JPH06174313A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH06174313A
JPH06174313A JP32193292A JP32193292A JPH06174313A JP H06174313 A JPH06174313 A JP H06174313A JP 32193292 A JP32193292 A JP 32193292A JP 32193292 A JP32193292 A JP 32193292A JP H06174313 A JPH06174313 A JP H06174313A
Authority
JP
Japan
Prior art keywords
compressor
heat exchanger
bypass
suction side
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32193292A
Other languages
Japanese (ja)
Inventor
Shoichiro Shirakawa
正一郎 白川
Daisuke Saito
大輔 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP32193292A priority Critical patent/JPH06174313A/en
Publication of JPH06174313A publication Critical patent/JPH06174313A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide an air conditioner with a satisfactorily stable freezing cycle and with a stabilized performance. CONSTITUTION:In a freezing cycle where there are successively connected a compressor 1, a four-way valve 2, an outdoor heat exchanger 3, an expansion valve 4, and an indoor heat exchanger 5, a suction temperature sensor 12 is provided on a suction side of the compressor 1. The temperature sensor 12 detects overheating of the compressor 1 and liquid back to the same. There is further provided a bypass circuit 10 which serves to return upon overheating of the compressor 1 a refrigerant existent between the expansion valve 4 and the indoor heat exchanger 5 to the suction side of the compressor 1 and returns upon liquid back of the compressor 1 a refrigerant discharged from the compressor 1 to the suction side of the compressor 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、空気調和機に係り、特
に冷凍サイクルに、圧縮機の過熱と液バックを防止する
バイパス回路を設けて冷凍サイクルの安定性を向上させ
た空気調和機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner, and more particularly to an air conditioner in which a refrigeration cycle is provided with a bypass circuit for preventing overheating and liquid back of the compressor to improve the stability of the refrigeration cycle. .

【0002】[0002]

【従来の技術】この種の冷凍サイクルにおいては、膨張
弁として感熱式膨張弁や電動膨張弁等が用いられ、冷凍
サイクルの負荷に応じて冷媒流量が適正となるようにそ
の開度が制御される。
2. Description of the Related Art In this type of refrigeration cycle, a thermal type expansion valve or an electric expansion valve is used as an expansion valve, and its opening is controlled so that the refrigerant flow rate becomes appropriate according to the load of the refrigeration cycle. It

【0003】しかしながら、このような感熱式膨張弁や
電動膨張弁等の膨張弁を用いたとしても、急激な負荷の
変動等により吐出温度が過熱気味になったり、逆に吸込
側に液バックが発生したりしてしまう。
However, even if such an expansion valve such as a heat-sensitive expansion valve or an electric expansion valve is used, the discharge temperature tends to be overheated due to a sudden change in load or the like, and conversely, a liquid back is formed on the suction side. It will occur.

【0004】そこで、従来では吐出が過熱気味となった
場合は、吐出冷媒の温度を下げるために、凝縮器出口と
圧縮機吸込側に設けられたバイパス路(インジェクショ
ン回路)を通じて液冷媒を圧縮機吸込側に戻すようにし
ていた。
Therefore, conventionally, when the discharge becomes overheated, the liquid refrigerant is compressed through a condenser outlet and a bypass passage (injection circuit) provided on the compressor suction side in order to lower the temperature of the discharged refrigerant. I was trying to return to the suction side.

【0005】また、液バックが発生した場合には、吸込
冷媒の温度を下げるために、圧縮機の吐出側と吸込側に
設けられたバイパス路(レリース回路)を通じて、吐出
冷媒を圧縮機吸込側に戻すようにしていた。
Further, when liquid back occurs, in order to lower the temperature of the suction refrigerant, the discharge refrigerant is passed through the bypass passage (release circuit) provided on the discharge side and the suction side of the compressor. I was going to return it to.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、従来の
サイクルではそれぞれのバイパス回路が単独で設けられ
ているため、冷凍サイクル自体が複雑になり、大型化す
る要因となっていた。
However, in the conventional cycle, since each bypass circuit is provided independently, the refrigerating cycle itself becomes complicated and becomes a large size.

【0007】また、除霜方式を吐出冷媒を室外熱交換器
に直接導く方式、いわゆるバイパス除霜方式とした場合
は、さらにその回路が加わるため、ますます冷凍サイク
ルが複雑となる。
Further, when the defrosting system is a so-called bypass defrosting system in which the discharged refrigerant is directly introduced to the outdoor heat exchanger, the circuit is further added, so that the refrigeration cycle becomes more and more complicated.

【0008】そこで、本発明の目的は、上記従来技術の
欠点を解消し、冷凍サイクルが複雑で大型化することな
く、吐出冷媒過熱、液バックに対応し、バイパス除霜が
行えることのできる空気調和機を提供することにある。
Therefore, an object of the present invention is to solve the above-mentioned drawbacks of the prior art, to cope with discharge refrigerant overheating and liquid back, and to perform bypass defrosting without making the refrigeration cycle complicated and large. To provide a harmony machine.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に本発明は、圧縮機,四方弁,室外熱交換器,膨張弁及
び室内熱交換器を順次接続した冷凍サイクルにおいて、
圧縮機の吸込側にサクション温度センサを設け、その温
度センサで圧縮機の過熱と液バックを検出し、圧縮機の
過熱時、膨張弁と室内熱交換器の間の冷媒を圧縮機の吸
込側に戻し、且つ圧縮機の液バック時圧縮機からの吐出
冷媒を圧縮機の吸込側に戻すバイパス回路を設けたもの
であり、また、圧縮機,四方弁,室外熱交換器,膨張弁
及び室内熱交換器を順次接続した冷凍サイクルにおい
て、圧縮機の吸込側にサクション温度センサを設け、上
記圧縮機の吐出側と室外熱交換器の暖房入口側とを除霜
ラインで接続し、上記膨張弁と室内熱交換器との間と圧
縮機の吸込側とをバイパスラインで接続し上記除霜ライ
ンとバイパスラインをバイパス用四方弁で接続して、膨
張弁と室内熱交換器の間の冷媒を圧縮機の吸込側に戻
し、且つ圧縮機からの吐出冷媒を圧縮機の吸込側に戻す
バイパス回路を形成し、そのバイパス用四方弁の下流側
のバイパス回路に電子制御弁を接続し、上記サクション
温度センサの検出値が入力されその検出値に基づいてバ
イパス用四方弁を切り替えると共に電子制御弁の開度を
制御する制御装置を設けたものである。
To achieve the above object, the present invention provides a refrigeration cycle in which a compressor, a four-way valve, an outdoor heat exchanger, an expansion valve and an indoor heat exchanger are connected in sequence,
A suction temperature sensor is installed on the suction side of the compressor.The temperature sensor detects overheating and liquid back of the compressor, and when the compressor overheats, the refrigerant between the expansion valve and the indoor heat exchanger is sucked into the compressor. And a bypass circuit for returning the refrigerant discharged from the compressor to the suction side of the compressor when the compressor is backed up, and also the compressor, the four-way valve, the outdoor heat exchanger, the expansion valve and the indoor In a refrigeration cycle in which heat exchangers are sequentially connected, a suction temperature sensor is provided on the suction side of the compressor, the discharge side of the compressor and the heating inlet side of the outdoor heat exchanger are connected by a defrost line, and the expansion valve And the indoor heat exchanger and the suction side of the compressor are connected by a bypass line, the defrosting line and the bypass line are connected by a bypass four-way valve, the refrigerant between the expansion valve and the indoor heat exchanger Return to the suction side of the compressor, and A bypass circuit that returns the refrigerant to the suction side of the compressor is formed, and an electronic control valve is connected to the bypass circuit on the downstream side of the bypass four-way valve, and the detection value of the suction temperature sensor is input and based on the detection value. A control device for switching the bypass four-way valve and controlling the opening degree of the electronic control valve is provided.

【0010】[0010]

【作用】上記構成によれば、インジェクション回路、レ
リース回路および除霜回路をバイパス用四方弁を用いて
それぞれ接続したことによって、冷凍サイクルが簡略化
されると共に、除霜時にはバイパス除霜を行い、圧縮機
の過熱時に、膨張弁と室内熱交換器の間の冷媒をバイパ
ス回路を介して圧縮機に戻すことでその過熱を防止し、
また液バック時には高温高圧冷媒をバイパス回路を介し
て圧縮機に戻すことで液バックを防止できる。
According to the above construction, by connecting the injection circuit, the release circuit and the defrosting circuit by using the bypass four-way valve, respectively, the refrigeration cycle is simplified and the bypass defrosting is performed at the time of defrosting. When the compressor is overheated, the refrigerant between the expansion valve and the indoor heat exchanger is returned to the compressor via the bypass circuit to prevent it from overheating.
Further, at the time of liquid back, the liquid back can be prevented by returning the high temperature and high pressure refrigerant to the compressor through the bypass circuit.

【0011】また、サクション温度センサで電子制御弁
の開度を制御してバイパス回路を流れる冷媒量を制御す
ることで圧縮機の起動時の過渡的温度変化に十分対応し
てサイクルを安定して運転できる。
Further, the suction temperature sensor controls the opening of the electronic control valve to control the amount of refrigerant flowing through the bypass circuit, thereby sufficiently responding to the transient temperature change at the time of starting the compressor to stabilize the cycle. I can drive.

【0012】[0012]

【実施例】以下、本発明の一実施例を添付図面に基づい
て詳述する。
An embodiment of the present invention will be described in detail below with reference to the accompanying drawings.

【0013】図1は、本発明の空気調和機の冷凍サイク
ルを示し、圧縮機1,四方弁2,室外熱交換器3,電子
制御式の膨張弁4及び室内熱交換器5を順次接続した冷
凍サイクルが構成される。
FIG. 1 shows a refrigeration cycle of an air conditioner of the present invention, in which a compressor 1, a four-way valve 2, an outdoor heat exchanger 3, an electronically controlled expansion valve 4 and an indoor heat exchanger 5 are sequentially connected. A refrigeration cycle is constructed.

【0014】圧縮機1の吐出側と室外熱交換器3の暖房
入口側3aとは除霜ライン6で接続され、その除霜ライ
ン6に除霜用二方弁7が接続される。膨張弁4と室内熱
交換器5との間と圧縮機1の吸込側とはバイパスライン
8で接続される。この除霜ライン6とバイパスライン8
にはバイパス用四方弁9が接続されて、バイパス回路1
0が形成される。このバイパス回路10には、バイパス
用四方弁9の下流側に電子制御弁11が接続される。
The discharge side of the compressor 1 and the heating inlet side 3a of the outdoor heat exchanger 3 are connected by a defrost line 6, and a two-way defrost valve 7 is connected to the defrost line 6. A bypass line 8 connects the expansion valve 4 and the indoor heat exchanger 5 to the suction side of the compressor 1. This defrost line 6 and bypass line 8
A bypass four-way valve 9 is connected to the bypass circuit 1
0 is formed. An electronic control valve 11 is connected to the bypass circuit 10 on the downstream side of the bypass four-way valve 9.

【0015】圧縮機1の吸込側にはサクション温度セン
サ12が取り付けられ、そのサクション温度センサ12
の検出値が制御装置13に入力される。制御装置13は
サクション温度が一定値となるように膨張弁4の開度を
制御すると共に、サクション温度センサ12の検出値に
より圧縮機1が過熱状態か液バック状態かを判断し、過
熱状態のときバイパス用四方弁9をOFFのまま電子制
御弁11を開放しその開度を制御し、また、液バック状
態のときバイパス用四方弁9を作動(ON)して図示の
点線で示したポート間を接続するように切り替えると共
に、電子制御弁11の開度を制御するようになってい
る。
A suction temperature sensor 12 is attached to the suction side of the compressor 1, and the suction temperature sensor 12 is provided.
The detected value of is input to the control device 13. The control device 13 controls the opening degree of the expansion valve 4 so that the suction temperature becomes a constant value, determines whether the compressor 1 is in the overheated state or the liquid back state based on the detection value of the suction temperature sensor 12, and determines whether the overheated state is reached. At this time, while the bypass four-way valve 9 is OFF, the electronic control valve 11 is opened to control the opening thereof, and in the liquid back state, the bypass four-way valve 9 is operated (ON) and the port shown by the dotted line in the figure is shown. The switching is performed so as to connect the two, and the opening degree of the electronic control valve 11 is controlled.

【0016】次に実施例の作用を述べる。Next, the operation of the embodiment will be described.

【0017】冷房運転時は、圧縮機1からの高温高圧冷
媒は図示の実線で示した矢印のように流れる。即ち圧縮
機1からの高温高圧冷媒は四方弁2を介し、室外熱交換
器3に流れ、そこで室外空気と熱交換して凝縮され、膨
張弁4で減圧されて、室内熱交換器5に流入し、そこで
室内空気と熱交換して室内を冷房し、蒸発冷媒となって
四方弁2を介し圧縮機1に戻る流れとなる。
During the cooling operation, the high-temperature high-pressure refrigerant from the compressor 1 flows as shown by the solid line arrow. That is, the high-temperature high-pressure refrigerant from the compressor 1 flows through the four-way valve 2 to the outdoor heat exchanger 3, where it is heat-exchanged with outdoor air to be condensed, decompressed by the expansion valve 4 and flowed into the indoor heat exchanger 5. Then, the heat is exchanged with the room air to cool the room, and the refrigerant becomes an evaporative refrigerant and returns to the compressor 1 via the four-way valve 2.

【0018】暖房運転時は、四方弁2を切り替え、冷房
運転と逆サイクルに冷媒を流して図示の点線で示した矢
印のように流す。即ち圧縮機1からの高温高圧冷媒は、
四方弁2を介して室内熱交換器5に流れ、そこで凝縮さ
せて室内を暖房した後、膨張弁4で減圧され、室外熱交
換器3で蒸発され、四方弁2を介して圧縮機に戻る流れ
となる。
During the heating operation, the four-way valve 2 is switched, and the refrigerant is caused to flow in the reverse cycle of the cooling operation, as indicated by the dotted line arrow in the figure. That is, the high temperature high pressure refrigerant from the compressor 1 is
After flowing through the four-way valve 2 to the indoor heat exchanger 5, where it is condensed to heat the room, the pressure is reduced by the expansion valve 4, evaporated by the outdoor heat exchanger 3, and returned to the compressor through the four-way valve 2. It becomes a flow.

【0019】次に、表2により、制御装置13の制御を
説明する。
Next, referring to Table 2, the control of the controller 13 will be described.

【0020】[0020]

【表1】 [Table 1]

【0021】制御装置13はサクション温度センサ12
の検出値に基づいて圧縮機1が過熱状態か液バック状態
か暖房運転時室外熱交換器3の除霜が必要かどうかを判
断する。
The control device 13 includes a suction temperature sensor 12
It is determined whether the compressor 1 is in the overheated state, the liquid back state, or the defrosting of the outdoor heat exchanger 3 during the heating operation is necessary based on the detection value of 1.

【0022】まず、圧縮機1が過熱している場合、除霜
用二方弁7をOFF、バイパス用四方弁9をOFFとし
たまま、電子制御弁11を全閉から全開まで圧縮機1の
過熱状態に応じて制御する。これにより、室内熱交換器
5と膨張弁4からの冷媒はバイパス用四方弁9を介して
バイパスライン8に図示の白抜きの矢印のように流れ、
電子制御弁11で例えば、サクション温度が5〜7℃に
なるように冷媒量が制御された後、冷凍サイクルの蒸発
冷媒と合流されて圧縮機1に入り、そこで過熱を防止す
る。
First, when the compressor 1 is overheated, the electronic control valve 11 is fully closed to fully opened while the defrosting two-way valve 7 is off and the bypass four-way valve 9 is off. Control according to the overheat condition. As a result, the refrigerant from the indoor heat exchanger 5 and the expansion valve 4 flows through the bypass four-way valve 9 to the bypass line 8 as shown by the white arrow in the figure,
After the amount of the refrigerant is controlled by the electronic control valve 11 so that the suction temperature becomes 5 to 7 ° C., for example, the refrigerant is combined with the evaporated refrigerant of the refrigeration cycle and enters the compressor 1 to prevent overheating there.

【0023】次に圧縮機1が液バック状態の時を説明す
る。
Next, the case where the compressor 1 is in the liquid back state will be described.

【0024】制御装置13は液バックの時、除霜用二方
弁7をOFFとし、バイパス用四方弁9をONとして、
電子制御弁11を全閉から全開まで圧縮機1の液バック
状態に応じて制御する。これにより、圧縮機1からの高
温高圧冷媒の一部がバイパス用四方弁9を介してバイパ
スライン8に図示の二点鎖線の矢印のように流れ、電子
制御弁11で例えば、サクション温度が5〜7℃になる
ように冷媒量が制御された後、冷凍サイクルの蒸発ガス
と液とが混ざった冷媒と合流されて圧縮機1に入り、そ
こで液バックを防止する。
The controller 13 turns off the defrosting two-way valve 7 and turns on the bypass four-way valve 9 at the time of liquid back.
The electronic control valve 11 is controlled from fully closed to fully open according to the liquid back state of the compressor 1. As a result, a part of the high-temperature high-pressure refrigerant from the compressor 1 flows through the bypass four-way valve 9 into the bypass line 8 as shown by the double-dashed chain line arrow in the figure, and the electronic control valve 11 changes the suction temperature to 5 After the amount of the refrigerant is controlled so as to be ˜7 ° C., the refrigerant is mixed with the refrigerant in which the evaporative gas and the liquid of the refrigeration cycle are mixed and enters the compressor 1, where the liquid back is prevented.

【0025】また室外熱交換器3が着霜し除霜運転を行
う場合、除霜用二方弁7をONとし、バイパス用四方弁
9をOFFとし、電子制御弁11を全閉とする。これに
より、圧縮機1からの高温高圧冷媒の一部は室外熱交換
器3に図示の一点鎖線のように流れて除霜を行う。この
除霜運転の終了は、図示していないが室外熱交換器3に
設けた除霜復帰温度センサの検出で行う。即ち除霜復帰
温度センサの検出値が制御装置13に入力され、制御装
置13は、除霜運転時の室外熱交換器3の温度を検出
し、霜が除去されて所定温度まで上昇したときに、除霜
運転を終了すべく除霜用二方弁7をOFFとする。
When the outdoor heat exchanger 3 is frosted to perform the defrosting operation, the defrosting two-way valve 7 is turned on, the bypass four-way valve 9 is turned off, and the electronic control valve 11 is fully closed. As a result, a part of the high-temperature and high-pressure refrigerant from the compressor 1 flows into the outdoor heat exchanger 3 as shown by a dashed line in the figure to perform defrosting. This defrosting operation is ended by detection of a defrosting return temperature sensor (not shown) provided in the outdoor heat exchanger 3. That is, the detection value of the defrosting temperature sensor is input to the control device 13, and the control device 13 detects the temperature of the outdoor heat exchanger 3 during the defrosting operation, and when frost is removed and the temperature rises to a predetermined temperature. , The defrosting two-way valve 7 is turned off to end the defrosting operation.

【0026】以上により、圧縮機起動時の吐出温度のオ
ーバーシュートなどの過渡状態に制御性を発揮し、サイ
クルの早期安定化を図ることができる。また、バイパス
回路10を流れる冷媒量は極僅かなので冷凍サイクルの
熱交換にはあまり影響を与えない。このように、液バッ
クの解消、ハンチングの解消により、圧縮機の信頼性が
向上する。また更に、電子制御弁11の使用により、フ
ァジィなどの制御が導入しやすい。
As described above, the controllability is exhibited in the transient state such as the discharge temperature overshoot at the time of starting the compressor, and the cycle can be stabilized early. Further, since the amount of refrigerant flowing through the bypass circuit 10 is extremely small, it does not affect heat exchange in the refrigeration cycle so much. In this way, the reliability of the compressor is improved by eliminating the liquid bag and hunting. Furthermore, by using the electronic control valve 11, it is easy to introduce control such as fuzzy control.

【0027】[0027]

【発明の効果】以上要するに本発明によれば、冷凍サイ
クルが複雑で大型化することなく、除霜時にはバイパス
除霜が行え、圧縮機の過熱時に、膨張弁と室内熱交換器
の間の冷媒をバイパス回路を介して圧縮機に戻すことで
その過熱を防止し、また液バック時には高温高圧冷媒を
バイパス回路を介して圧縮機に戻すことで液バックを防
止できる。
In summary, according to the present invention, bypass defrosting can be performed during defrosting without making the refrigeration cycle complex and large, and the refrigerant between the expansion valve and the indoor heat exchanger can be used when the compressor overheats. Is returned to the compressor via the bypass circuit to prevent its overheating, and at the time of liquid back, the high temperature and high pressure refrigerant is returned to the compressor via the bypass circuit to prevent liquid back.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す冷凍サイクル図であ
る。
FIG. 1 is a refrigeration cycle diagram showing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 四方弁 3 室外熱交換器 4 膨張弁 5 室内熱交換器 10 バイパス回路 12 サクション温度センサ 1 Compressor 2 Four-way valve 3 Outdoor heat exchanger 4 Expansion valve 5 Indoor heat exchanger 10 Bypass circuit 12 Suction temperature sensor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機,四方弁,室外熱交換器,膨張弁
及び室内熱交換器を順次接続した冷凍サイクルにおい
て、圧縮機の吸込側にサクション温度センサを設け、そ
の温度センサで圧縮機の過熱と液バックを検出し、圧縮
機の過熱時、膨張弁と室内熱交換器の間の冷媒を圧縮機
の吸込側に戻し、且つ圧縮機の液バック時圧縮機からの
吐出冷媒を圧縮機の吸込側に戻すバイパス回路を設けた
ことを特徴とする空気調和機。
1. In a refrigeration cycle in which a compressor, a four-way valve, an outdoor heat exchanger, an expansion valve and an indoor heat exchanger are sequentially connected, a suction temperature sensor is provided on the suction side of the compressor, and the temperature sensor is used to operate the compressor. Detects overheating and liquid back, when the compressor is overheated, returns the refrigerant between the expansion valve and the indoor heat exchanger to the suction side of the compressor, and when the liquid is back up in the compressor, the refrigerant discharged from the compressor is compressed. An air conditioner having a bypass circuit for returning to the suction side of the air conditioner.
【請求項2】 圧縮機,四方弁,室外熱交換器,膨張弁
及び室内熱交換器を順次接続した冷凍サイクルにおい
て、圧縮機の吸込側にサクション温度センサを設け、上
記圧縮機の吐出側と室外熱交換器の暖房入口側とを除霜
ラインで接続し、上記膨張弁と室内熱交換器との間と圧
縮機の吸込側とをバイパスラインで接続し上記除霜ライ
ンとバイパスラインをバイパス用四方弁で接続して、膨
張弁と室内熱交換器の間の冷媒を圧縮機の吸込側に戻
し、且つ圧縮機からの吐出冷媒を圧縮機の吸込側に戻す
バイパス回路を形成し、そのバイパス用四方弁の下流側
のバイパス回路に電子制御弁を接続し、上記サクション
温度センサの検出値が入力されその検出値に基づいてバ
イパス用四方弁を切り替えると共に電子制御弁の開度を
制御する制御装置を設けたことを特徴とする空気調和
機。
2. In a refrigeration cycle in which a compressor, a four-way valve, an outdoor heat exchanger, an expansion valve and an indoor heat exchanger are sequentially connected, a suction temperature sensor is provided on the suction side of the compressor, and the suction side is connected to the discharge side of the compressor. The heating inlet side of the outdoor heat exchanger is connected with a defrost line, the expansion valve and the indoor heat exchanger are connected with a suction side of the compressor with a bypass line, and the defrost line and the bypass line are bypassed. Connected by a four-way valve for use to form a bypass circuit that returns the refrigerant between the expansion valve and the indoor heat exchanger to the suction side of the compressor, and returns the refrigerant discharged from the compressor to the suction side of the compressor. An electronic control valve is connected to a bypass circuit on the downstream side of the bypass four-way valve, the detection value of the suction temperature sensor is input, and the bypass four-way valve is switched based on the detection value and the opening degree of the electronic control valve is controlled. Provide a control device An air conditioner characterized by that.
JP32193292A 1992-12-01 1992-12-01 Air conditioner Pending JPH06174313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32193292A JPH06174313A (en) 1992-12-01 1992-12-01 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32193292A JPH06174313A (en) 1992-12-01 1992-12-01 Air conditioner

Publications (1)

Publication Number Publication Date
JPH06174313A true JPH06174313A (en) 1994-06-24

Family

ID=18138030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32193292A Pending JPH06174313A (en) 1992-12-01 1992-12-01 Air conditioner

Country Status (1)

Country Link
JP (1) JPH06174313A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100759337B1 (en) * 2005-12-27 2007-09-17 위니아만도 주식회사 Method for preventing overheating of a compressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100759337B1 (en) * 2005-12-27 2007-09-17 위니아만도 주식회사 Method for preventing overheating of a compressor

Similar Documents

Publication Publication Date Title
US5467604A (en) Multiroom air conditioner and driving method therefor
JPH0518630A (en) Air conditioner
JP2001280669A (en) Refrigerating cycle device
JP2989491B2 (en) Air conditioner
JP4622901B2 (en) Air conditioner
JP3676327B2 (en) Air conditioner and indoor heat exchanger frost prevention method for air conditioner
JPH06174313A (en) Air conditioner
JPH10148409A (en) Air conditioner
JP3480217B2 (en) Air conditioner
JP2001201217A (en) Air conditioner
JP2002235968A (en) Air conditioner
JP2682729B2 (en) Refrigerant heating type air conditioner and starting method thereof
JPS6346350B2 (en)
JP4165681B2 (en) Air-conditioning and hot-water supply system and control method thereof
JPH0510618A (en) Multi-chamber air conditioner
JPH0633910B2 (en) Heat pump refrigeration system
JPH04263742A (en) Refrigerator
JP2656314B2 (en) Air conditioner
JPH04136669A (en) Multi-room air conditioner
JP2682730B2 (en) Refrigerant heating type air conditioner and control method thereof
JPH0694325A (en) Cooling/heating coexisting type engine-driven heat pump system
JP2001027452A (en) Refrigerant circulating heat transfer system
JPH08136067A (en) Air conditioner
JP2001116392A (en) Air conditioner
JPS6330929Y2 (en)