コンタミネーショ
ンとなって正確な分析値が得られなくなる。
As the temperature drops, adhesive residue tends to occur. As a result, the concentration of particulates in the carrier gas fluctuates and contamination occurs, making it impossible to obtain accurate analytical values.

従って、搬送管22はなるべく小径として搬送ガスの流
速を速くする。図面に示す如く加熱装置23を取り付け
て、常時加熱しておくかあるいは一度付着した微粒子は
、付着後短時間以内では容易に剥離できるので、搬送ガ
スを更に高速で吹き込んで洗浄する方法などを採用した
Therefore, the diameter of the transport pipe 22 is made as small as possible to increase the flow rate of the transport gas. As shown in the drawing, a heating device 23 is installed to heat the surface constantly, or fine particles once attached can be easily peeled off within a short period of time, so a method such as cleaning by blowing carrier gas at a higher speed is adopted. did.

搬送ガス分配装置24は、搬送管22より搬送ガスで送
られてきた微粒子を、一旦小空間部で拡散させ更に均一
化をはかる。プラズマトーチ29へ導入する搬送ガスの
最適流量を得るために、ある一定部分を系外に排出して
搬送ガスの分配を行う。あるいは搬送されてくる間に凝
集が進んで、特に粗大化した粒子を系外に排除して、微
細粒子のみをプラズマトーチ29へ送り込むための分粒
などを行うだめのものである。
The carrier gas distribution device 24 once diffuses the fine particles sent by the carrier gas from the carrier pipe 22 in a small space to further make the particles uniform. In order to obtain the optimum flow rate of the carrier gas introduced into the plasma torch 29, the carrier gas is distributed by discharging a certain portion out of the system. Alternatively, particles that have become particularly coarse due to agglomeration progressing while they are being transported are removed from the system and subjected to particle sizing to send only fine particles to the plasma torch 29.

分配装置24は、外周に加熱装置23を取り付けた小径
の円筒管で、微粒子搬送管22を側壁より挿入して管末
端開口部25を上向きに、微粒子供給管26を2円筒管
の上部より搬送管末端開口部25と一定間隔をもって、
相対するように取り付け1円筒管底部には、流量調節器
28を備えた排出管27を取り付けである。この3本の
管は。
The distribution device 24 is a small-diameter cylindrical tube with a heating device 23 attached to its outer periphery.The particle conveyance tube 22 is inserted through the side wall and the tube end opening 25 is directed upward, and the particle supply tube 26 is conveyed from the top of the two cylindrical tubes. At a constant distance from the tube end opening 25,
A discharge pipe 27 equipped with a flow regulator 28 is mounted on the bottom of the cylindrical tube mounted oppositely. These three tubes.

いずれも1−Omrnφ以下の細管で一粗犬粒子及び余
剰の微粒子及び搬送ガスは、底部排出管27より系外に
排出され、残りの微粒子は一定流量の搬送ガスと共に、
供給管26へ導入される。
Coarse particles, excess particles, and carrier gas are all discharged from the system through the bottom exhaust pipe 27 through thin tubes with a diameter of 1-Omrnφ or less, and the remaining particles are discharged together with a constant flow rate of carrier gas.
It is introduced into the supply pipe 26.

微粒子供給管26は、プラズマ励起発光分光分析装置3
7に接続される。導入された微粒子は図示する如く、微
粒子供給管26.プラズマガス供給管30−冷却ガス供
給管31から成る3重管のプラズマトーチ29に運び込
まれ、高周波発生装置52によって形成される高温のA
rプラズマ部33に達して、励起発光される。励起光は
分光器34で分光され、光電子増倍管等から成る検出器
35゜成分含有率算出装置36によって、各々のスペク
トル線強度が測定され、溶融金属中の各成分含有率を迅
速に求められる。微粒子を励起発光させる分析装置37
としては、高周波誘導結合型発光分光分析装置が最も適
していたが、そのほかの各種アーク放電等のプラズマ励
起発光分光分析装置あるいは原子吸光分析装置などを適
用できる。
The particle supply pipe 26 is connected to the plasma excitation emission spectrometer 3
Connected to 7. The introduced particles are transferred to the particle supply pipe 26, as shown in the figure. The high-temperature A generated by the high-frequency generator 52 is carried into the triple-pipe plasma torch 29 consisting of the plasma gas supply pipe 30 and the cooling gas supply pipe 31.
It reaches the r plasma section 33 and is excited to emit light. The excitation light is separated into spectra by a spectrometer 34, and the intensity of each spectral line is measured by a detector 35 consisting of a photomultiplier tube or the like and a component content calculation device 36 to quickly determine the content of each component in the molten metal. It will be done. Analyzer 37 that excites fine particles to emit light
Although a high-frequency inductively coupled emission spectrometer is most suitable for this purpose, other types of plasma excitation emission spectrometers such as arc discharge or atomic absorption spectrometers can be used.

本発明装置の分析操作について簡単に述べる。The analysis operation of the apparatus of the present invention will be briefly described.

先ず、スラグ遮へい用制火円筒3つを、昇降装置40に
よってスラグ層42を通過して溶融金属13中に下降さ
せる。先端のキャンプ41が溶解して深層部の溶融金属
13が円筒39内に取り入れられる。次に支持架台19
に駆動源20をもって取り付けられた微粒子生成プロー
ブ1を、 Arガス吹き込み管15にArガスを吹き込
みながら、溶融金属13表面に向って下降させる。Ar
ガス吹き出し口10からArガスを吹き出させ、耐火筒
ll内の大気を追いだし々がら1例火筒11下端を溶2
1− 融金属13中に浸漬し、小空間室12を密閉状とする。
First, three slag shielding fire suppressing cylinders are lowered into the molten metal 13 through the slag layer 42 by the lifting device 40. The camp 41 at the tip is melted and the molten metal 13 at the deep layer is taken into the cylinder 39. Next, the support frame 19
The particle generating probe 1 attached with a drive source 20 is lowered toward the surface of the molten metal 13 while blowing Ar gas into the Ar gas blowing tube 15. Ar
Ar gas is blown out from the gas outlet 10, and the lower end of the fire tube 11 is melted 2 while expelling the atmosphere inside the fire tube 11.
1- Immerse in the molten metal 13 and seal the small space chamber 12.

対電極8先端部と溶融金属13表面間は、湯面レベル計
38と」二下位置調節装置20によって、所定の間隔に
自動的に調節され、スパーク放電装置18の操作により
、試料電極17と対電極8間に高電圧をかけてスパーク
放電を飛ばす。
The distance between the tip of the counter electrode 8 and the surface of the molten metal 13 is automatically adjusted to a predetermined distance by the hot water level gauge 38 and the bottom position adjustment device 20, and by operating the spark discharge device 18, the distance between the sample electrode 17 A high voltage is applied between the counter electrode 8 to generate a spark discharge.

蒸発生成した微粒子は微粒子導入管3.搬送管22、ガ
ス分配装置24を経てプラズマトーチ29に送り込まれ
励起発光するが一10秒間程度の積分発光強度値から各
成分含有率を測定する。分析終了後、微粒子生成プロー
ブlのArガス吹込み管15からArガスを高圧で断続
的に吹き込み微粒子搬送管22内壁などに付着した微粒
子を洗い落す。
The evaporated particles are transferred to the particle introduction pipe 3. The gas is fed into a plasma torch 29 via a transport pipe 22 and a gas distribution device 24, and is excited to emit light.The content of each component is measured from the integrated emission intensity value for about 10 seconds. After the analysis is completed, Ar gas is intermittently blown at high pressure from the Ar gas blowing pipe 15 of the particulate generation probe 1 to wash off the particulates adhering to the inner wall of the particulate transport pipe 22, etc.

次に耐火円筒39及び微粒子生成グローブ1を溶融金属
]3よりひき上げ、再び分析する必要が生じた時間に、
先端に新らしいキャップを取り付けた耐火円筒39を次
にプローブlを下降させて、上記操作を繰り返して1分
析を実施する。生成した微粒子の粒径及び粒度分布は、
プラズマ中で励起発光して分析する方法において、特に
定量精度22− に大きな影響を与えるので重要であるが1本発明装置で
、溶鋼を対象に発生させた微粒子は、大略0.1μm 
 J、V、下の極めて微細粒子であり、平均粒径が0.
0511m  の場合、 0.04〜0.06 /rm
  の範囲に約70%以上が入るように粒度分布の幅も
狭く。
Next, at the time when it became necessary to pull up the refractory cylinder 39 and the particulate generating globe 1 from the molten metal and analyze it again,
Next, the probe 1 is lowered into the refractory cylinder 39 with a new cap attached to its tip, and the above operation is repeated to perform one analysis. The particle size and particle size distribution of the generated fine particles are
In the method of analysis using excited light emission in plasma, it is particularly important because it has a large effect on the quantitative accuracy22-1.The fine particles generated in molten steel using the device of the present invention are approximately 0.1 μm in size.
J, V, lower extremely fine particles with an average particle size of 0.
For 0511m, 0.04~0.06/rm
The width of the particle size distribution is also narrow so that about 70% or more falls within the range of .

プラズマ発光分光分析、には最適であった。It was ideal for plasma emission spectroscopy.

以上説明した」:うに本発明によれば、溶融金属試料中
の含有成分をサンプリング等の操作を行わずに一迅速か
つ精度よく直接分析することができ。
As explained above, according to the present invention, components contained in a molten metal sample can be directly analyzed quickly and accurately without performing operations such as sampling.

金属の精煉や製鋼プロセスの操業管理に極めて効果が大
きい。
It is extremely effective for operational management of metal refining and steel manufacturing processes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例装置全体の説明図、第2図は微粒
子生成グローブ先端部の説明図である。 1:微粒子生成プローブ 2:冷却筒      3:微粒子導入管5、]、5 
: A、rガス吹込み管  8:対電極l]−:耐火筒
      12:小空間室13:試料電極     
17:試料電極]8ニスパーク放電、装置 20ニブロ一ブ上下位置調節装置 22:微粒子搬送管   24:搬送ガス分配装置29
:プラズマトーチ 37:プラズマ発光分光分析装置 38:湯面レベル計 39ニスラグ遮へい用耐火円筒
FIG. 1 is an explanatory diagram of the entire apparatus according to an embodiment of the present invention, and FIG. 2 is an explanatory diagram of the tip of the fine particle generating glove. 1: Particle generation probe 2: Cooling tube 3: Particle introduction pipe 5, ], 5
: A, r gas injection pipe 8: Counter electrode l]-: Fireproof cylinder 12: Small space chamber 13: Sample electrode
17: Sample electrode] 8 Varnish spark discharge, device 20 Nibro one vertical position adjustment device 22: Particle transport tube 24: Carrier gas distribution device 29
: Plasma torch 37 : Plasma emission spectrometer 38 : Hot water level meter 39 Fireproof cylinder for Nislag shielding

Claims (1)

【特許請求の範囲】 下端には先端が円謝珍状の丸棒対電極を、溶融金層表面
に対向して垂直に取り付け、その直上部に微粒子導入用
の開口部を設け、上端は微粒子搬送管に接続するととも
に、同対電極の導電体を兼ねる細径で縦長形状の微粒子
導入管、同微粒子導入管の外周に同心円状に設け、かつ
上部には供給口、下端には吐出口を有した不活性ガス吹
込管を介して、同導入管を内包して保持し1周囲に冷却
構造を有した冷却筒、同冷却筒の下部周囲に1分析時に
は下端を溶融金属中に浸漬して、内部に密閉状の小空間
室を形成するように設置した耐火筒から成る微粒子生成
プローブ;」二記微粒子導入管上部を陽極とし、溶融金
属中に浸漬した試料電極を陰極として接続17たスパー
ク放電装置;溶融金属表面に対向し、上記微粒子生成プ
ローブ1− ないしけ同プローブの支持架台に固設した湯面レベル計
の検出信号と連動して、対電極先端部と溶融金属表面間
の電極間隙を所望寸法に制御する働きをもち、同プロー
ブ」一部に取り付けられた上下位置調節装置;  上記
微粒子生成プローブ及び湯面レベル計を内包し、底部に
対象とする溶融金属と同等ないしはより低融点の材質か
ら成るキャンプを取り付けてあり1分析時に溶融金属の
深層部に浸入可能の長さを有して、上下動の1駆動装置
を設備し/こスラグ遮へい用耐火物製円筒;  上記微
粒子導入管上端と接続した微粒子搬送管の末端部、プラ
ズマ発光装置への微粒子供給管の下端部及び余剰搬送ガ
スの排出管をとり付けだ小形状容器から成る搬送ガス分
配装置;  同微粒子供給管の末端、高周波誘導結合型
プラズマ等のプラズマ励起源を有する発光装置1分光器
及び検出器等から成る発光分光分析装置を主体に構成す
ることを特徴とする溶融金属の直接分析装置。
[Scope of Claims] A round bar counter electrode with a circular tip is attached vertically to the lower end facing the surface of the molten gold layer, an opening for introducing fine particles is provided just above the counter electrode, and a fine particle transport pipe is provided at the upper end. A small-diameter, vertically elongated particulate introduction tube that also serves as a conductor for the counter electrode, and a particulate introduction tube arranged concentrically around the outer periphery of the particulate introduction tube, with a supply port at the top and a discharge port at the bottom end. Through an inert gas blowing pipe, a cooling cylinder containing and holding the inlet pipe and having a cooling structure around it, and a cooling cylinder around the lower part of the cooling cylinder, the lower end of which is immersed in molten metal during analysis, A particle generation probe consisting of a refractory tube installed to form a small hermetically sealed chamber; 2. A spark discharge device in which the upper part of the particle introduction tube is used as an anode and the sample electrode immersed in molten metal is connected as a cathode. ; Facing the molten metal surface, the above-mentioned particulate generation probe 1 - In conjunction with the detection signal of the hot water level meter fixed to the supporting frame of the probe, the electrode gap between the tip of the counter electrode and the molten metal surface is adjusted. A vertical position adjustment device that functions to control the desired dimensions and is attached to a part of the same probe; contains the above-mentioned particulate generation probe and surface level gauge, and has a metal with a melting point equal to or lower than that of the target molten metal at the bottom. A refractory cylinder for slag shielding; a refractory cylinder for slag shielding; a refractory cylinder for slag shielding; A carrier gas distribution device consisting of a small container to which is attached an end part of a particulate transport pipe connected to the upper end, a lower end part of a particulate supply pipe to the plasma light emitting device, and a discharge pipe for excess carrier gas; A direct analysis device for molten metal, characterized in that it is mainly composed of an emission spectrometer consisting of a light emitting device having a plasma excitation source such as a high-frequency inductively coupled plasma, a spectrometer, a detector, etc.
JP3077683A 1983-02-28 1983-02-28 Direct analyzer of molten metal in deep layer by fine particle generating plasma emission spectrochemical method Granted JPS59157539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3077683A JPS59157539A (en) 1983-02-28 1983-02-28 Direct analyzer of molten metal in deep layer by fine particle generating plasma emission spectrochemical method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3077683A JPS59157539A (en) 1983-02-28 1983-02-28 Direct analyzer of molten metal in deep layer by fine particle generating plasma emission spectrochemical method

Publications (2)

Publication Number Publication Date
JPS59157539A true JPS59157539A (en) 1984-09-06
JPH0149891B2 JPH0149891B2 (en) 1989-10-26

Family

ID=12313082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3077683A Granted JPS59157539A (en) 1983-02-28 1983-02-28 Direct analyzer of molten metal in deep layer by fine particle generating plasma emission spectrochemical method

Country Status (1)

Country Link
JP (1) JPS59157539A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0194492A2 (en) * 1985-03-13 1986-09-17 Allied Corporation In-situ analysis of a liquid conductive material
JPH02183144A (en) * 1989-01-09 1990-07-17 Nippon Steel Corp Direct analysis on molten metal
JPH03261847A (en) * 1990-03-12 1991-11-21 Nippon Steel Corp Fine particle forming probe for directly analyzing molten metal

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0194492A2 (en) * 1985-03-13 1986-09-17 Allied Corporation In-situ analysis of a liquid conductive material
US4615225A (en) * 1985-03-13 1986-10-07 Allied Corporation In-situ analysis of a liquid conductive material
EP0194492A3 (en) * 1985-03-13 1987-06-16 Allied Corporation In-situ analysis of a liquid conductive material
JPH02183144A (en) * 1989-01-09 1990-07-17 Nippon Steel Corp Direct analysis on molten metal
JPH03261847A (en) * 1990-03-12 1991-11-21 Nippon Steel Corp Fine particle forming probe for directly analyzing molten metal

Also Published As

Publication number Publication date
JPH0149891B2 (en) 1989-10-26

Similar Documents

Publication Publication Date Title
US3521959A (en) Method for direct spectrographic analysis of molten metals
JPS6211130A (en) Field analysis of liquefied conductive material
US3602595A (en) Method of and apparatus for generating aerosols by electric arc
JPH0151939B2 (en)
JPS59157539A (en) Direct analyzer of molten metal in deep layer by fine particle generating plasma emission spectrochemical method
JPH0148499B2 (en)
JPH0149892B2 (en)
JPH0148978B2 (en)
JPH0148498B2 (en)
JPS59210330A (en) Plasma emission spectrochemical analyzer for carrying fine particle for long distance of automatic controlling type of electrode interval in molten metal
JPS6220497B2 (en)
JP3736427B2 (en) Method and apparatus for analyzing components in molten metal
JPS6214774B2 (en)
JPS5981540A (en) Direct emission spectrochemical analyzer of molten metal
JPH035548B2 (en)
JPS6220496B2 (en)
JPS6214773B2 (en)
JPS60219538A (en) Inert gas blow-in type fine particle recovering and molten metal analytical method and apparatus therefor
JPS6220498B2 (en)
JPH07128237A (en) Method and device for rapidly analyzing steel component
EP0193821A2 (en) In-situ analysis of a liquid conductive material
JPH0215816B2 (en)
JPS63243872A (en) Method and instrument for direct analysis of molten metal by formation of fine particle by ultrasonic oscillation
JPH0238901B2 (en)
JPH0215817B2 (en)