JPS63242157A - Permanent magnet rotor for synchronous motor - Google Patents
Permanent magnet rotor for synchronous motorInfo
- Publication number
- JPS63242157A JPS63242157A JP62071591A JP7159187A JPS63242157A JP S63242157 A JPS63242157 A JP S63242157A JP 62071591 A JP62071591 A JP 62071591A JP 7159187 A JP7159187 A JP 7159187A JP S63242157 A JPS63242157 A JP S63242157A
- Authority
- JP
- Japan
- Prior art keywords
- magnet
- magnets
- thinner
- thicker
- permanent magnet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000001360 synchronised effect Effects 0.000 title claims description 8
- 238000004804 winding Methods 0.000 claims description 4
- 239000000853 adhesive Substances 0.000 abstract description 3
- 230000001070 adhesive effect Effects 0.000 abstract description 3
- 230000005415 magnetization Effects 0.000 abstract description 3
- 125000006850 spacer group Chemical group 0.000 abstract description 2
- 230000005347 demagnetization Effects 0.000 abstract 3
- 230000004907 flux Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
Landscapes
- Permanent Field Magnets Of Synchronous Machinery (AREA)
Abstract
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は、同期電動機の永久磁石回転子に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a permanent magnet rotor for a synchronous motor.
(従来の技術)
従来の永久磁石型同期電動機の構造は、第2図の断面図
に示すようになっている。回転子Aは、回転子軸lの外
周に永久磁石2及び3を取り付け、それぞれN極及びS
極とし、回転子軸1がこれらの磁路となり界磁を作って
いる。固定子I(は、電機子鉄心4と、例えば、3相の
場合は、電機子コイル5a、5b及び5cからなり、こ
れらの、電機子コイルに流れる3相交流により回転磁界
が生じる。このため、例えば、電機子コイル5a(その
他のコイルは省略する)に流れる電流の方向を図示のと
おりとil、電機子巻線の相回転を時計方向とすると、
回転子Δは時計方向に回転する。(Prior Art) The structure of a conventional permanent magnet type synchronous motor is shown in the sectional view of FIG. The rotor A has permanent magnets 2 and 3 attached to the outer periphery of the rotor shaft l, with N and S poles respectively.
The rotor shaft 1 serves as a pole and serves as a magnetic path for these to create a magnetic field. The stator I (consists of an armature core 4 and, for example, armature coils 5a, 5b, and 5c in the case of three phases, and a rotating magnetic field is generated by the three-phase alternating current flowing through these armature coils. For example, if the direction of the current flowing through the armature coil 5a (other coils are omitted) is as shown in the figure, and the phase rotation of the armature winding is clockwise, then
The rotor Δ rotates clockwise.
この場合、サーボモータ等では、トルクの関係」―、電
機子電流と界磁磁束が90°位相がずれるように制御す
るため、電機子反作用は偏磁作用となる。このため、例
えば、第2図の永久磁石2の磁気回路では、永久磁石2
の中心を通る軸Xの左側は、矢印で示すように減磁側と
なり、また、右側は増磁側となる。従って、増磁側では
、磁気飽和を生じて磁束が通りにくくなり電機子反作用
リアクタンスは小さくなる。逆に、減磁側では、磁気飽
和がないので、電機子反作用リアクタンスは、殆ど一定
で小さくならない。このため、リアクタンスが大きいま
まであると、電機子巻線のりアクタンス降下が大きくな
り、高回転域では、トルク発生の必要な電流を流すこと
ができないという問題点がある。また、このような電機
子反作用を小さくおさえるため、永久磁石を十分に厚く
することが考えられるが、これら磁石のコストが増加す
る問題が生じる。In this case, in a servo motor or the like, the armature reaction becomes a biased magnetism because the torque relationship is controlled so that the armature current and the field magnetic flux are out of phase by 90 degrees. For this reason, for example, in the magnetic circuit of the permanent magnet 2 shown in FIG.
The left side of the axis X passing through the center of is the demagnetizing side, as shown by the arrow, and the right side is the magnetizing side. Therefore, on the magnetization side, magnetic saturation occurs, making it difficult for the magnetic flux to pass through, and the armature reaction reactance becomes small. On the contrary, on the demagnetizing side, since there is no magnetic saturation, the armature reaction reactance is almost constant and does not become small. For this reason, if the reactance remains large, the armature winding will have a large actance drop, and there is a problem in that the current required to generate torque cannot flow in a high rotation range. Furthermore, in order to suppress such armature reaction, it is conceivable to make the permanent magnets sufficiently thick, but this poses a problem of increasing the cost of these magnets.
(発明が解決しようとする問題点)
本発明の目的は、電機子反作用リアクタンスを小さくす
るこのできる同期電動機の永久磁石回転子を提供するこ
とである。(Problems to be Solved by the Invention) An object of the present invention is to provide a permanent magnet rotor for a synchronous motor that can reduce armature reaction reactance.
(問題点を解決するための手段)
回転子軸の外周に取り付けた界磁用の永久磁石について
、その対応する電機子巻線の電機子電流による電機子反
作用のため増磁側となる部分の磁石を薄くし、また減磁
側となる部分の磁石を厚くする。(Means for solving the problem) Regarding the field permanent magnet attached to the outer periphery of the rotor shaft, the part that becomes the magnetizing side due to the armature reaction due to the armature current of the corresponding armature winding. Make the magnet thinner, and make the part of the magnet thicker on the demagnetizing side.
(作用)
永久磁石の増磁側の磁気回路は磁石の厚さを薄くしても
磁気飽和により電機子反作用リアクタンスは小となり、
また減磁側の磁気回路は磁石の厚さを厚くしたので、磁
気飽和はないが電機子反作用リアクタンスは小となり、
いずれも電機子反作用リアクタンスが小さくなる。(Function) In the magnetic circuit on the magnetizing side of the permanent magnet, even if the thickness of the magnet is made thinner, the armature reaction reactance becomes small due to magnetic saturation.
In addition, the thickness of the magnet in the magnetic circuit on the demagnetizing side is increased, so there is no magnetic saturation, but the armature reaction reactance is small.
In either case, the armature reaction reactance becomes smaller.
(実施例)
第1図は、本発明に°よる永久磁石回転子の実施例の断
面図で、2極の場合を示しその基本的横進は第2図の従
来のものと同様である。しかし、磁石の厚みが一様でな
い。第1図のN極の磁石についてみると、磁石の゛中心
軸に対して、左半分の磁石2bは厚く、また右半分の磁
石2aは薄くなっている。同様に、S極の磁石について
も、磁石3aは薄く、磁石3bは厚くなっている。(Embodiment) FIG. 1 is a sectional view of an embodiment of a permanent magnet rotor according to the present invention, showing a two-pole case, and its basic lateral movement is the same as that of the conventional rotor shown in FIG. However, the thickness of the magnet is not uniform. Looking at the N-pole magnet in FIG. 1, with respect to the central axis of the magnet, the left half of the magnet 2b is thick, and the right half of the magnet 2a is thin. Similarly, regarding the S-pole magnets, the magnet 3a is thin and the magnet 3b is thick.
通常大容量の磁石では、回転子軸方向及び円周方向共に
磁石を分割して製造することが多いので、この場合も、
減磁側の磁石2b、3bには厚い磁石片を用い、増磁側
の磁石2a、3aには薄い磁石片を用いてこれらを接着
材等で取り付ける。この場合、磁石外径を合わせるため
に、薄い磁石2a、3aの内側に磁性体のスペーサ6を
用いこれらは接着材で接着する。これにより、減磁側で
も厚い磁石2b、2aのため電機子反作用リアクタンス
が小さくなる。Normally, large-capacity magnets are manufactured by dividing the magnet in both the rotor axial direction and the circumferential direction, so in this case as well,
Thick magnet pieces are used for the magnets 2b and 3b on the demagnetizing side, thin magnet pieces are used for the magnets 2a and 3a on the increasing side, and these are attached with an adhesive or the like. In this case, in order to match the outer diameters of the magnets, a magnetic spacer 6 is used inside the thin magnets 2a and 3a, and these are bonded together with an adhesive. As a result, the armature reaction reactance becomes small even on the demagnetizing side because of the thick magnets 2b and 2a.
上述の実施例では、3相2極の同期電動機について説明
したが、相数及び極数がこれと異なる場合も同様である
。In the above-mentioned embodiment, a three-phase two-pole synchronous motor was described, but the same applies to cases where the number of phases and the number of poles are different from this.
(発明の効果)
回転子軸の外周に取り付ける界磁用永久磁石の厚さを増
磁側と減磁側とで異ならせ、増磁側では従来より薄い磁
石で磁気飽和により電機子反作用リアクタンスを小さく
することができ、高価な磁石(オの節紘となり1、また
減磁側でも磁石を厚くすることにより磁気飽和が得られ
なくても電機子反作用リアクタンスを小さくすることが
でき、全周にわたって厚い磁石を使ったのとほぼ同じ電
機子反作用リアクタンスとなり高回転域での特性が向上
する。(Effect of the invention) The thickness of the field permanent magnet attached to the outer periphery of the rotor shaft is made different between the magnetizing side and the demagnetizing side, and on the magnetizing side, the armature reaction reactance is reduced by magnetic saturation using a thinner magnet than before. By making the magnet thicker on the demagnetizing side, the armature reaction reactance can be reduced even if magnetic saturation cannot be achieved, and The armature reaction reactance is almost the same as using a thick magnet, and the characteristics in the high rotation range are improved.
第1図は、本発明の永久磁石回転子の実施例の断面図、
第2図は、従来の永久磁石回転子を用いた同期電動機の
断面図。
図において、FIG. 1 is a sectional view of an embodiment of the permanent magnet rotor of the present invention;
FIG. 2 is a sectional view of a synchronous motor using a conventional permanent magnet rotor. In the figure,
Claims (1)
動機の永久磁石回転子において、 各永久磁石について、その対応する電機子巻線の電機子
電流による電機子反作用により増磁側となる部分の磁石
を薄く、また減磁側となる部分の磁石を厚くしたことを
特徴とする同期電動機の永久磁石回転子。[Claims] In a permanent magnet rotor of a synchronous motor in which permanent magnets for field are attached to the outer periphery of the rotor shaft, armature reaction due to armature current of the corresponding armature winding is applied to each permanent magnet. A permanent magnet rotor for a synchronous motor, characterized in that the magnets in the magnetizing side are thinner and the magnets in the demagnetizing side are thicker.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62071591A JPS63242157A (en) | 1987-03-27 | 1987-03-27 | Permanent magnet rotor for synchronous motor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62071591A JPS63242157A (en) | 1987-03-27 | 1987-03-27 | Permanent magnet rotor for synchronous motor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63242157A true JPS63242157A (en) | 1988-10-07 |
Family
ID=13465067
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62071591A Pending JPS63242157A (en) | 1987-03-27 | 1987-03-27 | Permanent magnet rotor for synchronous motor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63242157A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6049153A (en) * | 1996-02-23 | 2000-04-11 | Matsushita Electric Industrial Co., Ltd. | Motor |
US10770958B2 (en) | 2017-11-23 | 2020-09-08 | Rolls-Royce Plc | Electrical machine |
-
1987
- 1987-03-27 JP JP62071591A patent/JPS63242157A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6049153A (en) * | 1996-02-23 | 2000-04-11 | Matsushita Electric Industrial Co., Ltd. | Motor |
US6300700B1 (en) * | 1996-02-23 | 2001-10-09 | Matsushita Electric Industrial Co., Ltd. | Motor |
US6356001B1 (en) | 1996-02-23 | 2002-03-12 | Matsushita Electric Industrial Co., Ltd. | Electric vehicle using a motor |
US6369480B1 (en) | 1996-02-23 | 2002-04-09 | Matsushita Electric Industrial Co., Ltd. | Compressor using a motor |
US6759778B2 (en) | 1996-02-23 | 2004-07-06 | Matsushita Electric Industrial Co., Ltd. | Electric vehicle using a motor |
US6979924B2 (en) | 1996-02-23 | 2005-12-27 | Matsushita Electric Industrial Co., Ltd. | Compressor using a motor |
US10770958B2 (en) | 2017-11-23 | 2020-09-08 | Rolls-Royce Plc | Electrical machine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5510662A (en) | Permanent magnet motor | |
US3684907A (en) | Electric motor | |
JP2695332B2 (en) | Permanent magnet field type rotor | |
JP2017121152A (en) | motor | |
US9337709B2 (en) | Axial gap type permanent magnet electric rotating apparatus and method of manufacturing the same | |
US4845424A (en) | Rotary displacement motor | |
JP2018082600A (en) | Double-rotor dynamoelectric machine | |
JPH11243672A (en) | Thrust-controllable rotary-type synchronous machine | |
JPH0378458A (en) | Motor | |
JPH11206085A (en) | Permanent magnet motor | |
JPH0479741A (en) | Permanent magnet rotor | |
JP2021010211A (en) | Rotary electric machine and rotary electric machine manufacturing method | |
JPH08126279A (en) | Brushless dc motor | |
JP4823425B2 (en) | DC motor | |
JPS63242157A (en) | Permanent magnet rotor for synchronous motor | |
JPH04322150A (en) | Motor | |
WO2017014211A1 (en) | Motor | |
US3848146A (en) | Ac motor | |
JPS62118752A (en) | Stepping motor | |
JPH02266862A (en) | Stator for stepping motor | |
JP2945441B2 (en) | Motor using permanent magnet | |
JPS59113753A (en) | Permanent magnet rotary machine | |
JP3591660B2 (en) | Three-phase claw pole type permanent magnet type rotating electric machine | |
JPS6096162A (en) | Permanent magnet rotor | |
JPS61199455A (en) | Stepping motor |