JPS63243522A - Thrust bearing construction relative to rotating shaft - Google Patents

Thrust bearing construction relative to rotating shaft

Info

Publication number
JPS63243522A
JPS63243522A JP7303987A JP7303987A JPS63243522A JP S63243522 A JPS63243522 A JP S63243522A JP 7303987 A JP7303987 A JP 7303987A JP 7303987 A JP7303987 A JP 7303987A JP S63243522 A JPS63243522 A JP S63243522A
Authority
JP
Japan
Prior art keywords
thrust bearing
rotating shaft
rotary disk
side rotary
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7303987A
Other languages
Japanese (ja)
Other versions
JPH0253645B2 (en
Inventor
Yasusuke Kashiwa
保介 柏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SENYO GLASS KOGYO KK
Original Assignee
SENYO GLASS KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SENYO GLASS KOGYO KK filed Critical SENYO GLASS KOGYO KK
Priority to JP7303987A priority Critical patent/JPS63243522A/en
Publication of JPS63243522A publication Critical patent/JPS63243522A/en
Publication of JPH0253645B2 publication Critical patent/JPH0253645B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To support a rotating shaft with less rotating resistance in case of a small load and with better durability in case of a large load, by forming a clearance between the first thrust bearing and the rotating shaft by a spring force. CONSTITUTION:When a load placed on the upper surface of a driven rotating disc 2 is smaller than a set value, shrinkage of a spring 7 is small and a clearance is formed between a thrust bearing 9 and the lower surface of the driven rotating disc 2. Therefore, the driven rotating disc 2 is supported by a bearing 6 only and with less rotating friction resistance. When a load acting on the driven rotating disc 2 is larger than the set value, thee driven rotating disc 2 is also supported on the thrust bearing portion 9 by shrinking the spring 7, and then, the durability can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、スラスト方向の荷重が作用しながら回転駆動
する回転軸を、摩擦抵抗小さくスラスト軸受で軸支する
にあたって、回転軸に作用する荷重が変動し、大荷重が
作用する場合でも耐久性良く軸支できるようにした回転
軸に対するスラスト軸受構造に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a method for supporting a rotating shaft that rotates while being subjected to a load in the thrust direction using a thrust bearing with low frictional resistance. This invention relates to a thrust bearing structure for a rotating shaft that can be supported with good durability even when a large load is applied.

〔従来の技術〕[Conventional technology]

回転軸を摩擦抵抗の小さい状態で軸支するにあたっては
、転がり摩擦係数のできるだけ小さい小径のスラスト軸
受を配設して回転軸を軸支することが一般的に行われて
いるが、このスラスト軸受を、例えばミニチュアベアリ
ングと呼ばれているものなど、小径のもので構成するに
つれて、スラスト軸受のスラスト荷重に対する許容圧力
の限界が低下する傾向にあるのが一般的であり、回転軸
に作用するスラスト荷重が増大して、スラスト軸受の許
容圧力の限界を超えてくると前記スラスト軸受が摩耗あ
るいは変形して回転軸の回転抵抗が増大し、寿命が縮む
欠点がある。
When supporting a rotating shaft with low frictional resistance, it is common practice to install a small-diameter thrust bearing with the lowest possible rolling friction coefficient to support the rotating shaft. Generally speaking, as the thrust bearing is configured with a smaller diameter bearing, such as a so-called miniature bearing, the allowable pressure limit for the thrust load of the thrust bearing tends to decrease, and the thrust acting on the rotating shaft tends to decrease. When the load increases and exceeds the allowable pressure limit of the thrust bearing, the thrust bearing wears or deforms, increasing the rotational resistance of the rotating shaft and shortening its life.

これに対して、前記スラスト軸受を予め許容圧力の大き
い大径のもので構成することも考えられるが、軸受を大
径のもので構成するにつれてその転がり摩擦係数も相対
的に大きくなるのが普通であり、前記回転軸の回転抵抗
が増大してくる欠点がある。
On the other hand, it is conceivable to configure the thrust bearing with a large diameter bearing that has a large allowable pressure, but it is normal that the rolling friction coefficient becomes relatively large as the bearing is configured with a large diameter bearing. Therefore, there is a drawback that the rotational resistance of the rotating shaft increases.

従って、例えば回転軸の回転抵抗を極力小さくし、且つ
その回転軸に作用する荷重が変動する、精密機械や例え
ば粘度測定などの測定分野においては、従来では、前記
回転軸に作用する荷重が小さい場合には、摩擦係数の小
さい小径のヘアリングを介して回転軸を軸支し、回転軸
に作用する荷重が大きい場合には、摩擦係数は大きいが
許容圧力の大きい大径のスラスト軸受を介して回転軸を
軸支するようにしていた。
Therefore, for example, in precision instruments and measurement fields such as viscosity measurement, where the rotational resistance of the rotating shaft is minimized and the load acting on the rotating shaft fluctuates, conventionally, the load acting on the rotating shaft is small. In some cases, the rotating shaft is supported via a small-diameter hair ring with a small friction coefficient, and in cases where the load acting on the rotating shaft is large, the rotating shaft is supported via a large-diameter thrust bearing with a large friction coefficient but with a large allowable pressure. The rotary shaft was supported by the rotary shaft.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このように従来では、回転軸のスラスト軸受構造として
大径のものと、小、径のものを用意しておき、回転軸に
作用するスラスト方向の荷重の大小によってその軸受構
造を付は換えなければならず、その付は換え作業の手間
が煩わしいという欠点があった。
In this way, in the past, thrust bearing structures for rotating shafts were prepared with large diameter ones and small diameter ones, and the bearing structure had to be changed depending on the magnitude of the thrust direction load acting on the rotating shaft. However, the disadvantage is that the replacement work is troublesome.

本発明は上記の実情に着目してなされたものであって、
回転軸に作用するスラスト方向の荷重が小さい時には回
転抵抗小さく回転軸を軸支でき、また荷重が大きい時に
は耐久性良く回転軸を軸支することができながら、軸受
を付は換えることなく、自動的に荷重の変動に対応する
ことができる回転軸に対するスラス[・軸受構造を提供
することにある。
The present invention has been made focusing on the above-mentioned circumstances, and
When the load in the thrust direction acting on the rotating shaft is small, the rotating shaft can be supported with low rotational resistance, and when the load is large, the rotating shaft can be supported with good durability, and the rotating shaft can be supported automatically without replacing the bearing. The object of the present invention is to provide a thrust bearing structure for a rotating shaft that can respond to load fluctuations.

〔問題点を解決するための手段〕[Means for solving problems]

すなわち、本発明の特徴・構成は、回転軸を第1スラス
ト軸受に対して軸芯方向に摺動自在に取付け、前記第1
スラスト軸受よりも小径の第2スラスト軸受を前記回転
軸と一体摺動自在に設け、前記第2スラスト軸受を前記
回転軸が前記第1スラスト軸受から離間する方向に付勢
するスプリングを設けてある点にあり、その作用及び効
果は次の通りである。
That is, the features and configuration of the present invention are such that the rotating shaft is slidably attached to the first thrust bearing in the axial direction, and
A second thrust bearing having a smaller diameter than the thrust bearing is provided to be able to slide integrally with the rotating shaft, and a spring is provided that biases the second thrust bearing in a direction in which the rotating shaft is separated from the first thrust bearing. Its functions and effects are as follows.

〔作 用〕[For production]

回転軸に作用する荷重が設定値以下の場合には、スプリ
ングの付勢力によって前記第1スラスト軸受と回転軸と
の間には間隙が形成された状態となり、この回転軸を第
1スラスト軸受に比べて小径の第2スラスト軸受だけで
軸支することができるから、比較的ころがり摩擦係数の
小さい第2スラスト軸受で回転抵抗少なく、回転軸を軸
支することができる。また、前記スプリングの付勢力以
上の大荷重が回転軸に作用した場合には、このスプリン
グが伸縮することで第2スラスト軸受に比べて大径の第
1スラスト軸受で回転軸を軸支することができるから、
第2スラスト軸受に特にその設計許容圧力以上の荷重が
作用して摩耗、変形するのを防止できるとともに、第1
スラスト軸受によって長期間の使用によっても辛擦係数
などが変化することなく軸支することができる。
When the load acting on the rotating shaft is less than the set value, a gap is formed between the first thrust bearing and the rotating shaft due to the biasing force of the spring, and the rotating shaft is connected to the first thrust bearing. Since the rotary shaft can be supported only by the second thrust bearing, which has a relatively small diameter, the rotating shaft can be supported by the second thrust bearing, which has a relatively small coefficient of rolling friction, with little rotational resistance. Furthermore, when a large load greater than the biasing force of the spring is applied to the rotating shaft, the spring expands and contracts so that the rotating shaft is supported by the first thrust bearing, which has a larger diameter than the second thrust bearing. Because you can
It is possible to prevent the second thrust bearing from being subject to wear and deformation due to a load that exceeds its design allowable pressure.
Thrust bearings can be used for long-term use without changing the friction coefficient.

〔発明の効果〕〔Effect of the invention〕

その結果、回転軸に作用する荷重が変動する場合でも、
従来のようにその荷重に対応して大小のスラスト軸受を
交換する必要がなく、自動的に荷重の大小に対応して摩
擦係数を小さくした場合と、許容圧力を大きくした場合
とに切り換えることができるようになり、摩擦抵抗を小
さくし、且つ耐久性を向上しながら、付は換え作業を不
要として作業性を向上できるようになった。
As a result, even when the load acting on the rotating shaft fluctuates,
There is no need to replace large and small thrust bearings according to the load as in the past, and it is possible to automatically switch between reducing the friction coefficient and increasing the allowable pressure depending on the load. This has made it possible to reduce frictional resistance, improve durability, and eliminate the need for attachment and replacement work, improving workability.

特に、このスラスト軸受構造を例えば、以下に示すよう
な、回転軸に作用する荷重を変動させて回転軸部分での
摩擦係数を変えることにより、広範囲に亘るガラスの粘
度測定を行う回転粘度計に適用した場合には、粘性が大
きく異なル種々ガラスの粘度を測定するにあたって、簡
単な操作でガラスの粘度測定が行えるのである。
In particular, this thrust bearing structure can be used, for example, in a rotational viscometer that measures the viscosity of glass over a wide range by varying the load acting on the rotating shaft and changing the coefficient of friction at the rotating shaft. When applied, the viscosity of glass can be measured with simple operations when measuring the viscosity of various glasses with greatly different viscosities.

〔実施例〕〔Example〕

以下本発明に係る回転軸に対するスラス]・軸受構造を
、ガラスの溶融粘度を測定する回転粘度計に適用した場
合の実施例について図面に基づいて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an embodiment will be described based on the drawings, in which the bearing structure for a rotating shaft according to the present invention is applied to a rotational viscometer for measuring the melt viscosity of glass.

まず、回転粘度計の概略構成を説明すると、第3図に示
すように、取付基台(10)上に設置されたサーボモー
タ(11)の下面より定速で回転駆動する回転棒(5)
が垂設され、この回転棒(5)の下端部に円板状の駆動
側回転盤(1)が回転棒(5)と等速で回転するように
取付けられている。前記駆動側回転盤(1)の下側には
、この駆動側回転盤(1)を軸支する本発明に係る回転
軸としての従動側回転盤(2)が、取付基台(10)の
固定枠(19)上に水平回転自在に配置され、前記駆動
側回転盤(1)と従動側回転盤(2)間の摩擦によって
駆動側回転盤(1)からの回転駆動力が従動側回転盤(
2)側に伝達されるようになっている。この従動側回転
板(2)の下面中央部から下方へ突設された連結部(2
0)に連結棒(21)が連結され、該連結棒(2■)の
下端にローター(3)が取外し自在に連結されている。
First, to explain the general configuration of the rotational viscometer, as shown in Fig. 3, there is a rotating rod (5) that is rotated at a constant speed from the lower surface of a servo motor (11) installed on a mounting base (10).
is vertically installed, and a disc-shaped drive-side rotating disk (1) is attached to the lower end of the rotating rod (5) so as to rotate at the same speed as the rotating rod (5). Below the drive-side rotary disk (1), a driven-side rotary disk (2) as a rotating shaft according to the present invention that pivotally supports the drive-side rotary disk (1) is mounted on the mounting base (10). It is arranged horizontally rotatably on a fixed frame (19), and due to the friction between the driving side rotary disk (1) and the driven side rotary disk (2), the rotational driving force from the driving side rotary disk (1) is rotated on the driven side. Board (
2) It is designed to be transmitted to the side. A connecting portion (2
A connecting rod (21) is connected to the connecting rod (2), and a rotor (3) is removably connected to the lower end of the connecting rod (2).

前記連結棒(21)の外周部には反射面(22)が固着
され、反射面(22)の近傍位置に配設された非接触式
タコメーター(4a)と光電プローグ(4b)とから成
る測定器(4)によって、連結棒(21)の回転速度を
測定できるようになっている。
A reflective surface (22) is fixed to the outer periphery of the connecting rod (21), and consists of a non-contact tachometer (4a) and a photoelectric prong (4b) arranged near the reflective surface (22). The measuring device (4) makes it possible to measure the rotational speed of the connecting rod (21).

尚、図中(24)は屈曲自在な継手部、(25)は取付
基台(10)に固定されたベアリング保持部、(26)
は溶融ガラス(8)が入れられる容器、(30)は両回
転盤(1) 、 (2)間に生じる摩擦力を測定するた
めのテンションゲージである。
In the figure, (24) is a flexible joint part, (25) is a bearing holding part fixed to the mounting base (10), and (26) is a flexible joint part.
is a container in which the molten glass (8) is placed, and (30) is a tension gauge for measuring the frictional force generated between the two rotary disks (1) and (2).

次に、+’+if記駆動側回転盤(1)及び従動側回転
盤(2)の構造について詳細に説明すると、第2図に示
すように、前記円板状に形成される駆動回転ff1(1
)の上面中央部には、平面視六角形状の嵌合孔(12)
が凹設された接続部(13)が一体に設けられていて、
前記回転軸(5)の下端部に形成された断面六角形状の
嵌合部(14)が嵌合孔(12)に上下動自在に嵌合さ
れている。駆動側回転盤(1)の上面には突部(3I)
が突設され、この上に二つ割り構成のおもり(23)を
載せて、該おもり(23)の下面に凹設された凹部(3
2)に突部(31)を係入することで、高速回転時にお
もり(23)が落下するのを防止するようになっており
、さらに、二つ割りおもり(9) 、 (9)の上面に
リング体(29)を装着できるようになっている。
Next, the structure of the +'+if drive side rotary disk (1) and driven side rotary disk (2) will be explained in detail.As shown in FIG. 1
) has a hexagonal fitting hole (12) in a plan view.
A connecting portion (13) having a recessed portion is integrally provided,
A fitting part (14) having a hexagonal cross section formed at the lower end of the rotating shaft (5) is fitted into the fitting hole (12) so as to be movable up and down. There is a protrusion (3I) on the top surface of the drive side rotary disk (1).
is provided protrudingly, and a weight (23) having a two-split construction is placed on top of the weight (23), and a recess (3) formed in the lower surface of the weight (23) is placed on top of the weight (23).
By engaging the protrusion (31) in 2), it is possible to prevent the weight (23) from falling during high-speed rotation. The body (29) can be attached.

前記従動側回転板(2)は第1図及び第2図に示すよう
に略円板状に形成され、従動側回転盤(2)の上面の周
囲にはリング状の突部(16)が突設され、前記駆動側
回転盤(1)下面の接触面(15)との間で設定の摩擦
係数を有するように構成されている。前記従動側回転盤
(2)の下側には、この従動側回転盤(2)を摩擦抵抗
少なく軸支するための、第1スラスト軸受としてのスラ
スト軸受(9)と、第2スラスト軸受としてのラジアル
ベアリング(6)とがそれぞれ配設され、これらを収容
する平面視ドーナツ状の固定枠(工9)が前記取付基台
(10)上に載置固定されていて、前記ベアリング(6
)及びスラスト軸受(9)を介して従動側回転盤(2)
を取付基台(10)上に回転自在に軸支することで、従
動側回転盤(2)の回転駆動抵抗を減少できるようにな
っている。
As shown in FIGS. 1 and 2, the driven side rotary plate (2) is formed into a substantially disk shape, and a ring-shaped protrusion (16) is provided around the upper surface of the driven side rotary plate (2). It is provided in a protruding manner and is configured to have a predetermined coefficient of friction with the contact surface (15) on the lower surface of the drive-side rotary disk (1). A thrust bearing (9) as a first thrust bearing and a second thrust bearing are provided below the driven side rotary disk (2) to support the driven side rotary disk (2) with low frictional resistance. radial bearings (6) are respectively disposed, and a donut-shaped fixing frame (work 9) in a plan view for accommodating these is placed and fixed on the mounting base (10), and the bearings (6)
) and the driven side rotary disk (2) via the thrust bearing (9).
By rotatably supporting the rotor on the mounting base (10), the rotational drive resistance of the driven rotary disk (2) can be reduced.

前記固定枠(19)の上面には外筒(27)と内筒(2
8)がそれぞれ立設され、内筒(28)の内側に前記従
動側回転盤(2)の連結部(20)が入るようになって
おり、この連結部(20)と内筒(28)との間には前
記ベアリング(6)と、圧縮コイルバネで形成されるス
プリング(7)を保持する保持体(18)が上下移動自
在に配設されている。そして、前記スプリング(7)に
よって前記保持体(18)は上方に付勢され、ベアリン
グ(6)の上端面で前記連結部(20)の上部に形成し
た段部(20a)下面を接当支持するとともに、このベ
アリング(6)で連結部(20)が偏心回転するのを防
止するようになっている。
An outer cylinder (27) and an inner cylinder (2) are provided on the upper surface of the fixed frame (19).
8) are respectively erected, and the connecting part (20) of the driven side rotary disk (2) is inserted inside the inner cylinder (28), and this connecting part (20) and the inner cylinder (28) A holder (18) that holds the bearing (6) and a spring (7) formed of a compression coil spring is disposed between the two and is movable up and down. The holder (18) is urged upward by the spring (7), and the upper end surface of the bearing (6) abuts and supports the lower surface of the stepped portion (20a) formed at the upper portion of the connecting portion (20). At the same time, the bearing (6) prevents the connecting portion (20) from rotating eccentrically.

また、前記内筒(28)と外筒(27)との間には前記
スラスト軸受(9)が配設され、従動側回転盤(2)の
上面に荷重が作用しないか、あるいは設定値以下の荷重
が作用している状態では、前記圧縮スプリング(7)の
付勢力によりベアリング(6)で従動側回転盤(2)を
支持し、スラスト軸受(9)上面と従動側回転盤(2)
下面との間に間隙が形成されるように、このベアリング
(6)の付勢力が設定されている。前記ベアリング(6
)はミニチュアベアリングとも呼ばれ、前記スラスト軸
受(9)に比べて小径のもので構成され、従ってこのベ
アリング(6)はスラスト軸受(9)に比べてスラスト
方向の摩擦係数が小さいものであり、一方スラスト軸受
(9)はベアリング(6)に比べてスラスト方向の荷重
に対して許容圧力が大きく設計されているものである。
Further, the thrust bearing (9) is disposed between the inner cylinder (28) and the outer cylinder (27), and the load does not act on the upper surface of the driven side rotary disk (2) or is lower than a set value. When a load of
The urging force of this bearing (6) is set so that a gap is formed between it and the lower surface. The bearing (6
) is also called a miniature bearing, and is constructed with a smaller diameter than the thrust bearing (9). Therefore, this bearing (6) has a smaller coefficient of friction in the thrust direction than the thrust bearing (9). On the other hand, the thrust bearing (9) is designed to have a larger allowable pressure against the load in the thrust direction than the bearing (6).

なお、前記従動側回転盤(2)の連結部(20)には連
結棒(21)の係入部(21a)が係入される凹所(2
0a)が形成され、また前記従動側回転盤(2)に連結
された連結棒(21)のベアリング保持部(25)には
、連結棒(21)の回転力をローター(3)に伝達し、
且つ連結棒(21)の上下移動を許容する融通機構(2
9)が設けられていて、ローター(3)及び連結棒(2
1)等の荷重が前記従動側回転盤(2)に作用しないよ
うにするとともに、ガラス(8)の熱膨張、収縮が前記
従動側回転盤(2)側へ作用しないようになっている。
The connecting portion (20) of the driven side rotary disk (2) has a recess (2) into which the engaging portion (21a) of the connecting rod (21) is inserted.
0a), and the bearing holding portion (25) of the connecting rod (21) connected to the driven side rotary disk (2) is provided with a bearing holding portion (25) for transmitting the rotational force of the connecting rod (21) to the rotor (3). ,
In addition, there is a flexible mechanism (2) that allows vertical movement of the connecting rod (21).
9), which connects the rotor (3) and the connecting rod (2).
Loads such as 1) are prevented from acting on the driven side rotary disk (2), and thermal expansion and contraction of the glass (8) are prevented from acting on the driven side rotary disk (2).

次に、上記構成の回転粘度計を用いて溶融ガラスの粘度
を測定する場合について説明する。
Next, a case will be described in which the viscosity of molten glass is measured using the rotational viscometer having the above configuration.

第1図に示すように、容器(26)内に溶融したガラス
(8)を入れ、ローター(3)の下部の設定寸法だけガ
ラス(8)内に浸漬した状態でモータ(11)を駆動さ
せる。すると、駆動側回転盤(1)が設定速度で駆動回
転するとともに、この駆動側回転盤(1)は設定荷重で
従動側回転盤(2)上面を圧接しているため、従動側回
転板(2)はその摩擦面([7)と駆動側回転盤(1)
の接触面(15)との摩擦により従動回転することにな
る。ここにおいて、1111記ローター(3)に回転抵
抗が全くかかっていない場合には、前記摩擦力がわずか
であっても従動側回転盤(2)は駆動側回転盤(1)と
ほぼ同速で回転することになるが、ローター(3)にガ
ラス(8)からの粘性抵抗がかかっている状態では、従
動側回転盤(2)と駆動側回転盤(1)との間で粘性抵
抗に応じた滑りを生じ、ローター(3)の回転速度が前
記回転軸(5)の回転速度に比べて低下することになる
。このローター(3)の回転速度は、ガラス(8)の粘
性抵抗及び両回転盤(1) 、 (2)間の摩擦力と相
関関係を有しているので、摩擦力をテンションゲージ(
30)で測定してローター(3)の回転速度を測定器(
4)で計測すれば、ガラス(8)の粘度を算出すること
ができるわけである。また、高粘性のガラス(8)の粘
度測定においては、その粘性抵抗が大きいためローター
(3)の回転速度は低下し、又は回転しないで、測定粘
度に誤差を生じたり、粘度が測定できない場合を生じる
が、この場合には駆動側回転盤(1)の上面に、第2図
に示すうよな二つ割りのおもり(23)を載せ、従動側
回転盤(2)の摩擦面(17)に作用する垂直抗力を上
げて、両回転盤(1) 、 (2)間の摩擦力を上げる
ことにより、ローター(3)はガラス(8)の粘性抵抗
と摩擦力とがつり合った状態で回転するようになり、高
粘性ガラスに対しても支障なくその粘度を測定すること
ができる。
As shown in Fig. 1, molten glass (8) is placed in a container (26), and the motor (11) is driven while the glass (8) is immersed in the glass (8) by a predetermined dimension at the bottom of the rotor (3). . Then, the drive-side rotary disk (1) rotates at the set speed, and since the drive-side rotary disk (1) is in pressure contact with the upper surface of the driven-side rotary disk (2) with the set load, the driven-side rotary disk ( 2) is the friction surface ([7) and the drive side rotary disk (1)
The friction with the contact surface (15) causes the driven rotation. Here, if no rotational resistance is applied to the No. 1111 rotor (3), the driven side rotary disk (2) will have almost the same speed as the driving side rotary disk (1) even if the frictional force is small. However, when the rotor (3) is subject to viscous resistance from the glass (8), the rotation occurs between the driven side rotary disk (2) and the driving side rotary disk (1) according to the viscous resistance. As a result, the rotational speed of the rotor (3) decreases compared to the rotational speed of the rotating shaft (5). The rotational speed of the rotor (3) has a correlation with the viscous resistance of the glass (8) and the frictional force between both rotating discs (1) and (2), so the frictional force can be measured by the tension gauge (
30) to measure the rotational speed of the rotor (3) using a measuring device (
By measuring in step 4), the viscosity of the glass (8) can be calculated. In addition, when measuring the viscosity of highly viscous glass (8), the rotational speed of the rotor (3) decreases or does not rotate due to the large viscous resistance, resulting in an error in the measured viscosity or when the viscosity cannot be measured. However, in this case, a two-part weight (23) as shown in Figure 2 is placed on the top of the drive side rotary disk (1), and a weight (23) divided into two parts as shown in Fig. 2 is placed on the friction surface (17) of the driven side rotary disk (2). By increasing the normal force acting and increasing the frictional force between the rotating discs (1) and (2), the rotor (3) rotates with the viscous resistance of the glass (8) and the frictional force balanced. This makes it possible to measure the viscosity of highly viscous glass without any problems.

ここにおいて、従動側回転盤(2)の上面に載置される
前記駆動側回転盤(1)及びおもり(23)等を合わせ
た荷重が設定値以下の時には、前記スプリング(7)の
伸縮程度が小さく、スラスト軸受(9)と従動側回転盤
(2)下面との間には第1図(イ)のように間隙が形成
されている状態であるから、従動側回転盤(2)をベア
リング(6)だけで軸支することになり、比較的回転摩
擦抵抗の少ない状態で従動側回転盤(2)を軸支できる
のである。
Here, when the combined load of the drive-side rotary disk (1) and the weight (23) etc. placed on the upper surface of the driven-side rotary disk (2) is less than a set value, the degree of expansion and contraction of the spring (7) is determined. is small, and a gap is formed between the thrust bearing (9) and the lower surface of the driven side rotary disk (2) as shown in Figure 1 (a). Since the shaft is supported only by the bearing (6), the driven side rotary disk (2) can be supported with relatively little rotational frictional resistance.

また、前記のように駆動側回転盤(1)の上におもり(
23)を載せて、従動側回転盤(2)に作用する荷重が
設定値を超えた場合には、第1図(ロ)のように前記ス
プリング(7)がこの荷重により収縮することで、スラ
スト軸受(9)部分で、も従動側回転盤(2)を軸支す
るようになり、ベアリング(6)の許容圧力を超える荷
重をこのスラスト軸受(9)部分で軸支することによっ
て、前記ベアリング(6)部分に大圧力が作用するのを
防止し、ベアリング(6)が摩耗して摩擦係数が変化し
、寿命が縮むのを防止することができるのである。尚、
このスラスト軸受(9)で従動側回転盤(2)を軸支す
る状態においては、保持体(18)と固定枠(19)間
には空間があって、前記ベアリング(6)はその許容圧
力範囲内の弾接力でもって、従動側回転盤(2)下面に
圧接されているものである。
Also, as mentioned above, a weight (
23) and the load acting on the driven side rotary plate (2) exceeds the set value, the spring (7) contracts due to this load as shown in Figure 1 (b). The thrust bearing (9) part now also pivotally supports the driven side rotary disk (2), and by supporting the load that exceeds the allowable pressure of the bearing (6) with the thrust bearing (9) part, the This prevents large pressure from acting on the bearing (6), and prevents the bearing (6) from wearing out, changing its friction coefficient, and shortening its lifespan. still,
When the driven rotary disk (2) is supported by the thrust bearing (9), there is a space between the holder (18) and the fixed frame (19), and the bearing (6) is supported by its allowable pressure. It is pressed against the lower surface of the driven side rotary disk (2) with an elastic contact force within a range.

〔別実施例〕[Another example]

駆動側回転盤(1)と従動側回転盤(2)とを左右に配
置し、駆動側回転盤(1)をスプリングにより従動側回
転盤(2)側へ付勢するとともに、このスプリングの付
勢力を変えるように構成しても良い。また、前記実施例
ではガラスの粘度計について説明したが、精密機械や他
の測定装置のスラスI・軸受構造にも適用することがで
きる。
A driving-side rotary disk (1) and a driven-side rotary disk (2) are arranged on the left and right, and the driving-side rotary disk (1) is biased toward the driven-side rotary disk (2) by a spring. It may be configured to change the forces. Further, although the above embodiments have been described with respect to a glass viscometer, the present invention can also be applied to the slus I/bearing structure of precision instruments and other measuring devices.

尚、特許請求の範囲の項に図面との対照を便利にする為
に符号を記すが、該記入により本発明は添付図面の構造
に限定されるものではない。
Incidentally, although reference numerals are written in the claims section for convenient comparison with the drawings, the present invention is not limited to the structure shown in the accompanying drawings.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明に係る回転軸に対するスラスト軸受構造の
実施例を示し、第1図(イ)は回転軸に作用する荷重が
小さい場合の要部断面図、第1図c口)は回転軸に作用
する荷重が大きい場合の要部断面図、第2図は要部分解
斜視図、第3図は回転粘度計の概略側面図である。 (2)・・・・・・回転軸、(6)・・・・・・第2ス
ラスト軸受、(7)・・・・・・スプリング、(9)・
・・・・・第1スラスト軸受。
The drawings show an embodiment of the thrust bearing structure for the rotating shaft according to the present invention, and FIG. FIG. 2 is an exploded perspective view of the main part, and FIG. 3 is a schematic side view of the rotational viscometer. (2)...Rotating shaft, (6)...Second thrust bearing, (7)...Spring, (9)...
...First thrust bearing.

Claims (1)

【特許請求の範囲】[Claims] 回転軸(2)を第1スラスト軸受(9)に対して軸芯方
向に摺動自在に取付け、前記第1スラスト軸受(9)よ
りも小径の第2スラスト軸受(6)を前記回転軸(2)
と一体摺動自在に設け、前記第2スラスト軸受(6)を
前記回転軸(2)が前記第1スラスト軸受(9)から離
間する方向に付勢するスプリング(7)を設けてある回
転軸に対するスラスト軸受構造。
A rotating shaft (2) is attached to the first thrust bearing (9) so as to be slidable in the axial direction, and a second thrust bearing (6) having a smaller diameter than the first thrust bearing (9) is attached to the rotating shaft (9). 2)
a rotating shaft provided with a spring (7) that is slidably integral with the rotating shaft and biases the second thrust bearing (6) in a direction in which the rotating shaft (2) separates from the first thrust bearing (9); Thrust bearing structure against.
JP7303987A 1987-03-26 1987-03-26 Thrust bearing construction relative to rotating shaft Granted JPS63243522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7303987A JPS63243522A (en) 1987-03-26 1987-03-26 Thrust bearing construction relative to rotating shaft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7303987A JPS63243522A (en) 1987-03-26 1987-03-26 Thrust bearing construction relative to rotating shaft

Publications (2)

Publication Number Publication Date
JPS63243522A true JPS63243522A (en) 1988-10-11
JPH0253645B2 JPH0253645B2 (en) 1990-11-19

Family

ID=13506822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7303987A Granted JPS63243522A (en) 1987-03-26 1987-03-26 Thrust bearing construction relative to rotating shaft

Country Status (1)

Country Link
JP (1) JPS63243522A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101832339A (en) * 2010-04-15 2010-09-15 胡炜 Preloading structure of thrust bearing and extruder reducer with same
KR20220141189A (en) * 2021-04-12 2022-10-19 건영산업 주식회사 Rolling module of vertical and horizontal load integrated automobile shock absorber mount

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101832339A (en) * 2010-04-15 2010-09-15 胡炜 Preloading structure of thrust bearing and extruder reducer with same
KR20220141189A (en) * 2021-04-12 2022-10-19 건영산업 주식회사 Rolling module of vertical and horizontal load integrated automobile shock absorber mount

Also Published As

Publication number Publication date
JPH0253645B2 (en) 1990-11-19

Similar Documents

Publication Publication Date Title
EP0410293B1 (en) Spindle motor
EP1945959B1 (en) Support device for bearing assemblies
US5539597A (en) Press-fit glueless bearing pivot assembly for a rotary actuator
EP0202533A2 (en) Counterbalancing apparatus for use in an optical instrument
JPS5945844B2 (en) rotating device
JPH01239280A (en) Motion adjusting section to hinge
US8934195B2 (en) Fluid dynamic bearing with non-linear damping
US6296390B1 (en) Single plate hydrodynamic bearing with extended single journal bearing
CN111399169B (en) Rigid spherical hinge type high-precision quick reflector
JPS63243522A (en) Thrust bearing construction relative to rotating shaft
US20070110348A1 (en) Fluid dynamic bearing unit
JP2001194270A (en) Rotation accuracy and dynamic torque measuring device for rolling bearing
US20240068550A1 (en) Self-locking drive and linear actuator
CN107144228B (en) Device and method for adjusting lubricating oil film measurement inclination angle of miniature slide block bearing
JP2000074043A (en) Spindle motor
KR100368959B1 (en) Hard disk drive actuator pivot with inboard pads and enhanced pivot sleeve thickness for improved servo stability
JP2001295837A (en) Bearing device
CN112483832A (en) Rigid-flexible coupling ultra-precise double-shaft turntable
JP3011935B1 (en) Tilting pad bearing
CN219221185U (en) Magnetic roller and altimeter transmission mechanism
JPH07151139A (en) Dynamic pressure bearing
US6519863B1 (en) Probe arm for machine tool
JPS61143715A (en) Fluid bearing of rotary polyhedral mirror
JP2749552B2 (en) Bearing structure of viscometer output shaft
US3246527A (en) Suspension for gyroscope gimbal

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees