JPS63241815A - Manufacture of superconducting material - Google Patents

Manufacture of superconducting material

Info

Publication number
JPS63241815A
JPS63241815A JP62074786A JP7478687A JPS63241815A JP S63241815 A JPS63241815 A JP S63241815A JP 62074786 A JP62074786 A JP 62074786A JP 7478687 A JP7478687 A JP 7478687A JP S63241815 A JPS63241815 A JP S63241815A
Authority
JP
Japan
Prior art keywords
superconducting
oxygen
elements
mixed powder
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62074786A
Other languages
Japanese (ja)
Inventor
Yuichi Yamada
雄一 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP62074786A priority Critical patent/JPS63241815A/en
Publication of JPS63241815A publication Critical patent/JPS63241815A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To secure the feed and control of oxygen at the time of baking and easily obtain the stable superconducting characteristic by using a compound containing oxygen and having the oxygen affinity smaller than that of a superconducting material as a stabilizing material or a covering material to envelop a mixed material for the superconducting material. CONSTITUTION:When a mixture for a superconducting material is filled into a stabilizing material or a covering material and baked, a compound containing oxygen and having the oxygen affinity smaller than that of the mixture is used as the stabilizing material or the covering material. The mixture contains the II group element, III group element, I group element in the periodic table or is constituted of the oxide, carbonate, sulfide, fluoride of them. For example, the fine powder of Y2O3, BaCO3, CuO is mixed at the desired ratio end filled into a pipe made of PbO2, a pipe made of Cu is covered on it, and both ends are welded and sealed by an electron beam. Then, it is extended and shrunk in diameter and baked in a furnace at 940 deg.C for 23hr. Accordingly, the stable superconducting characteristic is obtained, and the mechanical strength is also increased.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、超電導材料の製造方法に関し、より詳しく
は、セラミックス系超電導材料の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for manufacturing a superconducting material, and more particularly to a method for manufacturing a ceramic superconducting material.

〈従来の技術〉 従来、超電導材料として、例えば、Nb3Ge等、種々
の材料が知られているが、上記材料の超電導臨界温度T
cが23.2にと著しく低いため、臨界温度の高いセラ
ミックス系の超電導材料が近年脚光を浴びている。
<Prior art> Conventionally, various materials such as Nb3Ge are known as superconducting materials, but the superconducting critical temperature T of the above materials is
Ceramic superconducting materials with high critical temperatures have been in the spotlight in recent years because of their extremely low c of 23.2.

上記セラミックス系超電導材料は、超電導材料用混合粉
を用い、超電導材料の強度を高めるため圧縮成形した後
、酸素含有雰囲気下で焼成することにより製造されてい
るが、上記の焼成雰囲気に関して、酸素の存在が重要な
意義を有することが知られている。すなわち、空気雰囲
気下で焼成を行なった場合、焼結体の表面部分、すなわ
ち、空気に触れ易い部分で優れた超電導特性を示す。ま
た、超電導性を有する上記表層部の厚さは、特定の条件
で0.5mmとなるという報告もある。一方、純粋な酸
素雰囲気中で焼成を行なった場合、超電導特性に関し好
ましい結果が得られていない。従って、S r % B
 a等の周期律表■族元素、S c 5YSA1等の周
期律表■族元素、Cu SA g sAu等の周期律表
I族元素の単体またはそれらを含有する化合物、例えば
、酸化物や炭酸化物等の微粒子粉末を混合し焼成する上
記従来の超電導材料の製造においては、超電導物質を構
成する酸素は、焼成雰囲気中から供給されるものと推定
され、焼成雰囲気中の酸素分圧を制御することが安定し
た超電導特性を有する超電導物質を生成させる上で重要
である。
The above ceramic superconducting material is manufactured by using a mixed powder for superconducting materials, compression molding to increase the strength of the superconducting material, and then firing it in an oxygen-containing atmosphere. It is known that its existence has important significance. That is, when firing is performed in an air atmosphere, the surface portion of the sintered body, that is, the portion easily exposed to air, exhibits excellent superconducting properties. There is also a report that the thickness of the surface layer having superconductivity is 0.5 mm under certain conditions. On the other hand, when firing in a pure oxygen atmosphere, favorable results regarding superconducting properties have not been obtained. Therefore, S r % B
Elements of group I elements of the periodic table such as a, group I elements of the periodic table such as S c 5YSA1, group I elements of the periodic table such as Cu SA g sAu, or compounds containing them, such as oxides and carbonates In the production of the above-mentioned conventional superconducting materials in which fine particle powders such as is important in producing superconducting materials with stable superconducting properties.

〈発明が解決しようとする問題点〉 しかしながら、圧縮成形した後、成形品を焼成する上記
の製造方法によると、酸素は焼成雰囲気中から供給され
るにすぎず、しかも焼成時の酸素供給を制御することが
困難であるため、焼成雰囲気中の酸素が成形品の内部ま
で拡散せず、良好な超電導層は表面付近にしか生成せず
、得られた超電導材料の超電導特性が十分でない。また
、全体に亘り均一に超電導層を形成させるために、主に
、成形、高温での予備焼成と粉砕、撹拌を繰返すことに
より製造されているが、予備焼成により超導電物質が生
成するとは限らず、また一旦表面に形成された超電導層
が粉砕、撹拌されて、混合粉中に分散した状態になると
推定され、均質な超電導層を超電導材料全体に亘り形成
することが困難であるだけでなく、超電導層を超電導材
料全体に亘り形成するには、上記成形、焼成、粉砕等の
工程を多数回繰返さなければならず、作業が非常に煩雑
である。また、上記操作を繰返しても、得られた超電導
材料の超電導特性が不安定であるという問題がある。
<Problems to be Solved by the Invention> However, according to the above manufacturing method in which the molded product is fired after compression molding, oxygen is only supplied from the firing atmosphere, and furthermore, it is difficult to control the oxygen supply during firing. Since it is difficult to do so, oxygen in the firing atmosphere does not diffuse into the interior of the molded product, and a good superconducting layer is only formed near the surface, resulting in insufficient superconducting properties of the obtained superconducting material. In addition, in order to form a superconducting layer uniformly over the entire surface, the product is mainly manufactured by repeating molding, pre-firing at high temperatures, pulverization, and stirring, but superconducting materials are not necessarily produced by pre-firing. Furthermore, it is presumed that the superconducting layer once formed on the surface is crushed and stirred and becomes dispersed in the mixed powder, which not only makes it difficult to form a homogeneous superconducting layer over the entire superconducting material. In order to form a superconducting layer over the entire superconducting material, the above-mentioned steps of molding, firing, pulverization, etc. must be repeated many times, and the work is very complicated. Further, even if the above operation is repeated, there is a problem that the superconducting properties of the obtained superconducting material are unstable.

〈発明の目的〉 本発明は上記問題点に鑑みてなされたものであり、焼成
時に酸素の供給とその制御を確実に行なうことができる
と共に、超電導層が全体に亘り形成され、安定な超電導
特性を有する超電導材料を容易に製造することができる
超電導材料の製造方法を提供することを目的とする。
<Object of the Invention> The present invention has been made in view of the above-mentioned problems, and it is possible to reliably supply and control oxygen during firing, and to form a superconducting layer over the entire surface, thereby achieving stable superconducting properties. An object of the present invention is to provide a method for manufacturing a superconducting material that can easily manufacture a superconducting material having the following characteristics.

〈問題点を解決するための手段および作用〉上記目的を
達成するため、この発明の超電導材料の製造方法は、超
電導物質用混合粉を包囲する安定化材または被覆材に、
該混合粉を充填して焼成する超電導材料の製造方法であ
って、上記安定化材または被覆材として、上記超電導物
質よりも小さな酸素親和力を有する酸素含有化合物を用
いることを特徴とするものである。
<Means and effects for solving the problems> In order to achieve the above object, the method for producing a superconducting material of the present invention includes a stabilizing material or a coating material surrounding the mixed powder for superconducting material,
A method for producing a superconducting material by filling and firing the mixed powder, characterized in that an oxygen-containing compound having a smaller oxygen affinity than the superconducting substance is used as the stabilizing material or coating material. .

上記の構成の超電導材料の製造方法によれば、安定化材
または被覆材として、上記超電導物質よりも小さな酸素
親和力を有する酸素含有化合物を用いるので、焼成工程
で、超電導物質よりも小さな親和力で結合した安定化材
等の酸素が超電導物質に供給される。すなわち、上記安
定化材等は、酸素供給源として利用される。また、上記
焼成工程において、混合粉を構成する粒子には、所望量
の酸素が安定化材等から供給されるため、焼成により、
各粒子全体に亘り均質な超電導層を形成することができ
ると共に、超電導層が全体に亘り形成された超電導材料
を得ることができる。
According to the method for manufacturing a superconducting material having the above configuration, an oxygen-containing compound having a smaller oxygen affinity than the superconducting material is used as a stabilizing material or a coating material, so that during the firing process, the oxygen-containing compound is bonded with a smaller affinity than the superconducting material. Oxygen, such as stabilizer, is supplied to the superconducting material. That is, the above-mentioned stabilizing material and the like are used as an oxygen supply source. In addition, in the above firing step, the particles constituting the mixed powder are supplied with a desired amount of oxygen from a stabilizing material, etc., so that by firing,
A homogeneous superconducting layer can be formed over each particle, and a superconducting material in which a superconducting layer is formed over the entire particle can be obtained.

さらには、生成した超電導物質は、安定化材、被覆材で
包囲されているため、機械的強度が大きく加工性がよい
だけでなく、安定した超電導特性が得られる。
Furthermore, since the produced superconducting material is surrounded by a stabilizing material and a coating material, it not only has high mechanical strength and good workability, but also stable superconducting properties.

以下に、この発明の詳細な説明する。The present invention will be explained in detail below.

上記超電導物質用混合粉としては、超電導物質を構成す
る元素を含有するものであれば単体、化合物のいずれの
形態でも使用しえる。該元素としては、周期律表1族、
■族、III族および酸素、窒素、フッ素、塩素、炭素
、硫黄などが例示される。
The above-mentioned mixed powder for a superconducting substance may be used in the form of either a single substance or a compound as long as it contains the elements constituting the superconducting substance. The elements include Group 1 of the periodic table,
Examples include Group (1), Group III, oxygen, nitrogen, fluorine, chlorine, carbon, and sulfur.

より詳細には、周期律表I族元素のうち、Ia族元素と
しては、L L、Na、に、Rb、CsおよびFrなど
が挙げられ、Ib族元素としては、Cu、AgおよびA
uが挙げられる。また、周期律表■族元素のうち、na
族族元としては、Be、M g 、、Ca 、S r 
% B aおよびRaが挙げられ、■b族元素としては
、Zn%Cd等が挙げられる。
More specifically, among Group I elements of the periodic table, Group Ia elements include L, Na, Rb, Cs, and Fr, and Group Ib elements include Cu, Ag, and A.
u can be mentioned. Also, among the elements of Group I of the periodic table, na
The family members are Be, M g , Ca , S r
% Ba and Ra, and examples of the b group elements include Zn% Cd and the like.

周期律表■族元素のうち、IIIa族元素としては、S
c、Yやランタノイド系元素であるLa、Ce。
Among group III elements of the periodic table, S is a group IIIa element.
c, Y, and lanthanoid elements La and Ce.

prSNds Pm、、Sm、Eu5GdSTbsDy
% H2S Ers Tm、Yb5Lu、アクチノイド
系元素であるAc等が挙げられる。また、mb族元素と
しては、Aノ、G a s I n s T J等が挙
げられる。
prSNds Pm, , Sm, Eu5GdSTbsDy
% H2S Ers Tm, Yb5Lu, and Ac which is an actinide element. Further, examples of the mb group element include A, Gas Ins T J, and the like.

上記元素のうち、Ib族元素、IIa族元素、ma族元
素、A!、ランタノイド系元素および酸素、フッ素、硫
黄から選ばれた元素が好ましい。
Among the above elements, group Ib elements, group IIa elements, group ma elements, A! , lanthanoid elements, and elements selected from oxygen, fluorine, and sulfur.

なお、周期律表1b族元素のうちCu 、A g sA
uが好ましい。また、上記周期律表ma族元素のうち、
Sr%Baが好ましく、周期律表■族元素のうち、Sc
、YまたはA1が好ましい。
In addition, among the elements of group 1b of the periodic table, Cu, A g sA
u is preferred. In addition, among the elements of Group Ma of the periodic table,
Sr%Ba is preferable, and among the elements of group II of the periodic table, Sc
, Y or A1 are preferred.

上記の元素を含有する単体または化合物は、粉体の状態
で一種または二種以上用いられ、化合物として用いる場
合には、塩化物、窒化物、炭化物であってもよいが、酸
化物、炭酸化物、硫化物またはフッ化物が好ましく、特
に、酸素含有の酸化物または炭酸化物が好ましい。
Single substances or compounds containing the above elements are used in the form of powder, and when used as a compound, they may be chlorides, nitrides, or carbides, but they may also be oxides or carbonates. , sulfides or fluorides are preferred, and oxygen-containing oxides or carbonates are particularly preferred.

上記の超電導材料用麺合粉は、所望する超電導材料の組
成に応じて適宜の割合で混合して用いられる。
The above-mentioned noodle mixture for superconducting materials is mixed and used in an appropriate ratio depending on the composition of the desired superconducting material.

次いで、上記の超電導用混合粉を混合した後、該混合粉
を包囲する安定化材または被覆材に充填して焼成し、超
電導物質を生成させる。
Next, after the above-mentioned mixed powder for superconducting is mixed, a stabilizing material or a coating material surrounding the mixed powder is filled and fired to produce a superconducting substance.

上記の安定化材、被覆材としては、該安定化材等を酸素
供給源とするため、前記超電導物質よりも酸素の親和力
の小さな酸素含有化合物を用いる。
As the above-mentioned stabilizing material and coating material, an oxygen-containing compound having a smaller affinity for oxygen than the superconducting substance is used in order to use the stabilizing material and the like as an oxygen supply source.

上記酸素含有化合物としては、酸素との親和力が小さく
超電導物質に酸素原子を供給しうるちのであればよく、
酸化物、炭酸化物、特に酸化物が好ましく、該酸化物と
して°は、K、Pb等の酸化物、例えば、K 03 、
P b 02 、P b 304等が例示される。なお
、上記安定化材、被覆材は、さらに他の安定化材、被覆
材で包囲されていてもよく、上記能の安定化材としては
、従来慣用のもの、例えば、銅、アルミニウム、アルミ
ナを分散した銅や銅−ニッケル合金等が例示され、中で
も、超電導特性を安定化するため、銅が好ましい。
The above-mentioned oxygen-containing compound may be any compound that has a small affinity for oxygen and can supply oxygen atoms to the superconducting material.
Oxides and carbonates, particularly oxides, are preferred, and the oxides include oxides of K, Pb, etc., such as K 03 ,
Examples include P b 02 and P b 304. Note that the above-mentioned stabilizing material and coating material may be further surrounded by other stabilizing materials and coating materials, and as the stabilizing material for the above-mentioned properties, conventionally used ones such as copper, aluminum, and alumina can be used. Dispersed copper, copper-nickel alloy, etc. are exemplified, and among them, copper is preferable because it stabilizes superconducting properties.

上記混合粉を安定化材、被覆材に充填する方法としては
、安定化材、被覆材として上記素材からなるバイブを用
い、該パイプ中に混合粉末を詰めたり、混合粉末にテー
プ状の被覆材をラッピングする等の方法が例示される。
The method of filling the above mixed powder into the stabilizing material and coating material includes using a vibrator made of the above material as the stabilizing material and coating material, and filling the pipe with the mixed powder, or applying a tape-shaped covering material to the mixed powder. Examples of methods include wrapping.

なお、上記混合粉は、安定化材や被覆材により包囲され
ているため、十分な機械的強度、成形性を保持している
In addition, since the mixed powder is surrounded by a stabilizing material and a coating material, it maintains sufficient mechanical strength and moldability.

また、上記混合粉の充填に際しては、前記安定化材等か
ら酸素が供給されるため、種々の充填率で充填すること
ができるが、混合粉中の酸素量と安定化材等から供給さ
れる酸素量が、所定の組成および構造を有する超電導物
質を生成し、しかも所望の超電導特性を有する量となる
ように充填するのが好ましい。該混合粉の充填率は、前
記超電導材料を構成する元素が単体として使用されるか
化合物の形態で使用されるかにより異なるだけでなく、
粉体の粒子径等により混合粉中の空隙率が変化すること
、前記安定化材の種類により酸素供給量等が異なるので
一種に規定できないが、通常、80〜95%である。こ
のように、混合粉の充填率を制御することにより、超電
導特性に大きな影響を及ぼす混合粉中の酸素量を調整で
きることと、混合粉中の酸素が消費されても前記安定化
材等から酸素が供給されることとが相まって、超電導特
性に優れた超電導材料が得られる。
In addition, when filling the mixed powder, oxygen is supplied from the stabilizing material, etc., so it can be filled at various filling rates, but the amount of oxygen in the mixed powder and the supply from the stabilizing material, etc. Preferably, the amount of oxygen is such that a superconducting material having a predetermined composition and structure is produced and has desired superconducting properties. The filling rate of the mixed powder not only differs depending on whether the elements constituting the superconducting material are used alone or in the form of a compound, but also
Since the porosity in the mixed powder varies depending on the particle size of the powder, and the amount of oxygen supplied varies depending on the type of the stabilizing material, it cannot be specified as one type, but it is usually 80 to 95%. In this way, by controlling the filling rate of the mixed powder, it is possible to adjust the amount of oxygen in the mixed powder, which has a large effect on superconducting properties, and even if the oxygen in the mixed powder is consumed, the oxygen from the stabilizing material etc. Coupled with the supply of , a superconducting material with excellent superconducting properties can be obtained.

また焼結は、上記混合粉や所望する超電導特性等に応じ
て種々の条件で行なうことができ、例えば、通常800
℃以上の温度で行なうことができる。この焼成工程にお
いて、混合粉を構成する粒子の近傍には、酸素が存在す
ると共に前記安定化材等から酸素が供給されるため、焼
成により、各粒子全体に亘り均質な超電導層を形成する
ことができると共に、超電導層が全体に亘り形成された
超電導材料を得ることができる。従って、混合粉を安定
化材等に充填し、焼成するという簡単な操作で、臨界温
度のばらつきが少なく、安定な超電導特性を存する超電
導材料を作製することができ、電流密度の限界値を高め
ることができる。
Further, sintering can be performed under various conditions depending on the above-mentioned mixed powder and desired superconducting properties.
It can be carried out at a temperature of 0.degree. C. or higher. In this firing process, oxygen is present near the particles constituting the mixed powder and oxygen is supplied from the stabilizing material, etc., so that a homogeneous superconducting layer can be formed throughout each particle by firing. In addition, it is possible to obtain a superconducting material in which a superconducting layer is formed over the entire surface. Therefore, by simply filling the mixed powder into a stabilizing material and firing it, it is possible to create a superconducting material that has stable superconducting properties with little variation in critical temperature, and increases the limit value of current density. be able to.

なお、前記セラミックス系超電導材料は、可撓性に劣る
ため、例えば、線状、テープ状等の形状の超電導材料が
要望される場合にあっても、従来、所望の形状に加工す
ることが極めて困難であり、実用上大きな支障となって
いた。しかしながら、上記の充填工程により、混合粉と
安定化材または被覆材とからなり、機械的強度が大きく
成形性を有する複合体が形成されるので、該複合体は、
用途等に応じた所定形状に成形することができる。
Note that the ceramic superconducting materials have poor flexibility, so even if a superconducting material in the shape of a wire, tape, etc. is desired, it has conventionally been extremely difficult to process them into the desired shape. This was difficult and a major hindrance in practical use. However, the above-mentioned filling process forms a composite consisting of the mixed powder and the stabilizing material or coating material, which has high mechanical strength and moldability.
It can be molded into a predetermined shape depending on the intended use.

その際、超電導物質を生成させる前記焼成工程は、成形
加工前後を問わず行なうことができるが、焼成工程前に
減面加工等の成形加工を施して複合体を所定形状に成形
し、その後、焼成して超電導物質を生成させるのが好ま
しい。このような方法によると、線状等の長尺体であっ
ても、全体に亘り酸素を均一かつ安定に制御しつつ供給
することができるので、均質な超電導材料が得られる。
In this case, the firing step for producing the superconducting material can be performed before or after the molding process, but before the firing process, the composite is molded into a predetermined shape by performing a molding process such as an area reduction process, and then, Preferably, the superconducting material is produced by firing. According to such a method, oxygen can be uniformly and stably controlled over the entire body even if it is a long body such as a wire, so that a homogeneous superconducting material can be obtained.

また、可撓性、加工性に劣るセラミックス系超電導物質
の状態で加工する必要がなくなるだけでなく、超電導物
質を破断等することなく所定の形状に加工することがで
きるという利点がある。
Further, there is an advantage that not only does it not need to be processed in the state of a ceramic superconducting material that is inferior in flexibility and workability, but also that the superconducting material can be processed into a predetermined shape without breaking or the like.

また、前記超電導物質を構成する元素を含有する単体ま
たは化合物の混合工程において、該単体等の配合割合等
を調整したり、安定化材または被覆材として、酸素との
親和力の異なる材料を種々用いたりすることにより、種
々の組成、構造を有する超電導物質を生成させることが
できるが、下記一般式(1)で表される超電導物質を生
成するように前記単体または化合物を混合すると共に酸
素供給源としての安定化材等を使用するのが好ましい。
In addition, in the process of mixing elements or compounds that constitute the superconducting material, the blending ratio of the elements may be adjusted, and various materials with different affinities with oxygen may be used as stabilizing or coating materials. Superconducting materials having various compositions and structures can be produced by It is preferable to use a stabilizing material or the like.

A、B、C0(1) (式中、Aは前記周期律表1a族元素、Ila族元素、
IIIa族元素およびランタノイド系元素等より選択さ
れた少なくとも一種の元素を示し、Bは前記周期律表1
b族元素、mb族元素、mb族元素から選ばれた少なく
とも一種の元素を示し、Cは酸素、フッ素、塩素、硫黄
、炭素および窒素から選ばれた少なくとも一種の元素を
示す。また各係数は、Aの原子価xa+Bの原子価xb
 −cの原子価×cの関係式を充足するものとする。)
この発明の超電導材料の製造方法は、安定化材等を酸素
供給源として利用できるので、酸化物型セラミックス系
超電導材料の製造に有用であり、この方法により得られ
た超電導材料は、超電導特性が安定しているので、例え
ば、超電導電線、超電導ケーブルなど種々の用途に用い
ることができる。
A, B, C0 (1) (wherein A is an element of group 1a of the periodic table, an element of group Ila,
It represents at least one element selected from group IIIa elements, lanthanoid elements, etc., and B represents the elements of the periodic table 1
It represents at least one element selected from Group B elements, Group MB elements, and Group MB elements, and C represents at least one element selected from oxygen, fluorine, chlorine, sulfur, carbon, and nitrogen. In addition, each coefficient is: valence xa of A + valence xb of B
It is assumed that the relational expression: -valence of c x c is satisfied. )
The method for producing a superconducting material of the present invention is useful for producing an oxide-type ceramic superconducting material because a stabilizing material etc. can be used as an oxygen supply source, and the superconducting material obtained by this method has superconducting properties. Since it is stable, it can be used for various purposes such as superconducting wires and cables.

〈実施例〉 以下に、実施例に基き、この発明をより詳細に説明する
<Examples> The present invention will be described in more detail below based on Examples.

Y20s 、BaCO5およびCuOの微粉末を約1:
5.8:1.6の重量割合で混合し、外径11mm5内
径8.5mmのPbO2からなるパイプに詰めた。さら
に上記パイプに外径14.5mm。
Fine powder of Y20s, BaCO5 and CuO in a ratio of about 1:
They were mixed at a weight ratio of 5.8:1.6 and packed into a pipe made of PbO2 with an outer diameter of 11 mm and an inner diameter of 8.5 mm. Furthermore, the outer diameter of the above pipe is 14.5 mm.

内径11.5mmの銅製パイプを被せ、上記パイプの両
端を電子ビーム溶接して封止した。次いで、上記パイプ
を直径3 mmまで伸線した。なお、この伸線加工は、
何ら支障なく行なうことができ、均一な伸線が得られた
A copper pipe with an inner diameter of 11.5 mm was placed on top, and both ends of the pipe were sealed by electron beam welding. Next, the pipe was drawn to a diameter of 3 mm. In addition, this wire drawing process is
It was possible to carry out the drawing without any problems, and uniform wire drawing was obtained.

上記と同様にして得られた多数の伸線を直径約1.5m
の束にし、内径1.6mの炉を用いて940℃で24時
間焼成した。得られサンプルを2mおきに切断して10
個の試料を取出し、各試料の電気抵抗に基づき臨界温度
を測定したところ、第1図に示すような結果を得た。
A large number of drawn wires obtained in the same manner as above are approximately 1.5 m in diameter.
The mixture was made into a bundle and fired at 940° C. for 24 hours using a furnace with an inner diameter of 1.6 m. The obtained sample was cut into 10 pieces every 2 m.
When several samples were taken out and the critical temperature was measured based on the electrical resistance of each sample, the results shown in FIG. 1 were obtained.

第1図から明らかなように、各試料は68〜80にの範
囲の臨界温度を示し、臨界温度のばらつきが臨界温度約
75Kを中心にして約1%以内に納まり、超電導特性が
安定であることが判明した。また、上記の各試料は、電
流密度の限界値が高いものであった。
As is clear from Figure 1, each sample exhibits a critical temperature in the range of 68 to 80°C, and the variation in critical temperature is within about 1% around the critical temperature of about 75K, indicating that the superconducting properties are stable. It has been found. Moreover, each of the above samples had a high limit value of current density.

〈発明の効果〉 以上のように、この発明の超電導材料の製造方法によれ
ば、安定化材または被覆材として、上記超電導物質より
も小さな酸素親和力を有する酸素含有化合物を用いるの
で、焼成時に酸素の供給とその制御を確実に行なうこと
ができる。また、従来のように、成形、焼成、粉砕工程
等を経ることがなく、混合粉を前記安定化材等に充填し
焼成するだけで、超電導層が全体に亘り形成された安定
な超電導特性を有する超電導材料を容易に製造すること
ができる。さらには、上記超電導物質が安定化材等によ
り包囲されているため、機械的強度、加工性に優れ、し
かも安定した超電導特性が得られるという特有の効果を
奏する。
<Effects of the Invention> As described above, according to the method for producing a superconducting material of the present invention, an oxygen-containing compound having a smaller oxygen affinity than the superconducting material is used as a stabilizing material or coating material, so oxygen is not absorbed during firing. can be reliably supplied and controlled. In addition, there is no need to go through the molding, firing, pulverizing steps, etc. as in the past, and by simply filling the stabilizing material with the mixed powder and firing, stable superconducting properties with a superconducting layer formed throughout can be achieved. It is possible to easily manufacture a superconducting material having the following properties. Furthermore, since the superconducting substance is surrounded by a stabilizing material or the like, it has excellent mechanical strength and workability, and has the unique effect of providing stable superconducting properties.

Coming

【図面の簡単な説明】[Brief explanation of the drawing]

特許出願人  住友電気工業株式会社 (ほか3名) 伸線後端からの長さくm) 手  続  補  正  書(自発) 昭和62年9月8日 昭和62年特許願第74786号 2、発明の名称 超電導材料の製造方法 3、補正をする者 事件との関係     特許出願人 代表者  川  上  哲  部 5、補正命令の日付(自発) 6、補正の対象 明細書中、発明の詳細な説明の欄および図面7、補正の
内容 (1)  明細書中東3頁第9行のrYSAl等の」の
記載を「Y等の」と訂正する。 −“ 同書第7頁第11行のrIIIa族元素、Al1
、弓ンタノイド系元素」の記載をrIIIa族元素、う
ンタノイド系元素」と訂正する。 (31図面を別紙添付図面の如く訂正する。
Patent applicant Sumitomo Electric Industries, Ltd. (and 3 others) Length from rear end of wire drawing (m) Procedures Amendment (spontaneous) September 8, 1988 Patent Application No. 74786 2 of 1988, Invention Name: Method for manufacturing superconducting materials 3. Relationship with the case of the person making the amendment Representative of patent applicant Satoshi Kawakami Department 5. Date of amendment order (voluntary) 6. Column for detailed explanation of the invention in the specification to be amended and Drawing 7, contents of the amendment (1) The statement "rYSAl, etc." on page 3, line 9 of the Middle East specification is corrected to "Y, etc." -“rIIIa group element, Al1, page 7, line 11 of the same book
, ``untanoid elements'' has been corrected to ``rIIIa group elements, untanoid elements''. (Drawing 31 is corrected as shown in the attached drawing.

Claims (1)

【特許請求の範囲】 1、超電導物質用混合粉を包囲する安定化材または被覆
材に、該混合粉を充填して焼成する超電導材料の製造方
法であって、上記安定化材または被覆材として、上記超
電導物質よりも小さな酸素親和力を有する酸素含有化合
物を用いることを特徴とする超電導材料の製造方法。 2、混合粉が、周期律表II族元素、III族元素およびI
族元素を含有するものである上記特許請求の範囲第1項
記載の超電導材料の製造方法。 3、混合粉が、周期律表II族元素、III族元素およびI
族元素の酸化物、炭酸化物、硫化物またはフッ化物を含
有するものである上記特許請求の範囲第1項または第2
項記載の超電導材料の製造方法。 4、超電導物質用混合粉を安定化材または被覆材に充填
して成形した後、焼成する上記特許請求の範囲第1項記
載の超電導材料の製造方法。
[Scope of Claims] 1. A method for producing a superconducting material, which comprises filling a stabilizing material or coating material surrounding a mixed powder for superconducting material with the mixed powder and firing the mixed powder, the method comprising: as the stabilizing material or coating material; , a method for producing a superconducting material, characterized in that an oxygen-containing compound having a smaller oxygen affinity than the superconducting substance is used. 2. The mixed powder contains Group II elements, Group III elements and I elements of the periodic table.
The method for producing a superconducting material according to claim 1, which contains a group element. 3. The mixed powder contains group II elements, group III elements and I elements of the periodic table.
Claim 1 or 2 contains an oxide, carbonate, sulfide or fluoride of a group element.
A method for producing a superconducting material as described in Section 1. 4. The method for producing a superconducting material according to claim 1, wherein the mixed powder for superconducting material is filled into a stabilizing material or a coating material, molded, and then fired.
JP62074786A 1987-03-27 1987-03-27 Manufacture of superconducting material Pending JPS63241815A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62074786A JPS63241815A (en) 1987-03-27 1987-03-27 Manufacture of superconducting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62074786A JPS63241815A (en) 1987-03-27 1987-03-27 Manufacture of superconducting material

Publications (1)

Publication Number Publication Date
JPS63241815A true JPS63241815A (en) 1988-10-07

Family

ID=13557319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62074786A Pending JPS63241815A (en) 1987-03-27 1987-03-27 Manufacture of superconducting material

Country Status (1)

Country Link
JP (1) JPS63241815A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63269411A (en) * 1987-04-27 1988-11-07 Nippon Steel Corp Ceramic superconductive filament
JPS6410512A (en) * 1987-07-01 1989-01-13 Matsushita Electric Ind Co Ltd Superconductor structure
US5262398A (en) * 1987-03-24 1993-11-16 Sumitomo Electric Industries, Ltd. Ceramic oxide superconductive composite material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5262398A (en) * 1987-03-24 1993-11-16 Sumitomo Electric Industries, Ltd. Ceramic oxide superconductive composite material
JPS63269411A (en) * 1987-04-27 1988-11-07 Nippon Steel Corp Ceramic superconductive filament
JPS6410512A (en) * 1987-07-01 1989-01-13 Matsushita Electric Ind Co Ltd Superconductor structure
JPH07106895B2 (en) * 1987-07-01 1995-11-15 松下電器産業株式会社 Superconductor structure

Similar Documents

Publication Publication Date Title
AU597148B2 (en) Process for manufacturing a superconducting wire of compound oxide-type ceramics
AU596289B2 (en) Method of the production of ceramic superconductor filaments
JPS6465716A (en) Manufacture of oxide superconductive wire
CA1286551C (en) Method of producing superconducting wire
JPS63241815A (en) Manufacture of superconducting material
JPS63241817A (en) Manufacture of superconducting material
JPS63241816A (en) Manufacture of superconducting material
US6700067B1 (en) High temperature superconducting ceramic oxide composite with reticulated metal foam
JPS63199842A (en) Electrode material
JPS59138048A (en) End enclosing member for discharge lamp
JPS63241814A (en) Manufacture of superconducting wire rod
JPS63285812A (en) Manufacture of oxide superconductive wire material
JPH02192401A (en) Production of oxide superconductor and oxide superconducting wire
JPS63292523A (en) Manufacture of superconductor cable
JPH01276516A (en) Manufacture of superconductive wire rod having high critical current density
JPH02172823A (en) Production of bi-based oxide superconductor
JPS5997571A (en) Electroconductive parts and manufacture
JPH01304609A (en) Superconductive wire rod with high critical current density
JPH01241708A (en) Manufacture of oxide superconductor wire
JPH01188640A (en) Production of superconducting wire
JPH01108180A (en) Superconducting ceramic structure
JPH02153701A (en) Manufacture of bismuth-based superconductor wire material
JPH01241705A (en) Manufacture of oxide superconductor
JPS63239713A (en) Superconductor
JPS63260882A (en) Ceramic superconductivity-forming material