JPS63243285A - Rotating electrode type magnetron etching device - Google Patents

Rotating electrode type magnetron etching device

Info

Publication number
JPS63243285A
JPS63243285A JP7612687A JP7612687A JPS63243285A JP S63243285 A JPS63243285 A JP S63243285A JP 7612687 A JP7612687 A JP 7612687A JP 7612687 A JP7612687 A JP 7612687A JP S63243285 A JPS63243285 A JP S63243285A
Authority
JP
Japan
Prior art keywords
etching
electrode
magnetic field
substrate
rotating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7612687A
Other languages
Japanese (ja)
Other versions
JPH07116624B2 (en
Inventor
Masashi Kikuchi
正志 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP62076126A priority Critical patent/JPH07116624B2/en
Publication of JPS63243285A publication Critical patent/JPS63243285A/en
Publication of JPH07116624B2 publication Critical patent/JPH07116624B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • ing And Chemical Polishing (AREA)

Abstract

PURPOSE:To carry out magnetron etching with high uniformity by providing a means for rotating an etching electrode fitted with a substrate in the plane of a uniform magnetic field in a vacuum vessel. CONSTITUTION:The etching electrode 2 fitted with the substrate 4 is rotated by a driving motor 7 through a rotating shaft 5 and an insulated transmission mechanism 6. A glow discharge is generated between the etching electrode 2 and a counter electrode 3 by the high-frequency power from a high-frequency power source 9, and the substrate 4 is etched. A reactive gas is supplied from the counter electrode 3 through a shower-type gas hole. The glow discharge generated between the electrodes 2 and 3 is confined on the surface of the rotating etching electrode 2 by the uniform magnetic field formed by a pair of rectangular magnetic circuits. The electron in the glow discharge is cyclodially moved on the surface of the etching electrode 2 by the action of the magnetic field, and the ionization efficiency of the neutral atom and molecule is enhanced. By this method, the deviation of the plasma can be compensated, and etching is carried out with high uniformity.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、回転電極型マグネトロンエツチング装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a rotating electrode type magnetron etching device.

[従来の技術] 従来、マグネトロンエツチング装置としては電磁コイル
型と永久磁石型とが知られている。
[Prior Art] Conventionally, electromagnetic coil type and permanent magnet type are known as magnetron etching devices.

電磁コイル型のマグネトロンエツチング装置は原理的に
は添付図面の第6図に示すように対抗して配置された電
極A、Bの一方に高周波電源Cをrfc続し、これらの
平行平板電極間で高周波放電を発生させるようにし、上
記平行平板電極A、Bの左右両側に磁化方向の揃ったヘ
ルムホルツコイルD、Eを対に配置し、これらコイルに
交流宅から交流電流を流して基板G上に交番磁場を発生
するように構成されている。そして発生されれる交流磁
場と高周波電場とは互いに直交するので、エツチング電
極Bの近傍に電子が閉じ込められ、密度の高いプラズマ
を形成することができる。
In principle, an electromagnetic coil type magnetron etching device connects a high frequency power source C to one of electrodes A and B placed opposite each other by RFC as shown in Figure 6 of the attached drawings, and generates electricity between these parallel plate electrodes. In order to generate a high frequency discharge, Helmholtz coils D and E with the same magnetization direction are arranged in a pair on both the left and right sides of the parallel plate electrodes A and B, and an alternating current is passed through these coils from an alternating current source to cause a discharge on the substrate G. The device is configured to generate an alternating magnetic field. Since the generated alternating current magnetic field and high frequency electric field are orthogonal to each other, electrons are confined near the etching electrode B, making it possible to form a high-density plasma.

また永久磁石を利用したマグネトロンエツチング装置は
全7図に示すような構造のものが多く、放電用高周波電
源Hに接続され、基板lを支持したエツチング電極Jの
側方に一対の永久磁石Kが配置され、エツチング電極J
の表面を磁力線が横切り、エツチング電極Jから発散す
る高周波の電気力線と直交することになり、エツチング
is % Jの表面にマグネトロン放電が発生されるよ
うに構成されており、この形式は磁場の動かない静磁場
型と呼ばれている。
In addition, many magnetron etching devices using permanent magnets have a structure as shown in all 7 figures, in which a pair of permanent magnets K are connected to a high frequency power source H for discharging and are placed on the sides of an etching electrode J supporting a substrate l. placed and etched electrode J
The magnetic field lines cross the surface of the etching electrode J, and are perpendicular to the high-frequency electric field lines emanating from the etching electrode J, so that a magnetron discharge is generated on the surface of the etching electrode J. It is called a stationary static magnetic field type.

このような従来のマグネトロンエツチング装置では、エ
ツチング電極上の電子は電場と磁場との方向に応じて例
えば第8図に示すように左方向へ移動しながらガスの中
性粒子と衝突し、ガス粒子をイオン化することになる。
In such a conventional magnetron etching device, electrons on the etching electrode move to the left depending on the directions of the electric and magnetic fields, for example, as shown in Figure 8, and collide with neutral gas particles, causing will be ionized.

電子は中性粒子との衝突によってイオンの生成と共に二
次電子を発生し、第9図に示すような電子密度および放
電電圧特性を呈する。プラズマは中性であるので、イオ
ン密度も電子密度と同様にエツチング電極の左側で濃く
なり、エツチング電極に入射するイオン景も増加するこ
とになり、そしてこれらのイオンが基板のエツチングに
寄与する。
When electrons collide with neutral particles, ions are generated and secondary electrons are generated, resulting in electron density and discharge voltage characteristics as shown in FIG. Since the plasma is neutral, the ion density, as well as the electron density, will be denser to the left of the etching electrode, and the ion landscape incident on the etching electrode will also increase, and these ions will contribute to the etching of the substrate.

[発明が解決しようとする問題点コ 上述のような従来のマクネトロンエツチング装置におい
ては、第9図に示したように、電子のドリフト方向に向
ってプラズマ密度は高くなっていく、そのためエツチン
グ速度もプラズマの濃淡に比例することから、エツチン
グの不均一性が大きくなってくる。このように従来のマ
クネトロンエツチング装置では、マグネトロン放電特有
の電子のドリフト現象によって発生するプラズマの偏り
のため均一性の高いエツチング処理が困難である。
[Problems to be Solved by the Invention] In the conventional Macnetron etching apparatus as described above, as shown in FIG. 9, the plasma density increases in the direction of electron drift, so the etching rate increases. Since the density is proportional to the density of the plasma, the non-uniformity of etching increases. As described above, in the conventional magnetron etching apparatus, it is difficult to perform etching processing with high uniformity due to the bias of plasma generated by the electron drift phenomenon peculiar to magnetron discharge.

この傾向は、特に枚葉式ドライエツチング装置において
処理すべき基板の寸法が大きくなるにつれて著しくなる
ことが認められる。
It is recognized that this tendency becomes more pronounced as the size of the substrate to be processed becomes larger, particularly in a single-wafer dry etching apparatus.

そこで、本発明は、上記の問題点を解決するため、均一
な磁場を有し、均一性の高いエツチング処理を施すこと
のできる回転電極型マグネトロンエンチング装置を提供
することを目的とする。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, it is an object of the present invention to provide a rotating electrode type magnetron etching device that has a uniform magnetic field and can perform highly uniform etching processing.

[問題点を解決するための手段] 上記の目的を達成するために、本発明による回転電極型
マグネトロンエツチング装置は、真空容器内に対してに
均一な磁場を発生する一対の磁場発生装置と、上記真空
容器内に配置され、磁場発生装置によって発生された磁
場平面内に回転するエツチング電極とを有することを特
徴としている。
[Means for Solving the Problems] In order to achieve the above object, a rotating electrode type magnetron etching apparatus according to the present invention includes a pair of magnetic field generators that generate a uniform magnetic field within a vacuum container; It is characterized in that it has an etching electrode that is placed in the vacuum container and rotates within the plane of the magnetic field generated by the magnetic field generator.

[作     用] 本発明による回転電極型マグネトロンエツチング装置に
よれば、エツチング電極が一対の磁場発生装置で形成さ
れた均一性の高い磁場平面内で回転するので、プラズマ
の濃淡部分の両頭域を工・ソチング処理すべき基板が繰
返し通過することになり、その結果エツチングの均一性
を高めることができるようになる。
[Function] According to the rotating electrode type magnetron etching apparatus according to the present invention, since the etching electrode rotates within a highly uniform magnetic field plane formed by a pair of magnetic field generators, it is possible to etch the double-headed regions of the dark and dark parts of the plasma. - The substrate to be soothed passes through the etching process repeatedly, and as a result, the uniformity of etching can be improved.

[実  施  例] 以下、添付図面の第1図〜第5図を参照して、本発明の
実施例について説明する。
[Example] Hereinafter, an example of the present invention will be described with reference to FIGS. 1 to 5 of the accompanying drawings.

第1図および第2図には本発明の一実施例を示し、真空
槽1内に円盤状の回転するエツチング電極2とガス吹き
出しを兼ねた対向型[z3とが互いに平行に配置され、
回転するエツチング電極2はその上面にエツチング処理
すべき基板4が装着され、また真空槽1の壁を貫通して
設けられた回転駆動軸5に連結されており、この回転駆
動軸5は絶縁伝動機構6を介して駆動モータ7により駆
動される。また回転駆動軸5内には、図面で省略してい
るが冷却水ジャケット8から回転するエツチング電極2
内にのびる冷却水語源通路が設けられている0回転する
エツチング電極2はまた高周波電源9に接続されている
FIG. 1 and FIG. 2 show an embodiment of the present invention, in which a disk-shaped rotating etching electrode 2 and a facing type [z3 which also serves as a gas blowout] are arranged parallel to each other in a vacuum chamber 1.
The rotating etching electrode 2 has a substrate 4 to be etched mounted on its upper surface, and is connected to a rotary drive shaft 5 provided through the wall of the vacuum chamber 1, and this rotary drive shaft 5 is an insulated transmission It is driven by a drive motor 7 via a mechanism 6. Also, inside the rotation drive shaft 5, although not shown in the drawing, there is an etching electrode 2 that rotates from a cooling water jacket 8.
The zero rotation etching electrode 2, which is provided with a cooling water passageway extending therein, is also connected to a high frequency power source 9.

真空!g1の周囲には、第2図に示すようにそれぞれマ
グネット10と磁極11とから成る一対の矩形磁気回路
が設けられ、各磁気回路は第1図に示すようにエツチン
グ電極2の平面からXの等距離に上下に位置決めされて
いる。この距離Xは例えば標準で25nnにすることが
できる。また磁気回路は、特に垂直磁場成分がOガウス
となるようにされ得る。
vacuum! A pair of rectangular magnetic circuits each consisting of a magnet 10 and a magnetic pole 11 are provided around g1, as shown in FIG. They are positioned equidistantly above and below. This distance X can be, for example, 25 nn as standard. The magnetic circuit can also be made in particular such that the perpendicular magnetic field component is O Gaussian.

このように構成した図示装置の動作において、上面にエ
ツチング処理すべき基板4を装着したエツチング電w!
2は回転駆動@5および絶縁伝動機fJ6を介して駆動
モータ7により所要の速度で回転駆動される。高周波電
源9から供給される高周波電力によって回転するエツチ
ング電極2と対向電極3との間にグロー放電が発生され
、これにより回転するエツチング電極2の上面に装着さ
れたエツチング処理すべき基板4はエツチングされる。
In the operation of the illustrated apparatus constructed as described above, an etching electrode w! with a substrate 4 to be etched mounted on the upper surface thereof is used.
2 is rotationally driven at a required speed by a drive motor 7 via a rotational drive @5 and an insulated transmission fJ6. Glow discharge is generated between the rotating etching electrode 2 and the counter electrode 3 by the high frequency power supplied from the high frequency power supply 9, and as a result, the substrate 4 to be etched, which is mounted on the top surface of the rotating etching electrode 2, is etched. be done.

反応性ガスは対向電極3からジャワ式ガス孔を介して供
給される。
The reactive gas is supplied from the counter electrode 3 through a Java gas hole.

電極2.3間に励起されたグロー放電は一対の矩形磁気
回路によって形成される均一な磁場によって回転するエ
ツチング電極2の表面に閉じこめられ得る。この磁1%
 (例えば約200ガウス)の作用で、グロー放電中の
電子はエツチング電極2の表面上でサイクロイド運動す
る。この電子のサイクロイド運動により、中性原子分子
のイオン化効率は高められ、電極表面近傍に濃いプラズ
マが形成され、いわゆるマグネトロン放電状態となり、
放電電圧は極めて低くなる0例えば真空槽1内の圧力0
.02tor(RF電力密度IW/Cl112)条件下
テ、セルフバイアス電圧で約100V前後である。
The glow discharge excited between the electrodes 2, 3 can be confined on the surface of the rotating etching electrode 2 by a uniform magnetic field formed by a pair of rectangular magnetic circuits. This magnetic 1%
(for example, about 200 Gauss), the electrons during the glow discharge move cycloidally on the surface of the etching electrode 2. Due to this cycloidal movement of electrons, the ionization efficiency of neutral atoms and molecules is increased, and a dense plasma is formed near the electrode surface, resulting in a so-called magnetron discharge state.
The discharge voltage becomes extremely low. For example, the pressure inside the vacuum chamber 1 is 0.
.. Under the condition of 02tor (RF power density IW/Cl112), the self-bias voltage is about 100V.

第3図に示すように、円盤状のエツチング電極のy方向
に磁力線が存在している場合、電極上の垂直磁場は約5
0ガウス以上あり、しかも電極を固定した場合には第4
図にX“、yoで示すように不均一なエツチング分布と
なるが、垂直磁場が0ガウスであり、しかも電極を回転
させると、xlyで示すような均一性の高いエツチング
を行うことができる。
As shown in Figure 3, when magnetic lines of force exist in the y direction of a disc-shaped etched electrode, the vertical magnetic field on the electrode is approximately 5
0 Gauss or more, and if the electrode is fixed, the fourth
Although the etching distribution is non-uniform as shown by X'' and yo in the figure, if the vertical magnetic field is 0 Gauss and the electrode is rotated, highly uniform etching can be achieved as shown by xly.

第5図には本発明の変形実施例を示し、第1図および第
2図の実施例に対応する部分は同じ符号で示す、この場
合には磁場発生装置としてヘルムホルツ型の電磁石12
が用いら−れている。電磁石12は、その中心軸がエツ
チング電極2の表面と一致するように位置決めされてい
る。
FIG. 5 shows a modified embodiment of the present invention, in which parts corresponding to the embodiments of FIGS. 1 and 2 are designated by the same reference numerals.
is used. The electromagnet 12 is positioned so that its central axis coincides with the surface of the etching electrode 2.

ところで、図示実施例において対向電極を絶縁し、これ
に高周波電力を印加するように構成することによって、
スパッタリング装置やプラズマCVD装置として実施す
ることも可能となり、その場合には磁気回路の対なる磁
極の中心は対向電極面に一致させる必要がある。
By the way, in the illustrated embodiment, by insulating the counter electrode and applying high frequency power to it,
It is also possible to implement it as a sputtering device or a plasma CVD device, and in that case, the centers of the opposing magnetic poles of the magnetic circuit must be aligned with the opposing electrode surface.

[発明の効果コ 以上説明してきたように、本発明による回転電極型マグ
ネトロンエツチング装置においては、特に垂直成分を0
ガウスにできる均一な磁場平面内でエツチング電極を回
転させるようにしているので、マグネトロン放電に特有
の電子のドリフトによるプラズマの偏りを相殺すること
ができ、それにより均一性の高いエツチング処理を行う
ことができる。また回転磁場を利用したものと比較して
も装置の構成や設計上、コスト面で極めて実用性の高い
装置を提供することができる。
[Effects of the Invention] As explained above, in the rotating electrode type magnetron etching apparatus according to the present invention, the vertical component can be reduced to zero.
Since the etching electrode is rotated within the plane of a uniform Gaussian magnetic field, it is possible to offset the plasma bias caused by electron drift, which is characteristic of magnetron discharge, thereby achieving highly uniform etching processing. Can be done. In addition, compared to a device using a rotating magnetic field, it is possible to provide an extremely practical device in terms of structure and design and cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す概略断面図、第2図は
第1図の装置の概略平面図、第3図および第、1図は装
置の作用を示す説明図、第5図は本発明の変形実施例を
示す概幣断面図、第6図および第7図はそれぞれ従来の
マグネトロンエツチング装置の異なる例を示す概略線図
、第8図はエツチング”S %上における電子のドリフ
ト状態を示す説明図、第9図はエツチング電極表面上に
おける電子密度と放電電圧との空間分布状態を示す図で
ある。 図中 1:真空槽   2:回転するエツチング電極3:対向
電極  4:エツチング処理すべき基板5:回転駆動軸
 6:絶縁伝動R構 7:駆動モータ 8:冷却水ジャケット9:高周波電源
 10:マグネット 11:磁極    12:S磁石 第1図 第2図 第3図    第4図 第5図 、? 第6図    第7図
Fig. 1 is a schematic sectional view showing an embodiment of the present invention, Fig. 2 is a schematic plan view of the device shown in Fig. 1, Figs. 6 and 7 are schematic diagrams showing different examples of the conventional magnetron etching apparatus, and FIG. 8 shows the drift of electrons on etching "S%". An explanatory diagram showing the state, FIG. 9 is a diagram showing the spatial distribution state of electron density and discharge voltage on the surface of the etching electrode. In the figure, 1: vacuum chamber 2: rotating etching electrode 3: counter electrode 4: etching Substrate to be processed 5: Rotation drive shaft 6: Insulated transmission R structure 7: Drive motor 8: Cooling water jacket 9: High frequency power supply 10: Magnet 11: Magnetic pole 12: S magnet Figure 1 Figure 2 Figure 3 Figure 4 Figure 5, ? Figure 6 Figure 7

Claims (1)

【特許請求の範囲】[Claims] 真空容器内に対してに均一な磁場を発生する一対の磁場
発生装置と、上記真空容器内に配置され、磁場発生装置
によって発生された磁場平面内に回転するエッチング電
極とを有することを特徴とする回転電極型マグネトロン
エッチング装置。
It is characterized by having a pair of magnetic field generators that generate a uniform magnetic field within the vacuum container, and an etching electrode that is arranged within the vacuum container and rotates within the plane of the magnetic field generated by the magnetic field generators. Rotating electrode type magnetron etching equipment.
JP62076126A 1987-03-31 1987-03-31 Rotating electrode type magnetron etching device Expired - Fee Related JPH07116624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62076126A JPH07116624B2 (en) 1987-03-31 1987-03-31 Rotating electrode type magnetron etching device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62076126A JPH07116624B2 (en) 1987-03-31 1987-03-31 Rotating electrode type magnetron etching device

Publications (2)

Publication Number Publication Date
JPS63243285A true JPS63243285A (en) 1988-10-11
JPH07116624B2 JPH07116624B2 (en) 1995-12-13

Family

ID=13596233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62076126A Expired - Fee Related JPH07116624B2 (en) 1987-03-31 1987-03-31 Rotating electrode type magnetron etching device

Country Status (1)

Country Link
JP (1) JPH07116624B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1017091A2 (en) * 1998-12-22 2000-07-05 SpeedFam- IPEC Co., Ltd. A processing method of silicon wafer and a processing apparatus
KR100668955B1 (en) 2004-12-17 2007-01-12 동부일렉트로닉스 주식회사 Plasma etching apparatus and method of manufacturing semiconductor device using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5540761U (en) * 1978-09-11 1980-03-15
JPS6082661A (en) * 1983-10-11 1985-05-10 Hitachi Ltd Thin film forming device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5540761U (en) * 1978-09-11 1980-03-15
JPS6082661A (en) * 1983-10-11 1985-05-10 Hitachi Ltd Thin film forming device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1017091A2 (en) * 1998-12-22 2000-07-05 SpeedFam- IPEC Co., Ltd. A processing method of silicon wafer and a processing apparatus
EP1017091A3 (en) * 1998-12-22 2000-12-27 SpeedFam- IPEC Co., Ltd. A processing method of silicon wafer and a processing apparatus
US6406589B1 (en) 1998-12-22 2002-06-18 Speedfam-Ipec Co Ltd Processing apparatus for etching the edge of a silicon wafer
KR100668955B1 (en) 2004-12-17 2007-01-12 동부일렉트로닉스 주식회사 Plasma etching apparatus and method of manufacturing semiconductor device using the same

Also Published As

Publication number Publication date
JPH07116624B2 (en) 1995-12-13

Similar Documents

Publication Publication Date Title
US4842707A (en) Dry process apparatus
KR100390540B1 (en) Magnetron plasma etching apparatus
US20040168771A1 (en) Plasma reactor coil magnet
TW200425312A (en) Method, apparatus and magnet assembly for enhancing and localizing a capacitively coupled plasma
KR20020027604A (en) Magnetron plasma processing apparatus
JPS6272121A (en) Semiconductor treating device
JP4614578B2 (en) Plasma processing equipment for sputter deposition applications
CN109154076A (en) Film build method and sputtering equipment
JP4408987B2 (en) Plasma processing equipment for sputter processing
JPS63243285A (en) Rotating electrode type magnetron etching device
JP3037848B2 (en) Plasma generating apparatus and plasma generating method
JPH04324631A (en) Surface treatment equipment
JPH0830275B2 (en) Rotating magnetic field type magnetron etching device
JPH0621010A (en) Plasma processor
JP2877398B2 (en) Dry etching equipment
JP4223143B2 (en) Plasma processing equipment
JP2879302B2 (en) Magnetic field generator for magnetron plasma etching
JPS63186429A (en) Drying processor
JP2756911B2 (en) Magnetic field generator for magnetron plasma
JP3100242B2 (en) Plasma processing equipment
JP2990970B2 (en) Dry etching equipment
JP3655966B2 (en) Plasma generator
JP2756910B2 (en) Magnetic field generator for magnetron plasma
JPS6342707B2 (en)
JPS6389663A (en) Sputtering device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees