JPS63241874A - Cooling water system for fuel cell - Google Patents

Cooling water system for fuel cell

Info

Publication number
JPS63241874A
JPS63241874A JP62074341A JP7434187A JPS63241874A JP S63241874 A JPS63241874 A JP S63241874A JP 62074341 A JP62074341 A JP 62074341A JP 7434187 A JP7434187 A JP 7434187A JP S63241874 A JPS63241874 A JP S63241874A
Authority
JP
Japan
Prior art keywords
water
cooling water
steam
battery
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62074341A
Other languages
Japanese (ja)
Inventor
Hiroki Shibukawa
渋川 裕樹
Hiroyuki Narita
成田 寛行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62074341A priority Critical patent/JPS63241874A/en
Publication of JPS63241874A publication Critical patent/JPS63241874A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To obtain a high total heat efficiency in a plant and a proper load responsiveness caused by effective use of exhaust heat by connecting a supplementary water pipe close to a steam separator of a cell cooling water downcomer and controlling flow of supplementary water. CONSTITUTION:Cell cooling water is supplied from a steam separator 4 through a downcomer to the main body of a fuel cell 1 by a cell cooling water pump 8. The cooling water absorbs reaction heat through a cooling water pipe 2 inside the fuel cell, becomes two-phase flow of steam and water, and is recovered by the steam separator 4. The separator 4 separates steam from water, and the water is used as cell cooling water through the downcomer again, while steam is led to a fuel reformer 100 to be used for reformation of material fuel by means of catalyst. Close to the steam separator the downcomer is connected with a supplementary water pipe 36, and supplementary water is supplied from a water processing device 5 by supplementary water pump 7. In case stream consumption is increased in the fuel reformer 100 when load in the cell 1 is increased, supply of supplementary water is increased, so that saturated water in the downcomer is undercooled, so as to prevent pressure reduction boiling, and prevent cavitation in the pump 8.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、燃料電池プラントの高速負荷追従の実現上主
要補器の保護の面からの高い安全性と、省スペースの見
地から秀れたコンパクト性を合せ持つ燃料電池発電プラ
ントの冷却水システムに関する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention provides high safety in terms of protection of main auxiliary equipment and space saving in realizing high-speed load following of a fuel cell plant. This article relates to a cooling water system for a fuel cell power generation plant that has excellent compactness from a viewpoint.

(従来の技術) 電力の発生は通常1発電機を蒸気タービン等の原動機で
回転させ、交流のまま需要側へ送ることが、電力の発生
より消費に到るまで最も都合の良い方法として採用され
て居り、現在の電力系統は交流系統がほとんどを占めて
いる。
(Conventional technology) Normally, electric power is generated by rotating a generator with a prime mover such as a steam turbine and sending it to the demand side as alternating current, which is the most convenient method from generation to consumption. Currently, most of the power systems are AC systems.

一方、蒸気タービン等を駆動する蒸気は、ボイラ等にて
石油、ガス等の燃料を燃焼させた熱エネルギーとして取
り出し、蒸気エネルギーに変換し、さらに電気エネルギ
ーとして取り出すことは効率面で不利なことから、近年
燃料を化学的に変化させ、この化学的変化の際に発生す
る電子の流れより直接電気エネルギーを取り出そうとす
る燃料電池方式が省エネルギー発電の一つとして採用さ
れるようになって来た。
On the other hand, the steam that drives a steam turbine etc. is extracted as thermal energy by burning fuel such as oil or gas in a boiler etc., and it is disadvantageous in terms of efficiency to convert it into steam energy and then extract it as electrical energy. In recent years, fuel cell systems have been adopted as an energy-saving power generation method, in which fuel is chemically changed and electrical energy is directly extracted from the flow of electrons generated during this chemical change.

この燃料電池は供給された燃料を化学変化させて電力を
発生するものであるが、その出力は直流出力であり、こ
のまま特定区域で消費する場合は直流で消費され、また
省エネルギー政策の一環として大量の電力をまかなう場
合には、直流交流変換器により交流に変換し電力系統と
接続している。
This fuel cell generates electricity by chemically changing the supplied fuel, but its output is direct current, and if it is consumed as is in a specific area, it will be consumed as direct current, and as part of energy conservation policy, it will be consumed in large quantities. When electricity is to be supplied, it is converted to AC using a DC/AC converter and connected to the power grid.

現在開発に向けて種々の実験プラントにて検証が行われ
ている電力用の燃料電池発電プラントでは、天然ガス等
の原燃料を燃料改質器における触媒反応によって水素含
有率の高い燃料に改質し、これを燃料電池本体に供給さ
せる方法が主流となってきている。
Fuel cell power generation plants for electric power, which are currently being tested at various experimental plants for development, reform raw fuel such as natural gas into fuel with a high hydrogen content through a catalytic reaction in a fuel reformer. However, a method of supplying this to the fuel cell main body has become mainstream.

燃料改質器における媒触反応には蒸気を必要とするが、
高いプラント総合熱効率を実現するため、燃料電池本体
の排熱をこの蒸気の発生熱源としている。
Steam is required for catalytic reactions in fuel reformers, but
In order to achieve high overall plant thermal efficiency, the exhaust heat from the fuel cell itself is used as the heat source for generating this steam.

第5図は従来の方法によるプラントシステム構成である
FIG. 5 shows a plant system configuration according to a conventional method.

水処理装置5から電池冷却水補給ポンプ26により供給
される電池冷却水は電池冷却水補給調節弁27により気
水分離器4内の水位が適切になるように流量調節されて
気水分離器4に導びかれる。
The battery cooling water supplied from the water treatment device 5 by the battery cooling water replenishment pump 26 is adjusted in flow rate by the battery cooling water replenishment control valve 27 so that the water level in the steam water separator 4 becomes appropriate. be guided by

電池冷却水は気水分離器4から降水管を経て。The battery cooling water passes through the downpipe from the steam/water separator 4.

電池冷却水供給ポンプ8により、燃料電池本体に供給さ
れる。
A battery cooling water supply pump 8 supplies the fuel cell body with water.

水は一般にある圧力下である定まった温度で沸とうが始
まる。水をある圧力下で熱していき定まった温度で沸と
うが始まると、液体状態の水、全てが蒸気に変わるまで
温度は上昇せず、その間に加えられる熱は水を液体の状
態から蒸気の状態に変化させるために費やされるにの時
、水と蒸気は同じ温度で2相流状態として共存し、蒸気
を飽和蒸気、水を飽和水と呼ぶ。
Water generally begins to boil at a certain temperature under a certain pressure. When water is heated under a certain pressure and boiling begins at a fixed temperature, the temperature does not rise until all of the liquid water changes to steam. During the time it takes to change the state, water and steam coexist at the same temperature as a two-phase flow state, and steam is called saturated steam and water is called saturated water.

燃料電池本体内部における化学反応を一定の温度下で行
うため供給された電池弁動水は、燃料型池内冷却水管2
にて電池の反応熱を吸収し、飽和水と飽和蒸気の2相流
となって排出されるので、これを気水分離器4にて、蒸
気と水に分離し、水は、再び、電池冷却水として使用し
、蒸気は燃料改質器100における触媒反応に供するよ
うにする。
In order to carry out the chemical reaction inside the fuel cell main body at a constant temperature, the battery valve water is supplied to the fuel pond cooling water pipe 2.
absorbs the reaction heat of the battery and is discharged as a two-phase flow of saturated water and saturated steam.This is separated into steam and water in the steam separator 4, and the water is returned to the battery. It is used as cooling water, and the steam is supplied to the catalytic reaction in the fuel reformer 100.

(発明が解決しようとする問題点) しかし、従来の方法では、以下のような欠点があった。(Problem to be solved by the invention) However, the conventional method has the following drawbacks.

気水分離器4にて蒸気と分離され、降水管を降りる水は
飽和水であり、熱が加えられるか、圧力が下がるかすれ
ば直ちに沸とうし始める。
The water that is separated from steam in the steam separator 4 and descends down the downpipe is saturated water, and begins to boil as soon as heat is added or the pressure is reduced.

ここで燃料電池1の負荷増加時に負荷の増加が急激であ
ると燃料改質器100における蒸気消費量が急激に増大
し、気水分離H1#4及び気水分離器4から電池冷却水
供給ポンプ8に至る降水管内の圧力が下がり、減圧沸と
うが生じ、電池冷却水供給ポンプ8は、気胞が、流入す
ることによりキャビテーションを起こす。
Here, if the load of the fuel cell 1 increases rapidly, the amount of steam consumed in the fuel reformer 100 will increase rapidly, and the steam water separator H1 #4 and the steam water separator 4 will supply the cell cooling water to the cell cooling water supply pump. The pressure in the downcomer pipe 8 decreases, and reduced pressure boiling occurs, and the battery cooling water supply pump 8 causes cavitation due to the inflow of air bubbles.

このため、従来の燃料電池冷却水システムは。For this reason, conventional fuel cell cooling water systems.

プラント自体の安全性の面から、高速負荷応答の要求に
対応できなかった。
From the standpoint of the safety of the plant itself, it was not possible to meet the demands for high-speed load response.

対策として気水分離器4の位置を高くすることが考えら
れるが、低騒音無公害でプラントがコンパクトであるこ
とから都市近郊配置を目標に開発を進めている燃料電池
発電プラントから、コンパクト性という特質が失われる
ことになる。
As a countermeasure, raising the position of the steam/water separator 4 may be considered, but since the plant is low noise, non-polluting, and compact, fuel cell power generation plants are being developed with the aim of being located near urban areas. Characteristics will be lost.

そのため、燃料電池本体1の排熱を有効利用しながら、
負荷増加時にも電池冷却水供給ポンプ8のキャビテ−シ
ョンを起さず急激な負荷変化に対する応答性を持ち更に
プラントの大きな特長であるコンパクト性も失なわない
システムの開発が望まれていた。
Therefore, while effectively utilizing the exhaust heat of the fuel cell body 1,
It has been desired to develop a system that does not cause cavitation of the battery cooling water supply pump 8 even when the load increases, has responsiveness to sudden load changes, and does not lose its compactness, which is a major feature of the plant.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 電池冷却水降水管の気水分離器近傍に補給水管を接続し
、補給水流量を制御することにより、アンダークールす
ることによって、負荷急増時に生じる減圧沸とうを防止
し、電池冷却水供給ポンプの水頭を確保して、そのキャ
ビテーションを防止する。
(Means for solving the problem) By connecting a make-up water pipe near the steam-water separator of the battery cooling water downcomer pipe and controlling the make-up water flow rate, undercooling can be achieved to reduce the pressure-reduced boiling that occurs when the load suddenly increases. This prevents cavitation by ensuring the water head of the battery cooling water supply pump.

(作  用) これによってプラント排熱の有効利用による高いプラン
ト総合熱効率と良好な負荷応答性を合せ持つ、燃料電池
冷却水システムを提供する。
(Function) This provides a fuel cell cooling water system that combines high overall plant thermal efficiency through effective use of plant exhaust heat and good load response.

(実 施 例) 第1図は本発明の一実施例によるプラントシステム構成
である。気水分離器4から降水管を経て電池冷却水供給
ポンプ8によって燃料電池本体1へ電池冷却水を供給す
る。
(Embodiment) FIG. 1 shows a plant system configuration according to an embodiment of the present invention. Battery cooling water is supplied from the steam/water separator 4 to the fuel cell main body 1 via a downcomer pipe by a battery cooling water supply pump 8.

電池冷却水は、燃料型池内冷却水管2において、反応熱
を吸収し、蒸気と水の2相流となって気水分離器4に回
収される。
The battery cooling water absorbs reaction heat in the fuel type pond cooling water pipe 2, becomes a two-phase flow of steam and water, and is recovered in the steam-water separator 4.

気水分離器4では、蒸気と水を分離し、水は、降水管を
経て再び、電池冷却水として使用され、蒸気は、燃料改
質器100に導びかれ、触媒によるJ!X燃料の改質に
供される。
In the steam/water separator 4, steam and water are separated, and the water passes through the downcomer pipe and is used again as battery cooling water.The steam is led to the fuel reformer 100, where it is converted into J! Used for reforming X fuel.

降水管の気水分離器近傍に補給水′IW36を接続し、
水処理装置5から、補給水供給ポンプ7により、補給水
を供給する。
Connect makeup water 'IW36 near the steam-water separator of the downcomer pipe,
Makeup water is supplied from the water treatment device 5 by a make-up water supply pump 7.

燃料電池1の負荷増加時に燃料改質器100における蒸
気消費量が増大した場合、補給水量を増量して、降水管
内の飽和水をアンダークールすることによって減圧沸と
うを防止し、電池冷却水供給ポンプ8の水頭を確保して
、電池冷却水供給ポンプ8のキャビテーションを防止す
る。
If the amount of steam consumed in the fuel reformer 100 increases when the load on the fuel cell 1 increases, the amount of make-up water is increased to undercool the saturated water in the downcomer pipe to prevent boiling under reduced pressure and reduce the supply of cell cooling water. Cavitation of the battery cooling water supply pump 8 is prevented by securing the water head of the pump 8.

第2図は本発明の他の一実施例によるプラントシステム
構成である。
FIG. 2 shows a plant system configuration according to another embodiment of the present invention.

前述の実施例の構成に加えて、補給水管36に補給水流
量制御弁6を、更に、気水分離器4の水位を検出する水
位検出器10と、制御表[11を設けたものである。
In addition to the configuration of the above embodiment, a make-up water flow rate control valve 6 is provided in the make-up water pipe 36, a water level detector 10 for detecting the water level of the steam-water separator 4, and a control table [11] are provided. .

改質器100における蒸気の消費量が増大した際に、気
水分離器4内の圧力が下がり、減圧沸とうが生じると、
気水分離器4の水位が下がる。
When the consumption of steam in the reformer 100 increases, the pressure in the steam-water separator 4 decreases, and reduced pressure boiling occurs.
The water level in the steam-water separator 4 decreases.

制御表[11は、水位検出器10からの水位信号と。The control table [11 is the water level signal from the water level detector 10.

水位設定部12からの水位設定信号との偏差を加減算部
13において演算し、PID制御部14にて補給水流量
制御弁6の適切な開度を演算し、開度指令を出力する。
The addition/subtraction section 13 calculates the deviation from the water level setting signal from the water level setting section 12, and the PID control section 14 calculates an appropriate opening degree of the make-up water flow rate control valve 6, and outputs an opening degree command.

こうして、補給水流量制御弁6の開度を調整し。In this way, the opening degree of the makeup water flow rate control valve 6 is adjusted.

降水管内゛の飽和水をアンダークールすることによって
減圧沸騰を防止し、電池冷却水供給ポンプ8の水頭を確
保して、電池冷却水供給ポンプ8のキャビテーションを
防止する。
By undercooling the saturated water in the downcomer pipe, boiling under reduced pressure is prevented, the water head of the battery cooling water supply pump 8 is secured, and cavitation of the battery cooling water supply pump 8 is prevented.

第3図は第2図の実施例の構成に加えて、燃料電池1の
電力負荷を検出する負荷検出器9を設け、その負荷信号
を制御装fillに六方し水位設定部12にて、水位設
定信号を作成する際に、負荷信号によるスケジュール計
算を行い、電池冷却水の減圧沸とうに先行して、補給水
流量を増量し、降水管内の飽和水を、アンダークールす
ることによって減圧沸とうを防止し、電池冷却水供給ポ
ンプ8の水頭を確保して、電池冷却水供給ポンプ8のキ
ャビテーションを防止するようにしたものである。
In addition to the structure of the embodiment shown in FIG. 2, FIG. When creating the setting signal, a schedule is calculated based on the load signal, and the make-up water flow rate is increased to under-cool the saturated water in the downcomer pipes to perform vacuum boiling, prior to vacuum boiling of the battery cooling water. The cavitation of the battery cooling water supply pump 8 is prevented by ensuring the water head of the battery cooling water supply pump 8.

第4図は第1図の実施例の構成に加えて、補給水管36
に補給水流量制御弁6を、また、降水管内の電池冷却水
流量を検出する流量検出器I5と、燃料電池1の電力負
荷を検出する負荷信号検出器9と、制御装置11を設け
、更に、ブローダウン弁17と、気水分離器4の水位を
検出する水位検出器10と制御装!118を設けたもの
である。
In addition to the configuration of the embodiment shown in FIG. 1, FIG.
A make-up water flow rate control valve 6 is provided, a flow rate detector I5 for detecting the flow rate of battery cooling water in the downpipe, a load signal detector 9 for detecting the power load of the fuel cell 1, and a control device 11 are provided. , a blowdown valve 17, a water level detector 10 that detects the water level of the steam/water separator 4, and a control device! 118 is provided.

制御装置11は、流−量検出器15からの流量信号と。The control device 11 receives a flow rate signal from a flow rate detector 15.

流量設定部16からの流量設定信号との偏差を加減算部
13にて演算し、PID制御部14にて補給水流量調節
弁6の最適な開度を演算し、開度指令を出力している。
The addition/subtraction unit 13 calculates the deviation from the flow rate setting signal from the flow rate setting unit 16, and the PID control unit 14 calculates the optimal opening degree of the make-up water flow rate control valve 6, and outputs an opening command. .

流量設定部16にて流量設定信号を作成する際に。When creating a flow rate setting signal in the flow rate setting section 16.

負荷信号検出器9よりの負荷信号によるスケジュール計
算を行い、電池冷却水の減圧沸とうに先行して補給水流
量を増量し、降水管内の飽和水を、アンダークールする
ことによって減圧沸とうを防止し、電池冷却水供給ポン
プ8の水頭を確保して。
A schedule is calculated based on the load signal from the load signal detector 9, and the make-up water flow rate is increased prior to the depressurization boiling of the battery cooling water, and the saturated water in the downcomer pipe is undercooled to prevent depressurization boiling. , secure the water head of the battery cooling water supply pump 8.

電池冷却水供給ポンプ8のキャビテーションを防止する
Cavitation of the battery cooling water supply pump 8 is prevented.

また、気水分離器4の水位は、制御装置18によりブロ
ーダウン弁17を調節して制御する。
Further, the water level of the steam-water separator 4 is controlled by adjusting the blowdown valve 17 by the control device 18.

水位検出器10よりの水位信号と、水位設定部12より
の水位設定信号の偏差を加減算部20にて演算し、PI
D制御部19にて、ブローダウン弁17の最適な開度を
演算し、開度指令を出力する。
The deviation between the water level signal from the water level detector 10 and the water level setting signal from the water level setting section 12 is calculated by the addition/subtraction section 20, and the PI
The D control unit 19 calculates the optimum opening degree of the blowdown valve 17 and outputs an opening degree command.

又本発明の実施例では負荷相当信号で水位設定信号をス
ケジュールしているが、PID等の制御演算出力部に先
行信号として加算し、過渡的には負荷増等に対し、補給
水を増加し定常的には水位設定部の信号レベルに気水分
離器レベルを落着かせる方法も可である。
In addition, in the embodiment of the present invention, the water level setting signal is scheduled using a load-equivalent signal, but it is added to the control calculation output section such as PID as a preceding signal, and the make-up water is increased transiently in response to an increase in load, etc. On a regular basis, it is also possible to adjust the level of the steam/water separator to the signal level of the water level setting section.

なおこれ迄は負荷相当信号でのスケジュールで説明した
が、負荷変化率又は両者の複合成分としてスケジュール
する事も可である。
Although the schedule has been explained so far using a load-equivalent signal, it is also possible to schedule based on the load change rate or a composite component of both.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、燃料電池冷却水循環ライ
ンに気水分離器を設け、発生蒸気を原燃料改質のための
触媒反応に使用することにより。
As described above, according to the present invention, a steam-water separator is provided in the fuel cell cooling water circulation line, and the generated steam is used for a catalytic reaction for reforming raw fuel.

高いプラント総合熱効率を保ちつつ、更に気水分渭器の
位置を極端に高くしない構成を取っていながら、燃料電
池の負荷が増加し、気水分離器がら導出される蒸気量が
増加した際に、気水分離器及び電池冷却水供給ポンプに
至る降水管内の飽和水を補給水流量の制御によりアンダ
ークールすることによって減圧沸騰を防止し、電池冷却
水供給ポンプの水頭を確保して、電池冷却水供給ポンプ
のキャビテーションを防止できることがら、高速負荷応
答が可能となる。
While maintaining high overall plant thermal efficiency and adopting a configuration in which the position of the steam/water separator is not extremely high, when the load on the fuel cell increases and the amount of steam extracted from the steam/water separator increases, The saturated water in the downcomer leading to the steam separator and the battery cooling water supply pump is undercooled by controlling the make-up water flow rate to prevent decompression boiling, secure the water head of the battery cooling water supply pump, and cool the battery cooling water. Since cavitation of the supply pump can be prevented, high-speed load response is possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第3図、第4図は本発明の一実施例を
示すブロック図、第5図は従来例を示すブロック図であ
る。 l・・・燃料電池本体   4・・−気水分m器5・・
・水処理装置    7・・・補給水供給ポンプ8・・
・電池冷却水供給ポンプ 代理人 弁理士 則 近 憲 佑 同  三俣弘文
FIG. 1, FIG. 2, FIG. 3, and FIG. 4 are block diagrams showing one embodiment of the present invention, and FIG. 5 is a block diagram showing a conventional example. l...Fuel cell main body 4...-Air/moisture m unit 5...
・Water treatment equipment 7... Makeup water supply pump 8...
・Battery cooling water supply pump agent Patent attorney Noriyuki Chika Yudo Hirofumi Mitsumata

Claims (4)

【特許請求の範囲】[Claims] (1)冷却水を供給することにより、電池本体内部にお
ける化学反応のための適切な温度を保持する燃料電池シ
ステムにおいて、電部本体冷却水管の電池本体下流側に
て2相流状態となる電池冷却水から蒸気を分離してこれ
を有効利用するために設けられた気水分離器と、上記気
水分離器で蒸気と分離された液体状態の水を電池本体に
電池本体冷却水として供給する電池冷却水降水管と、上
記気水分離器の近傍の上記電池冷却水降水管に接続され
た補給水管と、上記電池冷却水降水管に接続された電池
冷却水供給ポンプとから成ることを特徴とする燃料電池
冷却水システム。
(1) In a fuel cell system that maintains an appropriate temperature for chemical reactions inside the battery main body by supplying cooling water, a battery enters a two-phase flow state on the downstream side of the battery main body cooling water pipe A steam-water separator is provided to separate steam from cooling water and use it effectively, and liquid water separated from steam by the steam-water separator is supplied to the battery body as battery body cooling water. A battery cooling water downpipe, a supply water pipe connected to the battery cooling water downpipe near the steam-water separator, and a battery cooling water supply pump connected to the battery cooling water downdown pipe. Fuel cell cooling water system.
(2)冷却水を供給することにより、電池本体内部にお
ける化学反応のための適切な温度を保持する燃料電池シ
ステムにおいて、電池本体冷却水管の電池本体下流側に
て2相流状態となる電池冷却水から蒸気を分離してこれ
を有効利用するために設けられた気水分離器と、上記気
水分離器で蒸気と分離された液体状態の水を電池本体に
電池本体冷却水として供給する電池冷却水降水管と、上
記気水分離器の近傍の上記電池冷却水降水管に接続され
た補給水管と、上記電池冷却水降水管に接続された電池
冷却水供給ポンプと、前記補給水管に取り付けられた補
給水流量制御弁と、前記気水分離器内の水位を検出する
気水分離器水位検出器と、上記気水分離器水位検出器よ
りの水位信号から上記補給水流量制御弁の最適な開度を
演算し、上記補給水流量制御弁に開度指令を出力する制
御装置とから成ることを特徴とする燃料電池冷却水シス
テム。
(2) In a fuel cell system that maintains an appropriate temperature for chemical reactions inside the battery body by supplying cooling water, battery cooling becomes a two-phase flow state on the downstream side of the battery body cooling water pipe. A steam-water separator installed to separate steam from water and use it effectively; and a battery that supplies liquid water separated from steam by the steam-water separator to the battery body as cooling water for the battery body. a cooling water downpipe, a make-up water pipe connected to the battery cooling water downpipe near the steam-water separator, a battery cooling water supply pump connected to the battery cooling water downpipe, and a make-up water pipe attached to the make-up water pipe. Optimization of the make-up water flow rate control valve based on the water level signal from the made-up water flow control valve, a steam-water separator water level detector that detects the water level in the steam-water separator, and the water-water separator water level detector. 1. A fuel cell cooling water system comprising: a control device that calculates an opening degree and outputs an opening command to the make-up water flow rate control valve.
(3)特許請求の範囲第2項記載の燃料電池冷却水シス
テムにおいて、前記制御装置にて前記補給水流量制御弁
の最適な開度を演算するに際して燃料電池の実負荷ある
いは負荷指令等の負荷相当信号を検出する負荷信号検出
器からの負荷信号を使用することを特徴とする燃料電池
冷却水システム。
(3) In the fuel cell cooling water system according to claim 2, when the control device calculates the optimum opening degree of the make-up water flow rate control valve, the load such as the actual load of the fuel cell or the load command is applied. A fuel cell cooling water system characterized in that it uses a load signal from a load signal detector that detects a corresponding signal.
(4)冷却水を供給することにより、電池本体内部にお
ける化学反応のため適切な温度を保持する燃料電池シス
テムにおいて、電池本体冷却水管の電池本体下流側にて
2相流状態となる電池冷却水から蒸気を分離してこれを
有効利用するために設けられた気水分離器と、上記気水
分離器で蒸気と分離された液体状態の水を電池本体に電
池本体冷却水として供給する電池冷却水降水管と、上記
気水分離器の近傍の上記電池冷却水降水管に接続された
補給水管と、上記電池冷却水降水管に接続された電池冷
却水供給ポンプと、前記補給水管に取り付けられた補給
水流量制御弁と、前記電池冷却水降水管内の電池冷却水
流量を検出する電池冷却水流量検出器と、燃料電池の実
負荷あるいは負荷指令等の負荷相当信号を検出する負荷
信号検出器と、上記電池冷却水流量検出器よりの電池冷
却水流量信号及び上記負荷信号検出器よりの負荷信号か
ら上記補給水流量制御弁の最適な開度を演算し上記補給
水流量制御弁に開度指令を出力する制御装置と、気水分
離器の水位を適切に保つため前記電池冷却水降水管から
ブローダウンする流量を調節するブローダウン弁と、前
記気水分離器内の水位を検出する気水分離器水位検出器
と、上記気水分離器水位検出器よりの水位信号から上記
ブローダウン弁の最適な開度を演算し、上記ブローダウ
ン弁に開度指令を出力する制御装置とから成ることを特
徴とする燃料電池冷却水システム。
(4) In a fuel cell system that maintains an appropriate temperature for chemical reactions inside the battery body by supplying cooling water, the battery cooling water enters a two-phase flow state on the downstream side of the battery body in the battery body cooling water pipe. A steam/water separator installed to separate steam from water and use it effectively; and a battery cooling system that supplies liquid water separated from steam to the battery body as cooling water for the battery body. a water downpipe, a make-up water pipe connected to the battery cooling water downpipe near the steam-water separator, a battery cooling water supply pump connected to the battery cooling water downpipe, and a make-up water pipe attached to the make-up water pipe. a make-up water flow control valve, a battery cooling water flow rate detector that detects the battery cooling water flow rate in the battery cooling water downcomer pipe, and a load signal detector that detects the actual load of the fuel cell or a load equivalent signal such as a load command. Then, the optimal opening degree of the makeup water flow control valve is calculated from the battery cooling water flow rate signal from the battery cooling water flow rate detector and the load signal from the load signal detector, and the opening degree of the makeup water flow rate control valve is determined. A control device that outputs a command, a blowdown valve that adjusts the flow rate blowing down from the battery cooling water downpipe to maintain an appropriate water level in the steam and water separator, and a gas regulator that detects the water level in the steam and water separator. It consists of a water separator water level detector, and a control device that calculates the optimum opening degree of the blowdown valve from the water level signal from the water separator water level detector and outputs an opening command to the blowdown valve. A fuel cell cooling water system characterized by:
JP62074341A 1987-03-30 1987-03-30 Cooling water system for fuel cell Pending JPS63241874A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62074341A JPS63241874A (en) 1987-03-30 1987-03-30 Cooling water system for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62074341A JPS63241874A (en) 1987-03-30 1987-03-30 Cooling water system for fuel cell

Publications (1)

Publication Number Publication Date
JPS63241874A true JPS63241874A (en) 1988-10-07

Family

ID=13544322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62074341A Pending JPS63241874A (en) 1987-03-30 1987-03-30 Cooling water system for fuel cell

Country Status (1)

Country Link
JP (1) JPS63241874A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04296460A (en) * 1991-03-27 1992-10-20 Tokyo Gas Co Ltd Fuel cell
JP2006156018A (en) * 2004-11-26 2006-06-15 Honda Motor Co Ltd Device of cooling fuel cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04296460A (en) * 1991-03-27 1992-10-20 Tokyo Gas Co Ltd Fuel cell
JP2006156018A (en) * 2004-11-26 2006-06-15 Honda Motor Co Ltd Device of cooling fuel cell
JP4602056B2 (en) * 2004-11-26 2010-12-22 本田技研工業株式会社 Fuel cell cooling system

Similar Documents

Publication Publication Date Title
CN111206970B (en) Peak regulating system utilizing steam jet and steam extractor in thermal power plant and control method
KR100807875B1 (en) Combined heat and power co-generation system for fuel cell
CN110854937A (en) Thermal power frequency modulation method of coupling heat storage device
JPS63241874A (en) Cooling water system for fuel cell
JPH0249359A (en) Fuel cell power generating system
JPS61232569A (en) Fuel cell power generating system
JPS63183346A (en) Solar system for generating steam
JPH0260060A (en) Fuel cell system with exhaust heat energy recovery unit
JPH08124587A (en) Fuel cell power generating plant
CN211183438U (en) Thermal generator set coupled with heat storage device
CN221408443U (en) Combined frequency modulation system for flywheel energy storage coupling steam turbine regenerative system energy storage
JP3010086B2 (en) Cogeneration power plant
CN216693486U (en) Waste incineration power generation and heat supply co-production system with peak regulation capability
CN217274038U (en) Double-pressure steam supply energy storage system
JP2006528416A (en) Buffer / converter / disposal system between fuel cell and process
JP3461909B2 (en) Fuel cell surplus steam condensation type steam separator
JPH0529013A (en) Fuel cell power generation system
JP2002056867A (en) Fuel cell generating system
JPH07169478A (en) Cell cooling water system for fuel cell
JPS6049569A (en) Fuel cell power generating plant
JP2000230432A (en) Gas turbine power plant
JPS6177273A (en) Control system for fuel cell power generation plant
JPH08180897A (en) Fuel cell generating plant
JPS6180767A (en) Fuel supply system for fuel cell electric power generating plant
JP2809561B2 (en) Phosphoric acid fuel cell power generator