JPS63243648A - Heat pump air conditioner - Google Patents

Heat pump air conditioner

Info

Publication number
JPS63243648A
JPS63243648A JP62076916A JP7691687A JPS63243648A JP S63243648 A JPS63243648 A JP S63243648A JP 62076916 A JP62076916 A JP 62076916A JP 7691687 A JP7691687 A JP 7691687A JP S63243648 A JPS63243648 A JP S63243648A
Authority
JP
Japan
Prior art keywords
compressor
heat exchanger
heating operation
defrosting operation
defrosting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62076916A
Other languages
Japanese (ja)
Other versions
JPH0752031B2 (en
Inventor
Eiji Nakasumi
英二 中角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62076916A priority Critical patent/JPH0752031B2/en
Publication of JPS63243648A publication Critical patent/JPS63243648A/en
Publication of JPH0752031B2 publication Critical patent/JPH0752031B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分舒 本発明は、空気を熱源とするヒートポンプ式空調機に関
するもので、詳しくは低外気時に室外熱交換器に付着す
る霜を融解する除霜制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Industrial Application The present invention relates to a heat pump type air conditioner that uses air as a heat source, and more specifically to a defrosting control device that melts frost that adheres to an outdoor heat exchanger when the outside air temperature is low. It is related to.

従来の技術 従来空気熱源ヒートポンプ式空調機の室外熱交換器の除
霜方式は、大半が四方弁を切換えて冷房サイクルとし、
室外熱交換器を凝縮器、室内熱交換器を蒸発器とする逆
サイクル除霜方式で、この時コールドドラフト防止の為
に、室内ファンを停止していた。この方式では基本的に
冷媒循環が少なく圧縮機入力の増大がそれほど期待でき
ないので、除霜時間が長くなること、並びに除霜運転中
の数分間は室内ファンが停止するので暖房感が欠如し、
快適性が損なわれること、さらには除霜運転終了後の四
方弁か切換わって暖房運転に復帰してからも室内熱交換
器の温度が上昇するまでに時間を要するなど使用者から
すれば満足できるものではなかった。
Conventional technology Most defrosting methods for outdoor heat exchangers in conventional air source heat pump air conditioners use a cooling cycle by switching a four-way valve.
It uses a reverse cycle defrosting system in which the outdoor heat exchanger is used as a condenser and the indoor heat exchanger is used as an evaporator, and the indoor fan was stopped at this time to prevent cold drafts. In this method, there is basically little refrigerant circulation and it is not possible to expect much increase in compressor input, so the defrosting time becomes longer and the indoor fan stops for several minutes during defrosting operation, resulting in a lack of heating sensation.
From the user's point of view, comfort is impaired, and even after the four-way valve is switched to return to heating operation after defrosting operation, it takes time for the temperature of the indoor heat exchanger to rise. It wasn't possible.

近年このような欠点を有する逆サイクル除霜方式に代わ
って、除霜運転時にも四方弁は暖房運転時のままとし、
圧縮機からの吐出ガスの一部を室内熱交換器に流して若
干の暖房能力を維持しながら、吐出ガスの残りを室外熱
交換器の入口に導き除霜を行なうホットガスバイパス除
霜方式が提案されている(例えば、「日本冷凍協会講演
論文集」、5ss−tt、P53)。
In recent years, in place of the reverse cycle defrosting system which has these drawbacks, the four-way valve is kept as it is in heating operation even during defrosting operation.
A hot gas bypass defrosting system allows part of the discharged gas from the compressor to flow through the indoor heat exchanger to maintain some heating capacity, while the rest of the discharged gas is guided to the inlet of the outdoor heat exchanger for defrosting. It has been proposed (for example, "Japan Refrigeration Association Lecture Proceedings", 5ss-tt, P53).

以下図面を参照しながら上述の従来のヒートポンプ式空
調機の一例について説明する。
An example of the above-mentioned conventional heat pump type air conditioner will be described below with reference to the drawings.

第3図は従来のヒートポンプ式空調機の冷凍サイクル図
を示すものである。同図において、1は容量制御可能な
周波数可変圧縮機、2は四方弁、3は室内熱交換器、4
は電磁力で弁開度を可変できる電動膨張弁、5は室外熱
交換器、6はバイパス回Fllr、7はバイパス回路に
設けられた開閉弁である。通常の暖房運転時には二方弁
7は閉の状態で暖房サイクルを形成するが、低外気時に
室外熱交換器5に着霜が生じ、暖房能力が低下して除霜
運転が必要になると二方弁7を開くと同時に圧縮機1の
運転周波数を最大運転周波数まで一気に上げ高温の吐出
ガスの一部をホットガスバイパス回路を経て室外熱交換
器5の出口側へ導く。同時に高温の吐出ガスの残りを暖
房運転時と同様に四方弁2、室内熱交換器3、電磁膨張
弁4と流し暖房運転を継続して行ない、室外熱交換器5
の出口側にて高圧側で分岐した冷媒と合流させる。上記
構成により、冷媒は室外熱交換器5を除霜した後四方弁
2を経て周波数可変圧縮機1に戻り除霜サイクルを完結
する。
FIG. 3 shows a refrigeration cycle diagram of a conventional heat pump type air conditioner. In the figure, 1 is a variable frequency compressor whose capacity can be controlled, 2 is a four-way valve, 3 is an indoor heat exchanger, and 4 is a variable frequency compressor with variable capacity control.
5 is an outdoor heat exchanger, 6 is a bypass circuit FLLr, and 7 is an on-off valve provided in the bypass circuit. During normal heating operation, the two-way valve 7 is closed to form a heating cycle, but when frost forms on the outdoor heat exchanger 5 when the outside air temperature is low, the heating capacity decreases and a defrosting operation becomes necessary. At the same time as the valve 7 is opened, the operating frequency of the compressor 1 is suddenly raised to the maximum operating frequency, and a portion of the high temperature discharged gas is guided to the outlet side of the outdoor heat exchanger 5 via the hot gas bypass circuit. At the same time, the remainder of the high-temperature discharged gas is passed through the four-way valve 2, the indoor heat exchanger 3, and the electromagnetic expansion valve 4 in the same way as during the heating operation, and the heating operation continues.
At the outlet side of the refrigerant, the refrigerant is joined with the refrigerant branched on the high pressure side. With the above configuration, the refrigerant defrosts the outdoor heat exchanger 5 and then returns to the variable frequency compressor 1 via the four-way valve 2 to complete the defrosting cycle.

発明が解決しようとする問題点 しかしながら上記構成では以下のような問題点があった
。第4図は除霜運転直前、除霜運転中、除霜終了後の圧
縮機1の運転周波数を示したものである。同図に示すよ
うに、除霜運転が開始されると同時に圧縮機1の運転周
波数は除霜運転開始直前の運転周波数から一気に最大運
転周波数まで上がる。同時に二方弁7が開き高温の吐出
ガスの一部がホットガスバイパス回路を経て室外熱交換
器5の出口側へバイパスされるため、第5図に示すよう
に一瞬に高低圧差がなくなり、その結果冷媒が低圧発泡
し圧縮機オイルが冷媒とともに圧縮機1の外へ吐出され
オイル面が急激に低下するが、それと同時に圧縮機1の
周波数も一気に最大周波数まで上がるためさらにオイル
レベルが減少し、圧縮機の寿命及び信頼性が著しく低下
する欠点を有している。さらに、除霜運転終了間ぎわに
除霜運転終了を早めるため圧縮機1の周波数が最大周波
数から定格周波数(通常60 Hz付近)まで落ちる際
高低圧差が縮まるため、前記と同様冷媒が低圧発泡し圧
縮機オイルが冷媒とともに圧縮機1の外へ吐出されオイ
ル面が急激に低下するが、それと同時に除霜運転終了後
、再び圧縮機1の運転周波数を最大周波数付近まで上げ
るためさらにオイルレベルが減少し圧縮機の寿命及び信
頼性が著しく低下する欠点を有していた。
Problems to be Solved by the Invention However, the above configuration has the following problems. FIG. 4 shows the operating frequency of the compressor 1 immediately before the defrosting operation, during the defrosting operation, and after the defrosting operation is completed. As shown in the figure, at the same time as the defrosting operation is started, the operating frequency of the compressor 1 increases at once from the operating frequency immediately before starting the defrosting operation to the maximum operating frequency. At the same time, the two-way valve 7 opens and a part of the high-temperature discharged gas is bypassed to the outlet side of the outdoor heat exchanger 5 through the hot gas bypass circuit, so the high-low pressure difference instantly disappears as shown in Figure 5. As a result, the refrigerant foams at low pressure and the compressor oil is discharged to the outside of the compressor 1 together with the refrigerant, causing the oil level to drop rapidly, but at the same time, the frequency of the compressor 1 also rises to its maximum frequency, causing the oil level to further decrease. This has the disadvantage that the life and reliability of the compressor are significantly reduced. Furthermore, when the frequency of the compressor 1 drops from the maximum frequency to the rated frequency (usually around 60 Hz) to hasten the end of the defrosting operation, the difference in high and low pressures decreases, so the refrigerant foams at a low pressure and is compressed as described above. The machine oil is discharged out of the compressor 1 along with the refrigerant, and the oil level drops rapidly, but at the same time, after the defrosting operation is finished, the operating frequency of the compressor 1 is raised again to around the maximum frequency, so the oil level decreases further. This had the disadvantage that the life and reliability of the compressor were significantly reduced.

本発明は上記問題に鑑み、空気調和機の除霜時の圧縮機
オイルレベルを確保し圧縮機信頼性の向上を目的とする
ものである。
In view of the above problems, the present invention aims to improve compressor reliability by ensuring a compressor oil level during defrosting of an air conditioner.

問題点を解決するための手段 上記問題を解決するために本発明のヒートポンプ式空気
調和機は、圧縮機、西方弁、室内熱交換器、絞り量を可
変とした絞り装置、室外熱交換器等を順次環状に配管で
連結して冷凍サイクルを構成し、暖房運転時に高圧とな
る前記圧縮機より前記室内熱交換器に至る配管と、同じ
く暖房運転時に低圧となる前記室外熱交換器より圧縮機
に至る配管とを結ぶバイパス回路を形成し、前記バイパ
ス回路に1閉弁を設けて、前記室外熱交換器の除霜運転
開始時には前記絞り装置の絞り量を暖房運転時の絞り量
よりも小さくし、さらに前記開閉弁を開とし、除霜時の
圧縮機の周波数を段階的に上昇せしめ、また除霜運転終
了時に一定時間圧縮機を停止後再び暖房運転をするよう
にしたものである。
Means for Solving the Problems In order to solve the above problems, the heat pump type air conditioner of the present invention includes a compressor, a western valve, an indoor heat exchanger, a throttling device with variable throttling amount, an outdoor heat exchanger, etc. A refrigeration cycle is constructed by sequentially connecting the pipes in an annular manner through piping, with piping leading from the compressor to the indoor heat exchanger, which is at high pressure during heating operation, and piping from the outdoor heat exchanger, which is at low pressure during heating operation, to the compressor. A bypass circuit is formed to connect the piping leading to the pipe, and a single closing valve is provided in the bypass circuit, and when the defrosting operation of the outdoor heat exchanger starts, the throttling amount of the throttling device is made smaller than the throttling amount during the heating operation. Furthermore, the on-off valve is opened, the frequency of the compressor is increased stepwise during defrosting, and when the defrosting operation is completed, the compressor is stopped for a certain period of time and then the heating operation is started again.

作  用 本発明は上記構成により、除霜運転開始時圧縮機運転周
波数を一気に最高周波数まで上げず段階的に上げて行く
ため、除霜開始直後の急激なオイル飛び出しを防ぐこと
ができ、かつ圧縮機内の液レベルも確保できる。さらに
、除霜運転終了と同時に圧縮機運転周波数を最大周波数
付近まで上げずに一端一定時間圧縮機を停止後再び暖房
運転を行なうため、除霜運転終了後の急激なオイル飛び
出しを防ぐことができ、圧縮機寿命及び信頼性の向上を
因ることができる。
Effect: With the above configuration, the present invention does not raise the compressor operating frequency all at once to the maximum frequency when defrosting operation starts, but increases it in stages, so it is possible to prevent sudden oil splashing immediately after defrosting starts, and to improve compression. The liquid level inside the aircraft can also be ensured. Furthermore, at the same time as the defrosting operation ends, the compressor operating frequency is not raised to near the maximum frequency, but the compressor is stopped for a certain period of time and then the heating operation is restarted, which prevents sudden oil splashing after the defrosting operation is completed. This can result in improved compressor life and reliability.

実施例 以下本発明の一実施例のヒートポンプ式空気調和機につ
いて図面を参照しながら説明する。ここで冷凍サイクル
については従来例と同じであるため第3図にて説明する
。同図において、1は圧縮機、2は四方弁、3は室内熱
交換器、4は電磁力で弁開度を可変できる電動膨張弁5
は室外熱交換器、6はバイパス回路、7はバイパス回路
に設けられた開閉弁8は室内熱交換器3と熱交換した空
気を室内に吹き出す室内ファン、9はこの室内ファンを
駆動するトランジスタモータ等の速度可変の駆動モータ
である。また、10は室内熱交換器5の温度を検知する
室内温度検出素子、11は室外熱交換器5の温度を検知
する室外温度検出素子であり、12はこの室内温度検出
素子10.室外温度検出素子11の温度記号を受けて電
動膨張弁4、開閉弁7、駆動モータ9を制御する制御回
路である。そして、圧縮機1、四方弁2、室内熱交換器
3、電動膨張弁4、室外熱交換器5を順次環状に連結し
、さらに圧縮機1の吐出側と、室外熱交換器5の暖房運
転時の出口側とを結び、その途中に開閉弁7を備えたバ
イパス回路6を設けたものである。
EXAMPLE Hereinafter, a heat pump type air conditioner according to an example of the present invention will be described with reference to the drawings. Since the refrigeration cycle is the same as the conventional example, it will be explained with reference to FIG. 3. In the figure, 1 is a compressor, 2 is a four-way valve, 3 is an indoor heat exchanger, and 4 is an electric expansion valve 5 whose valve opening can be varied by electromagnetic force.
6 is an outdoor heat exchanger, 6 is a bypass circuit, 7 is an on-off valve provided in the bypass circuit, and 8 is an indoor fan that blows the air that has exchanged heat with the indoor heat exchanger 3 into the room. 9 is a transistor motor that drives this indoor fan. This is a variable speed drive motor. Further, 10 is an indoor temperature detection element that detects the temperature of the indoor heat exchanger 5, 11 is an outdoor temperature detection element that detects the temperature of the outdoor heat exchanger 5, and 12 is the indoor temperature detection element 10. This is a control circuit that receives the temperature symbol of the outdoor temperature detection element 11 and controls the electric expansion valve 4, the on-off valve 7, and the drive motor 9. Then, the compressor 1, four-way valve 2, indoor heat exchanger 3, electric expansion valve 4, and outdoor heat exchanger 5 are sequentially connected in an annular manner, and the discharge side of the compressor 1 and the outdoor heat exchanger 5 are operated for heating. A bypass circuit 6 with an on-off valve 7 is provided in the middle of the bypass circuit.

次に、以上のように構成されたヒートポンプ式空調機に
ついてその動作を説明する。
Next, the operation of the heat pump air conditioner configured as described above will be explained.

通常の暖房運転時には開閉弁子は閉の状態となっており
、冷媒は圧縮機1、四方弁2、室内熱交換器3、電動膨
張弁4、室外熱交換器5、四方弁2と流れて圧縮機1に
戻り暖房サイクルを形成し、バイパス回路6には冷媒は
流れない。
During normal heating operation, the on-off valve is closed, and the refrigerant flows through the compressor 1, four-way valve 2, indoor heat exchanger 3, electric expansion valve 4, outdoor heat exchanger 5, and four-way valve 2. The refrigerant returns to the compressor 1 to form a heating cycle, and no refrigerant flows through the bypass circuit 6.

ところが低外気温時には、室外熱交換器5に着霜が生じ
、室外温度検出素子11の温度信号が設定値まで下がる
と制御回路12が除霜開始指令を発し、四方弁2はその
ままの状態で開閉弁7を開とし、高温の吐出ガスを点a
′で分岐させ、一部はそのまま室内熱交換器3へ流し、
残りは室外熱交換器5の出口側へ導くとともに、電動膨
張弁4の弁開度を全開気味にすることで絞り量をほぼゼ
ロとし、駆動モータ9の回転数すなわち室内ファン8の
回転数を暖房運転時より低下させて室内へ吹き出す風量
を低下させて除霜を開始する。
However, when the outside temperature is low, frost forms on the outdoor heat exchanger 5, and when the temperature signal of the outdoor temperature detection element 11 drops to the set value, the control circuit 12 issues a command to start defrosting, and the four-way valve 2 remains in the same state. Open the on-off valve 7 and turn the high temperature discharge gas on to point a.
', and part of the water is directly sent to the indoor heat exchanger 3.
The remaining part is guided to the outlet side of the outdoor heat exchanger 5, and the valve opening of the electric expansion valve 4 is slightly opened to make the throttle amount almost zero, and the rotation speed of the drive motor 9, that is, the rotation speed of the indoor fan 8, is reduced. Defrosting begins by lowering the air volume blown into the room compared to during heating operation.

第1図は、第3図に示すヒートポンプ式空調機の一実施
例の除霜運転時におけるサイクルをモリエル線図に示し
たものである。
FIG. 1 is a Mollier diagram showing a cycle during defrosting operation of an embodiment of the heat pump air conditioner shown in FIG.

同図に示す記号暑′〜e′は第3図に示したものと対応
する。すなわち除霜運転時に点a′からそのまま室内熱
交換器3へ流した高温の吐出ガスは、電動膨張弁4の弁
開度が全開気味になっているので比較的低い温度(約3
0〜40°C)で凝縮放熱し点b′に移り室内ファンを
低速回転させて暖房運転継続可能となる。途中の配管や
電動膨張弁4の若干の絞りで減圧して点C′となり室外
熱交換器5に流入して、さらに霜の融解温度である約0
’Cで凝縮放熱して除霜し点♂に至る。この時の除霜に
利用する冷媒のエンタルピ差はΔIdef= Ic’ 
−1d’となり、室外熱交換器5への流入冷媒状態は点
C′に示すように既に二相となっている。ちなみに室内
暖房に利用する冷媒のエンタルピ差は途中の熱ロスを無
視すれば1m’ −lb’となる。
Symbols '-e' shown in the figure correspond to those shown in FIG. That is, during defrosting operation, the high-temperature discharge gas that flows directly from point a' to the indoor heat exchanger 3 has a relatively low temperature (approximately 3
It condenses and radiates heat at a temperature of 0 to 40 degrees Celsius), moves to point b', rotates the indoor fan at low speed, and continues heating operation. The pressure is reduced by a slight restriction in the piping and the electric expansion valve 4 on the way, and the pressure reaches point C', which flows into the outdoor heat exchanger 5, and then the temperature reaches about 0, which is the melting temperature of frost.
'C condenses and radiates heat to defrost and reach point ♂. The enthalpy difference of the refrigerant used for defrosting at this time is ΔIdef=Ic'
-1d', and the state of the refrigerant flowing into the outdoor heat exchanger 5 is already two-phase as shown at point C'. By the way, the enthalpy difference of the refrigerant used for indoor heating is 1 m'-lb' if heat loss during the heating is ignored.

一方残りの高温の吐出ガスは室外熱交換器5の出口側に
導かれるのではマ エンタルピ変化後、主回路を流れて
きた液分の多い冷媒と合流し混合して点e′となり、圧
縮機1に吸入される。この点e′は二相状態にあるもの
の冷媒乾き度x/e、が大きく液分が少ないので液戻り
や液圧縮を軽減または実質的に回避することができる。
On the other hand, the remaining high-temperature discharged gas is led to the outlet side of the outdoor heat exchanger 5. After the maenthalpy change, it joins and mixes with the liquid-rich refrigerant that has flowed through the main circuit to form a point e', and the compressor 1 is inhaled. At this point e', although the refrigerant is in a two-phase state, the dryness x/e of the refrigerant is large and the liquid content is small, so liquid return and liquid compression can be reduced or substantially avoided.

さらにまた除霜運転時に室外熱交換器5へ流入している
冷媒は基本的に二相状態であるため冷媒温度つまり室外
熱交換器5の表面温度も一定になり、同表面温度にむら
がないため均一除霜が実現できる。
Furthermore, since the refrigerant flowing into the outdoor heat exchanger 5 during defrosting operation is basically in a two-phase state, the refrigerant temperature, that is, the surface temperature of the outdoor heat exchanger 5, is also constant, and there is no unevenness in the surface temperature. Therefore, uniform defrosting can be achieved.

第2図に除霜運転直前、除霜運転中、除霜終了後の圧縮
機1の運転周波数を示す。同図に示すように、除霜開始
と同時に圧縮機1の周波数を除霜開始直前の運転周波数
から一気に最大運転周波数まで上げずに段階的に上昇せ
しめている。その結果除霜開始直後に二方弁7が開き一
瞬に高低圧差がなくなり冷媒が低圧発泡し、圧縮機オイ
ルが冷媒とともに圧縮機1の外へ吐出されオイル面が急
激に低下するが、それと同時に圧縮機1の周波数は一気
に最大周波数まで上がらず段階的に上昇するためオイル
面のそれ以上の減少を防ぐことができ、圧縮機の信頼性
を著しく向上することができる。なお、第2図に示した
Δ10及びΔfは実験結果ではΔ10≠20〜30秒、
Δf≠5Hχが望ましい。さらに、除霜運転終了と同時
に圧縮機1の運転周波数を最大周波数付近まで上げずに
一端一定時間圧縮機1を停止後再び暖房運転を行なうた
め、除霜運転終了後の急激なオイ・ル飛び出しを防ぐこ
とができ、圧縮機寿命及び信頼性の向上を図ることがで
きる。なお第2図に示したΔt、は実験結果では最少3
0秒程度である。また、本発明は絞り装置の最良の形態
として電磁力を駆動源として弁一度を可変とした電動膨
張弁4を用いて説明したが、キャピラリ等の絞りを複数
個用いて構成し、適宜切換により制御してもよく、ざら
に弁開度を可変する手段としてバイメタル若しくは形状
記憶合金等を用いてもよい。
FIG. 2 shows the operating frequency of the compressor 1 immediately before the defrosting operation, during the defrosting operation, and after the defrosting operation is completed. As shown in the figure, simultaneously with the start of defrosting, the frequency of the compressor 1 is raised stepwise from the operating frequency immediately before the start of defrosting, rather than being raised all at once to the maximum operating frequency. As a result, the two-way valve 7 opens immediately after the start of defrosting, the high-low pressure difference disappears instantly, the refrigerant foams at low pressure, the compressor oil is discharged out of the compressor 1 together with the refrigerant, and the oil level drops rapidly, but at the same time Since the frequency of the compressor 1 does not increase all at once to the maximum frequency, but increases in stages, further reduction in the oil level can be prevented, and the reliability of the compressor can be significantly improved. In addition, Δ10 and Δf shown in Fig. 2 are as follows from the experimental results: Δ10≠20-30 seconds,
It is desirable that Δf≠5Hχ. Furthermore, the operating frequency of the compressor 1 is not raised to near the maximum frequency at the same time as the defrosting operation is completed, and the compressor 1 is stopped for a certain period of time and then the heating operation is performed again, so that oil suddenly jumps out after the defrosting operation is completed. This makes it possible to improve compressor life and reliability. Note that Δt shown in Figure 2 is at least 3 according to experimental results.
It is about 0 seconds. Furthermore, although the present invention has been described using an electric expansion valve 4 which uses electromagnetic force as a driving source and whose valve speed is variable as the best mode of the throttle device, it may be configured using a plurality of throttles such as capillaries, and can be changed as needed. Alternatively, a bimetal, a shape memory alloy, or the like may be used as means for roughly varying the valve opening degree.

発明の効果 以上のように本発明のヒートポンプ式空気調和機は、圧
縮機、四方弁、室内熱交換器、絞り量を可変とした第1
の絞り装置、室外熱交換器等を順次環状に配管で連結し
て冷凍サイクルを溝成し、暖房運転時に高圧となる前記
圧縮機より前記室内熱交換器に至る配管と、同じく暖房
運転時に低圧となる前記室外熱交換器より圧縮機に至る
配管とを結ぶバイパス回路を形成し、前記バイパス回路
に開閉弁を設けて前記室外熱交換器の除霜運転開始時に
は前記絞り装置の絞り量を暖房運転時の絞り量よりも小
さくし、さらに前記開閉弁を開とし、また除霜運転終了
時に一定時間圧縮機を停止後再び暖房運転を行なうよう
にしたもので、除霜運転時にも室内熱交換器に高温の吐
出ガスの一部を流して暖房運転継続可能とし、圧縮機へ
の多量の液戻りや液圧縮を軽減し、かつ圧縮機内のオイ
ルレベルを確保でき、長期にわたって信頼性が高い除霜
運転を行なうことができる等、種々の利点を育するもの
である。
Effects of the Invention As described above, the heat pump type air conditioner of the present invention has a compressor, a four-way valve, an indoor heat exchanger, and a first air conditioner with a variable throttle amount.
A refrigeration cycle is formed by sequentially connecting a throttling device, an outdoor heat exchanger, etc. with piping in a ring shape, and the piping from the compressor to the indoor heat exchanger, which is at high pressure during heating operation, and the piping from the indoor heat exchanger, which is at low pressure during heating operation, A bypass circuit is formed from the outdoor heat exchanger to a pipe leading to the compressor, and an on-off valve is provided in the bypass circuit, so that when the outdoor heat exchanger starts defrosting operation, the throttling amount of the throttling device is adjusted to the heating temperature. The amount of throttling is smaller than that during operation, the on-off valve is opened, and the compressor is stopped for a certain period of time at the end of defrosting operation and heating operation is resumed. A part of the high-temperature discharged gas is allowed to flow through the compressor to enable continued heating operation, reducing a large amount of liquid returning to the compressor and liquid compression, and ensuring the oil level in the compressor, resulting in highly reliable pumping over a long period of time. It has various advantages such as being able to perform frost operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例におけるヒートポンプ式空気
調和機の除霜運転時のサイクルをモリエル線図上にあら
れした特性図、第2図は同空気調和機の除霜運転時の周
波数変化を示す説明図、第3図は冷凍サイクル図、第4
図は従来の除霜運転時の周波数変化を示す説明図、第5
図は除霜運転時の高低圧圧力変化を示す説明図である。 1・・・・・・圧縮機、2・・・・・・四方弁、3・・
・・・・室内熱交換器、4・・・・・電動膨張弁、5・
・・・・・室外熱交換器、6・・・・・バイパス回路。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 ieL’  jD’ 第2図 11、、、   Z; 一一一一 第3図 何 5 図 埒開
Fig. 1 is a characteristic diagram plotting the cycle during defrosting operation of a heat pump type air conditioner in an embodiment of the present invention on a Mollier diagram, and Fig. 2 is a frequency change during defrosting operation of the air conditioner. Figure 3 is a refrigeration cycle diagram, Figure 4 is an explanatory diagram showing
The figure is an explanatory diagram showing frequency changes during conventional defrosting operation.
The figure is an explanatory diagram showing changes in high and low pressure during defrosting operation. 1... Compressor, 2... Four-way valve, 3...
...Indoor heat exchanger, 4...Electric expansion valve, 5.
...Outdoor heat exchanger, 6...Bypass circuit. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure L'jD' Figure 2 11, Z;

Claims (2)

【特許請求の範囲】[Claims] (1)周波数可変形圧縮機、四方弁、室内熱交換器、暖
房運転時と除霜運転時に絞り量の異なる絞り装置、室外
熱交換器等を順次環状に配管で連結して、冷凍サイクル
を構成し、暖房運転時に高圧となる前記圧縮機より前記
室内熱交換器に至る配管と、同じく暖房運転時に低圧と
なる前記室外熱交換器より圧縮機に至る配管とを結ぶバ
イパス回路を形成し、前記バイパス回路に開閉弁を設け
て、前記室外熱交換器の除霜運転開始時には、前記絞り
装置の絞り量を暖房運転時の絞り量よりも小さくして、
前記開閉弁を開とし、さらに室内ファンの風量を暖房運
転時より低下させ、除霜運転時には前記室内ファンの風
量を変化させるヒートポンプ式空気調和機。
(1) A variable frequency compressor, a four-way valve, an indoor heat exchanger, a throttling device with different throttling amounts during heating operation and defrosting operation, an outdoor heat exchanger, etc. are sequentially connected in a circular manner with piping to form a refrigeration cycle. forming a bypass circuit connecting piping from the compressor to the indoor heat exchanger that becomes high pressure during heating operation and piping from the outdoor heat exchanger to the compressor that also becomes low pressure during heating operation, An on-off valve is provided in the bypass circuit, and when the outdoor heat exchanger starts defrosting operation, the throttling amount of the throttling device is made smaller than the throttling amount during heating operation,
The heat pump type air conditioner opens the on-off valve, lowers the air volume of the indoor fan compared to during heating operation, and changes the air volume of the indoor fan during defrosting operation.
(2)除霜運転時、周波数可変圧縮機の周波数を段階的
に上昇せしめ、除霜運転終了時に一定時間圧縮機を停止
後再び暖房運転を行なうようにした周波数可変圧縮機を
使用した特許請求の範囲第1項記載のヒートポンプ式空
気調和機。
(2) A patent claim using a variable frequency compressor that increases the frequency of the variable frequency compressor in stages during defrosting operation, and when the defrosting operation ends, the compressor is stopped for a certain period of time and then heating operation is performed again. A heat pump air conditioner according to item 1.
JP62076916A 1987-03-30 1987-03-30 Heat pump type air conditioner Expired - Fee Related JPH0752031B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62076916A JPH0752031B2 (en) 1987-03-30 1987-03-30 Heat pump type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62076916A JPH0752031B2 (en) 1987-03-30 1987-03-30 Heat pump type air conditioner

Publications (2)

Publication Number Publication Date
JPS63243648A true JPS63243648A (en) 1988-10-11
JPH0752031B2 JPH0752031B2 (en) 1995-06-05

Family

ID=13619012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62076916A Expired - Fee Related JPH0752031B2 (en) 1987-03-30 1987-03-30 Heat pump type air conditioner

Country Status (1)

Country Link
JP (1) JPH0752031B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005164209A (en) * 2003-12-05 2005-06-23 Denso Corp Heat-pump water heater
CN104296434A (en) * 2014-10-29 2015-01-21 珠海格力电器股份有限公司 Defrosting control method and system for air conditioner
CN111322723A (en) * 2020-03-11 2020-06-23 广东美的暖通设备有限公司 Multi-split air conditioning system, control method and control device thereof, and storage medium
CN112460848A (en) * 2020-11-24 2021-03-09 无锡同方人工环境有限公司 Air source heat pump unit with heat pipe defrosting function and defrosting method thereof
CN115978718A (en) * 2022-12-06 2023-04-18 珠海格力电器股份有限公司 Defrosting control method and device, electronic equipment and storage medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018029763A1 (en) 2016-08-08 2018-02-15 三菱電機株式会社 Air conditioner

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58184168U (en) * 1982-05-31 1983-12-07 ダイキン工業株式会社 Heat pump type refrigeration equipment
JPS63129238A (en) * 1986-11-18 1988-06-01 Matsushita Electric Ind Co Ltd Defrosting control device for air conditioner of heat pump type

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58184168U (en) * 1982-05-31 1983-12-07 ダイキン工業株式会社 Heat pump type refrigeration equipment
JPS63129238A (en) * 1986-11-18 1988-06-01 Matsushita Electric Ind Co Ltd Defrosting control device for air conditioner of heat pump type

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005164209A (en) * 2003-12-05 2005-06-23 Denso Corp Heat-pump water heater
CN104296434A (en) * 2014-10-29 2015-01-21 珠海格力电器股份有限公司 Defrosting control method and system for air conditioner
CN111322723A (en) * 2020-03-11 2020-06-23 广东美的暖通设备有限公司 Multi-split air conditioning system, control method and control device thereof, and storage medium
CN112460848A (en) * 2020-11-24 2021-03-09 无锡同方人工环境有限公司 Air source heat pump unit with heat pipe defrosting function and defrosting method thereof
CN115978718A (en) * 2022-12-06 2023-04-18 珠海格力电器股份有限公司 Defrosting control method and device, electronic equipment and storage medium

Also Published As

Publication number Publication date
JPH0752031B2 (en) 1995-06-05

Similar Documents

Publication Publication Date Title
JPS63163751A (en) Operation control method of heat pump type air conditioner
JPH08110117A (en) Air conditioner control device and method thereof
JPS63243648A (en) Heat pump air conditioner
JPH0527018B2 (en)
JP2002098451A (en) Heat pump type air conditioner
JPH0823427B2 (en) Defrost control device for heat pump type air conditioner
JPH0413037A (en) How to control an air conditioner
JPS62233652A (en) Heat pump air conditioner
JP2007051839A (en) Air conditioner
JP2007247997A (en) Air conditioner
KR100438272B1 (en) Control system of Air conditioner
JPS62237260A (en) Defrosting control method for heat pump air conditioners
JPH04136669A (en) Multi-room air conditioner
JPS6029560A (en) Heat pump type air conditioner
JPS6346350B2 (en)
JPS62158951A (en) Heat pump air conditioner
JPS61256160A (en) Heat pump type air conditioner
JP2001027452A (en) Refrigerant circulating heat transfer system
JPS6252381A (en) Heat pump type air conditioner
JPS63148058A (en) Air conditioner
JPH03217723A (en) Heat pump type space heater
JPH0726766B2 (en) Heating operation method of heat pump type air conditioner
JPS62178852A (en) Refrigerator
JPH06174313A (en) Air conditioner
JPS61256159A (en) Heat pump air conditioner

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees