JPS63241434A - Variable interference device - Google Patents

Variable interference device

Info

Publication number
JPS63241434A
JPS63241434A JP62078494A JP7849487A JPS63241434A JP S63241434 A JPS63241434 A JP S63241434A JP 62078494 A JP62078494 A JP 62078494A JP 7849487 A JP7849487 A JP 7849487A JP S63241434 A JPS63241434 A JP S63241434A
Authority
JP
Japan
Prior art keywords
interferometer
coil
magnetic body
force
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62078494A
Other languages
Japanese (ja)
Other versions
JPH0575343B2 (en
Inventor
Masayuki Katagiri
片桐 真行
Masanori Watanabe
昌規 渡辺
Yasuhiko Inami
井波 靖彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP62078494A priority Critical patent/JPS63241434A/en
Publication of JPS63241434A publication Critical patent/JPS63241434A/en
Publication of JPH0575343B2 publication Critical patent/JPH0575343B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)

Abstract

PURPOSE:To perform control stably with high accuracy by controlling the optical path length of a Fabri-Peot interferometer in one-body structure externally by a driving system. CONSTITUTION:The interferometer consisting of light-transmissive substrates 1 and 2 is sandwiched between the electromagnet composed of a magnetic core 5 and a coil 6 and a magnetic body 7. A hole is bored in the magnetic body 7 where light passes. The interferometer and electromagnet are fixed by a holder. Then when a current is supplied to the coil 6, an attractive force is generated between the magnetic core 5 and magnetic body 7. The magnetic body 7 is attracted with the attractive force through the interferometer, which is applied with a force. The substrates 1 and 2 are bent with the force and the distance between reflection films 4 varies. On the other hand, when only one substrate is made thin and easy to bend, the gap between the reference films 4 varies with the current flowing through the coil 6 and the transmission peak wavelength of the interferometer is scanned. Thus, the interferometer is constituted in one-body structure and the substrate is applied with the force based upon an external electromagnetic force to vary the gap between the reflecting films 4, thereby easily controlling the optical path length of the interferometer.

Description

【発明の詳細な説明】 く技術分野〉 本発明はファプリー・ペロー干渉計を利用した小型の分
光装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a compact spectroscopic device using a Fapley-Perot interferometer.

〈従来の技術〉 従来、分光装置としては、回折格子を用いたものが多く
使われている。これは、回折格子を機械的に回転させる
ことによυ必要な眼色光を得るものであって、高い分解
能が得られる反面、各光学素子の位置設定に高い精度を
必要とし、また大型化する等の問題点を有している。一
方、他の方式の分光装置として、圧電素子を用いたファ
プリー・ペロー干渉装置が知られている。第6図にこの
構成を示す。この分光装置は対向する2つの反射鏡間隔
を圧電素子の伸縮によって制御し、干渉特性の変化から
必要な単色光を得るものである。この構造においては、
2つの反射鏡の間隔は極めて精度よく制御しなければな
らず、2個の圧電素子の制御は容易でない。!た周囲2
@度の変動によるホルダーの熱膨張に起因して、反射鏡
の間隔が変動する可能性がある。上記従来の構造では反
射鏡の間隔制御の精度及び安定性に大きな問題があった
<Prior Art> Conventionally, many spectroscopic devices using a diffraction grating have been used. This method obtains the necessary eye-color light by mechanically rotating a diffraction grating, and while it provides high resolution, it requires high precision in positioning each optical element and also increases the size. It has the following problems. On the other hand, as another type of spectroscopic device, a Fapley-Perot interference device using a piezoelectric element is known. FIG. 6 shows this configuration. This spectroscopic device controls the distance between two opposing reflecting mirrors by expanding and contracting a piezoelectric element, and obtains the necessary monochromatic light from changes in interference characteristics. In this structure,
The distance between the two reflecting mirrors must be controlled with great precision, and it is not easy to control the two piezoelectric elements. ! surrounding area 2
Due to thermal expansion of the holder due to temperature variations, the reflector spacing may vary. The conventional structure described above has a major problem in the accuracy and stability of the interval control of the reflecting mirrors.

〈発明の目的〉 本発明はファプリー・ペロー干渉計の原理に基づいて干
渉計の光路長を高精度にかつ安定に制御することができ
、分光機能を有する小型の可変干渉装置を提供すること
を目的とする。
<Objective of the Invention> The present invention aims to provide a small variable interference device that can control the optical path length of an interferometer with high precision and stability based on the principle of a Fapley-Perot interferometer, and has a spectroscopic function. purpose.

〈実施例〉 以下、本発明の一実施例を図面に基づいて詳細に説明す
る。第1図は本発明の一実施例の主要部品である干渉計
の拡大斜視図全示す。透光性基板1.1−jスペーサ3
に介して所定の間隔?もって対向している。その対向し
ている内面には反射;漢4が形成され中空構造となって
いる。透光性基板1.2にはガラス、透光性セラミック
スまたは高分子樹晰が用いられる。反射膜4は金属膜ま
たは単層あるいは多層の誘電体膜751ら成る。スペー
サ3及び反射膜4は蒸着法、スパッタ法文tfiCVD
法等の薄膜形成法によって作製される。
<Example> Hereinafter, an example of the present invention will be described in detail based on the drawings. FIG. 1 shows an enlarged perspective view of an interferometer, which is a main component of an embodiment of the present invention. Transparent substrate 1.1-j spacer 3
Through predetermined intervals? They are facing each other. Reflections are formed on the opposing inner surfaces, creating a hollow structure. Glass, transparent ceramics, or polymer resin is used for the transparent substrate 1.2. The reflective film 4 is made of a metal film or a single-layer or multi-layer dielectric film 751. The spacer 3 and the reflective film 4 are formed by vapor deposition method, sputtering method, and TFICVD.
It is manufactured by a thin film forming method such as the method.

ここで可変干渉装置の基本原理について説明する。光が
基板面に対して垂直に入射し、反射膜4での光の位相の
とびがない場合を考える。反射膜4間の距離をt、その
間の媒体の屈折率をnとすると、ファプリー・ペロー干
渉透過率T(λ)は次の(1)式で表わされる波長λm
毎に最大になる。
Here, the basic principle of the variable interference device will be explained. Consider a case where light is incident perpendicularly to the substrate surface and there is no phase jump in the light at the reflective film 4. When the distance between the reflective films 4 is t, and the refractive index of the medium between them is n, the Fapley-Perot interference transmittance T(λ) is the wavelength λm expressed by the following equation (1).
maximum every time.

nt スm=−Cm=x、2.3−)  −u+走査波長領域
をλ1カ・らλ2(ただしλ2〈2λ1)までとすると
、反射膜°4間の距離tがλλ□/ 2 n≦t≦λ2
/2nを満足するとき、波長λ−2ntなる光だけが透
過する。すなわちtをλ1/2nからλ2/2nまで任
意に変化させると、λ175為らλ2まで波長領域の任
意の波長の光だけ全透過させることができる。例えば、
走査波長領域を400〜750 nmとすると、反射膜
4間隔tは200 nm力・ら375 nmの同で制御
すればよい。この場合、反射膜4間は中空であるから屈
折率は約1である。厳密にはλlより短波長の光も透過
するので、λl以下の波長の光を除去するフィルターを
用いるt・、λ1以下の波長の光に対して感度のない受
光素子(図示せず)を用いればよい。
nt Sm=-Cm=x, 2.3-) -u+If the scanning wavelength range is from λ1 to λ2 (however, λ2<2λ1), then the distance t between the reflective films °4 is λλ□/2 n≦ t≦λ2
/2n, only light with wavelength λ-2nt is transmitted. That is, by arbitrarily changing t from λ1/2n to λ2/2n, it is possible to completely transmit only light of any wavelength in the wavelength range from λ175 to λ2. for example,
When the scanning wavelength range is 400 to 750 nm, the interval t between the four reflective films may be controlled to be 200 nm to 375 nm. In this case, since the space between the reflective films 4 is hollow, the refractive index is approximately 1. Strictly speaking, light with a wavelength shorter than λl is also transmitted, so a filter that removes light with a wavelength of less than λl is used, and a light receiving element (not shown) that is insensitive to light with a wavelength of less than λ1 is used. Bye.

第2図に駆動系も含めた本発明の一実施例の斜視図を示
す。透光基板1.2で構成されている干渉計は磁心5及
びコイル675・ら成る電磁石と磁性体7にはさまれて
いる。該磁性体7には光の通る部分に穴がおいている。
FIG. 2 shows a perspective view of an embodiment of the present invention including a drive system. The interferometer composed of a transparent substrate 1.2 is sandwiched between an electromagnet consisting of a magnetic core 5 and a coil 675 and a magnetic body 7. The magnetic body 7 has a hole through which light passes.

該磁性体7には純鉄やパーマロイのような透過率の高い
(才料で、薄いシート状のものが適している。干渉計及
び電磁石はホルダー(図示せず)で固定されている。コ
イル6に電流を流すと磁心5と磁性体7の門にはなる吸
引力Fが発生する。ここでU。は真空中の透磁率、Nは
コイルのターン数、Itd電流、S Ii磁極の面積そ
してQは磁気抵抗である。すなわち吸引力は電流の2乗
に比例する。この吸引力によって磁性体7を干渉計を介
して磁性体7を吸引し干渉計に力を加える。この力によ
って透光性基板1.2が曲げられて反射膜4間の距離t
が変わる。
A thin sheet-like material with high transmittance such as pure iron or permalloy is suitable for the magnetic material 7. The interferometer and electromagnet are fixed with a holder (not shown).The coil When a current is passed through 6, an attractive force F is generated between the magnetic core 5 and the magnetic body 7. Here, U is the magnetic permeability in vacuum, N is the number of turns in the coil, Itd current, and the area of the S Ii magnetic pole. Q is magnetic resistance. That is, the attractive force is proportional to the square of the current. This attractive force attracts the magnetic body 7 through the interferometer and applies force to the interferometer. When the optical substrate 1.2 is bent, the distance t between the reflective films 4
changes.

反射膜4の間隔りと基板に加える力Fの関係ば1=1.
−αFで表わされる。ここでt。は力を加えないときの
反射膜4の間隔で、αは単位力あ念りの変化世である。
The relationship between the distance between the reflective films 4 and the force F applied to the substrate is 1=1.
−αF. Here t. is the distance between the reflective films 4 when no force is applied, and α is the variation of the unit force.

αは基板の厚さ、幅及びスペーサ3の間隔によって決ま
る値であり、基板を薄く、幅を小さく、スペーサ3の間
隔を大きくすれ/j:aの値は大きくなる。すなわち、
片方の透tit基板だけを薄くして、曲がりやすいよう
にすればよい。第3図に示す如く、コイルに流す電流に
対して反射膜4の間隔tは変化し、干渉計の透過ピーク
波長は走査される。
α is a value determined by the thickness and width of the substrate and the distance between the spacers 3, and the value of /j:a increases as the substrate becomes thinner, the width becomes smaller, and the distance between the spacers 3 becomes larger. That is,
Only one of the transparent TIT substrates needs to be made thinner so that it can be easily bent. As shown in FIG. 3, the distance t between the reflective films 4 changes with respect to the current flowing through the coil, and the transmission peak wavelength of the interferometer is scanned.

このように干渉計が一体構造で構成されていて外部から
電磁力によって基板に力を加え、反射膜40周隔企変え
るようにしたことで干渉計の光路長のFtill卸が非
常に容易になっ念。また、復堆な機構部品を使わずに、
そして干渉計に大きな重量の部品をとりつけていないの
で振動、衝撃によって干渉計が損傷することはない。
In this way, the interferometer is constructed in one piece, and by applying force to the substrate using electromagnetic force from the outside and changing the reflection film 40 times, it is very easy to change the optical path length of the interferometer. Just in case. Also, without using any mechanical parts,
Furthermore, since no heavy parts are attached to the interferometer, the interferometer will not be damaged by vibration or shock.

第4図に本発明の他の実施例を示す。透光性基板Iに磁
性体7が接着基れている。磁性体7には光の通る部分に
孔がおいている。そして磁性体7よりごくわずかの間隔
(〜0.1−a)を隔てて、磁心5が固定されている。
FIG. 4 shows another embodiment of the invention. A magnetic material 7 is adhered to a transparent substrate I. The magnetic body 7 has a hole through which light passes. A magnetic core 5 is fixed at a very small distance (~0.1-a) from the magnetic body 7.

磁性体7と磁心5id接触していない。コイル6は光路
を妨げないように傾けて設置すればよい。コイル6に電
流を流すと、磁心5に電磁力が発生し、磁性体7を引き
上げ、透光性基板7を凸状に曲げる。本実施例では電流
の増大に伴ない、反射膜4間の間隔は増大する。
The magnetic body 7 and the magnetic core 5id are not in contact. The coil 6 may be installed at an angle so as not to obstruct the optical path. When current is passed through the coil 6, electromagnetic force is generated in the magnetic core 5, pulling up the magnetic body 7 and bending the transparent substrate 7 into a convex shape. In this embodiment, as the current increases, the distance between the reflective films 4 increases.

第5図に本発明の更に他の実施例を示す。透光性基板1
に可動磁性体8が接触している。可動磁性体8は光路を
妨げないように設置するか磁性体8に孔をあける等して
、光路を確保すればよい。
FIG. 5 shows still another embodiment of the present invention. Transparent substrate 1
The movable magnetic body 8 is in contact with. The movable magnetic body 8 may be installed so as not to obstruct the optical path, or a hole may be made in the magnetic body 8 to ensure the optical path.

可!v]磁性体8は支点9を中心に回転できるようにな
っている。そして、可u1磁性体8を吸収できる位置に
コイル6が設置されている。少なくともコイル6に電流
を流していないときは可動磁性体8とコイル6は接触し
ていない。コイル6に電流を流すと可・動磁性体8を引
きつけ可#I@性体8の先端が透光性基板1に力を加え
る。磁性体8が回転できるということは特に重要ではな
くて、固定されていて弾性変形を利用しても差し支えな
い。本実施例ではコイル6と可動磁性体8をできるだけ
接近させることができるので、大きな力が得やすいとい
う特徴がある。またいずれの実施例でも永久磁石を組み
合わせて用いると有効な駆動系が構成できる。
Possible! v] The magnetic body 8 can rotate around a fulcrum 9. The coil 6 is installed at a position where it can absorb the flexible magnetic material 8. At least when no current is flowing through the coil 6, the movable magnetic body 8 and the coil 6 are not in contact. When a current is passed through the coil 6, it attracts the movable magnetic body 8, and the tip of the movable magnetic body 8 applies force to the transparent substrate 1. It is not particularly important that the magnetic body 8 can rotate; it may be fixed and elastic deformation can be used. In this embodiment, the coil 6 and the movable magnetic body 8 can be brought as close as possible, so a large force can be easily obtained. Further, in any of the embodiments, an effective drive system can be constructed by using a combination of permanent magnets.

〈発明の効果〉 本発明によれば、一体構造のファプリー・ペロー干渉計
の光路長を外部から駆動系によって制御するため、高精
度にかつ安定に制御することができ、また複雑な機構部
品を用いず、そして干渉計に接触している部品が軽量な
ものなので、振動や衝撃によって干渉計が損傷すること
や装置の動作が不安定になることもなく、分光機能をも
った小型の可変干渉装置を作製することができる。
<Effects of the Invention> According to the present invention, since the optical path length of the integrated Fapley-Perot interferometer is externally controlled by a drive system, it can be controlled with high accuracy and stability, and complex mechanical parts can be controlled. Since the parts that are in contact with the interferometer are lightweight, the interferometer will not be damaged by vibration or shock, and the device will not operate unstable, making it a compact variable interferometer with spectroscopic function. A device can be created.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の主要部品である干渉計の斜
視図である。第2図は本発明の一実施例を示す可変干渉
装置の構成図である。第3図は第2図に示す可変干渉装
置の電流−波長特性図である。第4図は本発明の他の実
施例のGIFFcを示す断面図である。第5図は本発明
の更に他の実施例の構成を示す断面図である。第6図は
従来の可変干渉装置の構成断面図である。 1゜2・・・透光性基板、  3・・・スペーサ、4・
・・反射膜、     5・・・磁心6・・・コイル、
      7・・・磁性体代理人 弁理士 杉 山 
殺 至(他1名)第 1 図 寮2 図 ■ $3図 4反引」爽 第4図 第5図 10バー+ 第6図
FIG. 1 is a perspective view of an interferometer, which is a main component of an embodiment of the present invention. FIG. 2 is a block diagram of a variable interference device showing an embodiment of the present invention. FIG. 3 is a current-wavelength characteristic diagram of the variable interference device shown in FIG. 2. FIG. 4 is a sectional view showing GIFFc according to another embodiment of the present invention. FIG. 5 is a sectional view showing the structure of still another embodiment of the present invention. FIG. 6 is a sectional view of a conventional variable interference device. 1゜2...Transparent substrate, 3...Spacer, 4...
...Reflection film, 5...Magnetic core 6...Coil,
7...Magnetic material agent Patent attorney Sugiyama
Itoshi Koro (1 other person) 1st figure dormitory 2 figure

Claims (1)

【特許請求の範囲】 1、2つの対向する反射体と該反射体を支持する支持体
により上記2つの反射体に囲まれた空洞を擁するファブ
リーペロー干渉計に、上記反射体の少なくとも一方を変
形させることにより干渉特性を変える変位手段を付加し
たことを特徴とする可変干渉装置。 2、変位手段として電磁力を発生させるコイルを用い、
該コイルに流す電流又は電圧を制御して干渉特性を変え
る特許請求の範囲第1項記載の可変干渉装置。 3、変位手段が干渉計をはさんで対峙するコイルと該コ
イルに吸引されて少なくとも一方の反射体を湾曲させる
磁性体とから成る特許請求の範囲第1項又は第2項記載
の可変干渉装置。 4、磁性体が前記干渉計に固着されている特許請求の範
囲第3項記載の可変干渉装置。 5、変位手段が干渉計に接触して配置され少なくとも一
方の反射体に力を加えるコイルと磁性体から成る一体構
造の駆動系から成る特許請求の範囲第1項又は第2項記
載の可変干渉装置。
[Claims] 1. At least one of the reflectors is transformed into a Fabry-Perot interferometer having a cavity surrounded by two opposing reflectors and a support for supporting the reflectors. A variable interference device characterized in that a displacement means is added to change the interference characteristics by changing the interference characteristics. 2. Using a coil that generates electromagnetic force as a displacement means,
The variable interference device according to claim 1, wherein the interference characteristics are changed by controlling the current or voltage flowing through the coil. 3. The variable interference device according to claim 1 or 2, wherein the displacement means comprises a coil facing each other with an interferometer in between, and a magnetic body that is attracted to the coil and curves at least one of the reflectors. . 4. The variable interference device according to claim 3, wherein a magnetic body is fixed to the interferometer. 5. The variable interference according to claim 1 or 2, wherein the displacement means is arranged in contact with the interferometer and comprises an integrated drive system consisting of a coil and a magnetic body that apply force to at least one of the reflectors. Device.
JP62078494A 1987-03-30 1987-03-30 Variable interference device Granted JPS63241434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62078494A JPS63241434A (en) 1987-03-30 1987-03-30 Variable interference device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62078494A JPS63241434A (en) 1987-03-30 1987-03-30 Variable interference device

Publications (2)

Publication Number Publication Date
JPS63241434A true JPS63241434A (en) 1988-10-06
JPH0575343B2 JPH0575343B2 (en) 1993-10-20

Family

ID=13663524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62078494A Granted JPS63241434A (en) 1987-03-30 1987-03-30 Variable interference device

Country Status (1)

Country Link
JP (1) JPS63241434A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007307279A (en) * 2006-05-22 2007-11-29 Olympus Corp Optical apparatus for observing spectroscopic image

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0446369B2 (en) * 1986-04-30 1992-07-29 Sharp Kk

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0446369A (en) * 1990-06-14 1992-02-17 Fujitsu Ltd Sensor for detecting quantity of toner

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0446369B2 (en) * 1986-04-30 1992-07-29 Sharp Kk

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007307279A (en) * 2006-05-22 2007-11-29 Olympus Corp Optical apparatus for observing spectroscopic image

Also Published As

Publication number Publication date
JPH0575343B2 (en) 1993-10-20

Similar Documents

Publication Publication Date Title
US6392220B1 (en) Micromachined members coupled for relative rotation by hinges
US4303302A (en) Piezoelectric optical switch
US7201824B2 (en) Hybrid optical multi-axis beam steering apparatus
US6353492B2 (en) Method of fabrication of a torsional micro-mechanical mirror system
US6593677B2 (en) Biased rotatable combdrive devices and methods
US6629461B2 (en) Biased rotatable combdrive actuator methods
US6253001B1 (en) Optical switches using dual axis micromirrors
JP2004347753A (en) Shape variable mirror element, method for manufacturing it, shape variable mirror unit and optical pickup
JPH0194312A (en) Variable interference device
US6031652A (en) Bistable light modulator
JP2007526518A (en) Actuator device based on micro electro mechanical system using electret
US6141139A (en) Method of making a bistable micromagnetic light modulator
Kim et al. MEMS for optical functionality
US20050117223A1 (en) Diffractive wave modulating devices
JPS63241434A (en) Variable interference device
JPH09159939A (en) Return light control unit
JPH11119123A (en) Optical switch and manufacture thereof
JP2018122391A (en) MEMS element
JPH01101421A (en) Variable interference device
Sakata et al. Pb-based ferroelectric thin film actuator for optical applications
JP4491064B2 (en) Optical path changing device, optical switch, and optical head
JPH03215812A (en) Matrix optical switch
Carminati et al. Micromirrors
JPH11231233A (en) Micro shutter array and manufacturing method thereof
JPS63241322A (en) Variable interference apparatus and its manufacture