JPH01101421A - Variable interference device - Google Patents

Variable interference device

Info

Publication number
JPH01101421A
JPH01101421A JP26069087A JP26069087A JPH01101421A JP H01101421 A JPH01101421 A JP H01101421A JP 26069087 A JP26069087 A JP 26069087A JP 26069087 A JP26069087 A JP 26069087A JP H01101421 A JPH01101421 A JP H01101421A
Authority
JP
Japan
Prior art keywords
bimorph
substrate
interference device
piezoelectric element
variable interference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26069087A
Other languages
Japanese (ja)
Other versions
JPH0575344B2 (en
Inventor
Masayuki Katagiri
片桐 真行
Masanori Watanabe
昌規 渡辺
Yasuhiko Inami
井波 靖彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP26069087A priority Critical patent/JPH01101421A/en
Publication of JPH01101421A publication Critical patent/JPH01101421A/en
Publication of JPH0575344B2 publication Critical patent/JPH0575344B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To facilitate manufacture for relaxing the setting accuracy of components by displacing the reflection body of a Fabri Perot interferometer by a bimorph type piezoelectric element. CONSTITUTION:Reflecting films 4 are provided to light-transmissive substrates 1 and 2. The substrate 2 is fixed to a holder 6 and the substrate 1 faces the substrate 2 across spacers 3 at a specific interval. One end of the bimorph type piezoelectric element 5 is fixed to the holder 6 and the other end contacts the substrate 1. When a voltage is applied to the bimorph element to applies a force to the substrate 1, the substrate 1 curves to vary the distance between the reflecting films 4 and 4. Then the transmission wavelength of the interference meter can be varied. The displacement quantity of the bimorph element 5 is hundreds of mum, so the setting accuracy of respective components can be relaxed. The force applied to the substrate 1 is controlled and the bimorph element is used as a driving element to facilitate the manufacture of the interferometer.

Description

【発明の詳細な説明】 く技術分野〉 本発明はファプリー・ペロー干渉計を利用した小型の分
光装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a compact spectroscopic device using a Fapley-Perot interferometer.

く従来の技術〉 従来、分光装置としては、回折格子を用い友ものが多く
使われている。これは、回折格子を機械的に回転させる
ことにエリ必要な単色光を得るものであって、高い分解
能が得られる反面、各光学素子の位置設定に高い精度を
必要とし、また大型化する等の問題点を有している。一
方、他の方式の分光装置として圧電素子の縦効果(電界
の方向と伸縮の方向が同じ)を利用したファプリー・ベ
ロー干渉装置が仰られている。第6因にこの構成を示す
0この分光装置は対向する2つの反射鏡間隔を縦効果型
圧電素子の伸縮によって制御し、干渉特性の変化から必
要な単色光を得るものである。
Conventional technology> Conventionally, many spectroscopic devices using diffraction gratings have been used. This method obtains the necessary monochromatic light by mechanically rotating a diffraction grating, and while it provides high resolution, it requires high precision in positioning each optical element and also increases the size. It has the following problems. On the other hand, as another type of spectroscopic device, there is a Fapley-Bello interference device that utilizes the longitudinal effect of a piezoelectric element (the direction of the electric field and the direction of expansion and contraction are the same). The sixth factor shows this configuration. This spectroscopic device controls the distance between two opposing reflecting mirrors by expanding and contracting a longitudinal effect type piezoelectric element, and obtains the necessary monochromatic light from changes in interference characteristics.

この構造においては、2つの反射鏡の間隔は極めて精度
よく制御しなければならず、2個の縦効果型圧電素子の
制御は容易でない。1だ周囲温度の変動によるホルダー
の黒膨張に起因して、反射鏡の間・隔が変動する可能性
がある。上記従来の構造では反射鏡の間隔制御の精度及
び安定性に大きな問題があった。
In this structure, the interval between the two reflecting mirrors must be controlled extremely accurately, and it is not easy to control the two longitudinal effect type piezoelectric elements. However, due to black expansion of the holder due to changes in ambient temperature, the spacing between the reflectors may vary. The conventional structure described above has a major problem in the accuracy and stability of the interval control of the reflecting mirrors.

〈発明の目的〉 本発明はファプリー・ペロー干渉計の原理に基、  づ
いて干渉計の光路長を高精度にかつ安定に制御すること
ができ、分光機能を有する小型の可変干渉装置を提供す
ることを目的とする0 〈実施例〉 以下、本発明の一実施例を図面に基づいて詳細に説明す
る。第1図は本発明の一実施例の説明に供する可変分光
装置の斜視図である0透光性基板1.2はスペーサ3を
介して所定の間隔をもって対向している。その対向して
いる内面には反射膜4が形成され中空構造となっている
0透光性基板1.2にはガラス、透光性セラミックスま
たは高分子樹脂が用いられる。反射膜4は金属膜または
単層あるいは多層の誘電体膜から成る。スペーサ3及び
反射膜4は蒸着法、スパッタ法又はCVD法等の薄膜形
成法にょうで作製される。
<Objective of the Invention> The present invention is based on the principle of the Fapley-Perot interferometer, and provides a compact variable interference device that can control the optical path length of the interferometer with high precision and stability and has a spectroscopic function. 0 <Example> Hereinafter, an example of the present invention will be described in detail based on the drawings. FIG. 1 is a perspective view of a variable spectrometer used to explain an embodiment of the present invention. Translucent substrates 1.2 are opposed to each other with a spacer 3 interposed therebetween at a predetermined distance. Glass, translucent ceramics, or polymer resin is used for the translucent substrate 1.2, which has a hollow structure and has a reflective film 4 formed on its opposing inner surface. The reflective film 4 is made of a metal film or a single-layer or multi-layer dielectric film. The spacer 3 and the reflective film 4 are manufactured by a thin film forming method such as a vapor deposition method, a sputtering method, or a CVD method.

ここで可変干渉装置の基本原理について説明する。光が
基板面に対して垂直に入射し、反射膜4での光の位相の
とびがない場合を考える。反射膜4間の距離をdlその
間の媒体の屈折率knとすると、ファプリー・ペロー干
渉透過率T(λ)は次の式で表わされる波長λm毎に最
大になる0nd λm= −(m=L L 3・・・) ここで、m=1 の場合について考える。このときのλ
1の走査波長領域をλaからλb(ただしλb(2人a
)!でとすると、反射膜4間の距離dがλa/2n≦d
≦λb/2n  を満足するとき、波長λ1=2ndを
中心波長とする光が透過する0すなわちdをλa /2
 nからλb/ 2 nまで任意に変化させると、λa
からλbまセ波長領域の任意の波長の光だけを透過させ
ることができる。例えば、走査波長領域t−400〜7
50nmとすると、反射膜4間隔dは200nmから8
75nmの間で制御すれば工い0この場合、反射膜4間
は中空であるから屈折率は約1である。厳密にはλa 
エフ短波長の光も透過するので、λa以下の波長の光を
除去するフィルターを用いるか、λa以下の波長の光に
対して感度のない受光素子(図示せず)を用いればよい
Here, the basic principle of the variable interference device will be explained. Consider a case where light is incident perpendicularly to the substrate surface and there is no phase jump in the light at the reflective film 4. When the distance between the reflective films 4 is dl and the refractive index of the medium between them is kn, the Fapley-Perot interference transmittance T(λ) is expressed by the following formula and is maximized for each wavelength λm.0nd λm=−(m=L L 3...) Here, consider the case where m=1. λ at this time
1 scanning wavelength range from λa to λb (however, λb (2 people a)
)! Then, the distance d between the reflective films 4 is λa/2n≦d
When ≦λb/2n is satisfied, 0, that is, d through which light with the center wavelength λ1=2nd is transmitted, is λa/2
If you change it arbitrarily from n to λb/2n, λa
It is possible to transmit only light of an arbitrary wavelength in the wavelength range from λb to λb. For example, the scanning wavelength range t-400 to 7
If it is 50 nm, the distance d between the four reflective films is 200 nm to 8
If controlled within 75 nm, the refractive index is 0. In this case, since the space between the reflective films 4 is hollow, the refractive index is about 1. Strictly speaking, λa
Since light with a short wavelength is also transmitted, a filter that removes light with a wavelength of λa or less may be used, or a light receiving element (not shown) that is insensitive to light with a wavelength of λa or less may be used.

ここで、全体の構成について説明する。透光性基板2は
ホルダー6に固定されているOそして、バイモルフ5は
透光性基板1のほぼ中央で、バイモルフ5が軽く接触す
葛か、あるいはごくわずかの間隔をあけて、バイモルフ
の動きが妨げられない工うに、バイモルフ5の端部でホ
ルダー6に固定されている0光線は透光性基板1.2の
ほぼ中央を通る。そのための光学系(図示せず)を具備
する必要がある。その光学系は光ファイバ、レンズ及び
受光素子等の組合せであるOまたノくイモルア5には光
軸を妨げない工うに切り込みをいれておくと工い0 バイモルフ5とは圧電材料の横効果(電界方向と材料の
伸縮方向が直交している)を利用して、伸縮方向の異な
る2種類の圧電材料を貼り合せて、電圧を印加すれば湾
曲する性質をもっている圧電素子である。圧電材料には
チタン酸バリウム、チタン酸鉛、チタン酸ジルコン酸鉛
及びメタニオブ酸鉛等のセラミックス系そしてポリフッ
化ビニリデン等の高分子系材料がある0第2囚に一般的
なパラレル型バイモルフを示す0これは圧電材料10が
弾性体11(通常金属板で電極になっている)を挾んで
、サンドインチ構造を成している0そしてこれを支持具
12で片端支持をしているOこのときの変位量と発生力
を示す0バイモルフの自由長(有効長)を21幅をW、
厚さをtとし、印加電圧をVとすると、弾性板の厚さが
圧電材料に比べて充分薄いとき、無負荷状態での変位量
U。は次式で示される。
Here, the overall configuration will be explained. The translucent substrate 2 is fixed to a holder 6, and the bimorph 5 is placed approximately in the center of the translucent substrate 1, and the bimorph 5 is placed in contact with the translucent substrate 1 lightly, or with a very small gap between them, allowing the bimorph to move. The zero ray, which is fixed to the holder 6 at the end of the bimorph 5, passes approximately through the center of the transparent substrate 1.2 so that the bimorph 5 is not obstructed. It is necessary to provide an optical system (not shown) for this purpose. The optical system is a combination of optical fibers, lenses, light-receiving elements, etc.The bimorph 5 is constructed by cutting a notch in it so as not to obstruct the optical axis. This is a piezoelectric element that has the property of bending when a voltage is applied, by bonding two types of piezoelectric materials with different expansion and contraction directions using the electric field direction and the direction of expansion and contraction of the material being perpendicular to each other. Piezoelectric materials include ceramic materials such as barium titanate, lead titanate, lead zirconate titanate, and lead metaniobate, and polymer materials such as polyvinylidene fluoride. 0 In this case, a piezoelectric material 10 sandwiches an elastic body 11 (usually a metal plate serving as an electrode) to form a sandwich structure.0 This is then supported at one end by a support 12. The free length (effective length) of the 0 bimorph, which indicates the amount of displacement and the generated force, is 21. The width is W,
If the thickness is t and the applied voltage is V, then when the thickness of the elastic plate is sufficiently thin compared to the piezoelectric material, the amount of displacement U under no load. is expressed by the following equation.

U0=6d81(T)・v ここでdllは圧電定数で圧電材料固有の定数である0
また変位量0のときの発生力は F= 7d3.Yl、” (1−に3.” )−7−V
で示される。ここでY118 はある結晶方向の弾性定
数で、K3、は電気機械間エネルギー結合係数である0
チタン酸ジルコン酸鉛の代表的な数値示すと、d  =
−190X10−12 m/V。
U0=6d81(T)・v Here, dll is a piezoelectric constant, which is a constant specific to the piezoelectric material 0
Also, the generated force when the amount of displacement is 0 is F=7d3. Yl,” (1- to 3.”)-7-V
It is indicated by. Here, Y118 is the elastic constant in a certain crystal direction, and K3 is the electromechanical energy coupling coefficient 0.
Typical numerical values for lead zirconate titanate are: d =
-190X10-12 m/V.

E Y、、 =6X 10  N/rri″、K3. =0
.3  である0形状を適宜に選定すれば充分な発生力
が得られる0この工うにして、バイモルフは電圧印加す
ると、湾曲しようとして、そのとき生ずる発生力は電圧
で制御することができるoX突施例ではバイモルフ5の
先端が透光性基板lに接触していて、バイモルフに電圧
を印加すると発生力が生じ、それが透光性基板1に作用
する。これを受けて、透光性基板lは湾曲し、反射膜間
の距離dが変化する0すなわち、バイモルフに印加する
電圧によって反射膜間の距離dを変化させることができ
、該干渉装置の干渉特性を制御することができる。
E Y,, =6X 10 N/rri'', K3. =0
.. 3. Sufficient generated force can be obtained by appropriately selecting the shape of In the embodiment, the tip of the bimorph 5 is in contact with the transparent substrate 1, and when a voltage is applied to the bimorph, a generated force is generated, which acts on the transparent substrate 1. In response to this, the transparent substrate l is curved, and the distance d between the reflective films changes. In other words, the distance d between the reflective films can be changed by the voltage applied to the bimorph, and the interference of the interference device Characteristics can be controlled.

第3図に本実施例の動作の一例を示す0バイモルフの印
加電圧が低いときには透光性基板lに掛る負荷は小さく
、反射膜間の距離dは大きいので、長波長に中心波長を
もった光が透過する0バイモルフの印加電圧が高くなる
と、透光性基板1に掛る負荷は増加し、反射膜間の距離
dは小さくなるので、透過光の中心波長は短波長側ヘシ
フトする0バイモルフは印加する電圧の方向に二って1
.湾曲する向きが異なり、上に凸にも下に凸にも湾曲す
る。そこでバイモルフ5と透光性基板1を接着して透光
性基板lを引き上げる力をも利用すればバイモルフの工
り一層の小形化が図れる。
Figure 3 shows an example of the operation of this embodiment. When the voltage applied to the 0 bimorph is low, the load applied to the transparent substrate l is small and the distance d between the reflective films is large, so the center wavelength is at a long wavelength. As the voltage applied to the 0-bimorph through which light passes increases, the load applied to the transparent substrate 1 increases and the distance d between the reflective films decreases, so the center wavelength of the transmitted light shifts to the shorter wavelength side. 2 and 1 in the direction of the applied voltage
.. The direction of curvature is different; it can curve either upwardly or downwardly. Therefore, if the bimorph 5 and the transparent substrate 1 are bonded together and the force used to pull up the transparent substrate 1 is also used, the bimorph can be made even more compact.

バイモルフの大きな利点は変位量が大きいこ七である。The big advantage of the bimorph is that it has a large amount of displacement.

透光性基板lを湾曲させるのには透過波長の半分程度の
ごくわずかの変位量が必要である0その点では縦効果を
利用した積層型圧電素子(変位量は数μm程度)を用い
ることもできるoしかしそれは該積層型圧電素子及び干
渉装置の位置設定にμmオーダーの精度が必要であるこ
とを意味する。バイモルフの変位量は数100μm程度
あり、各部品の設定位置精度が大幅に緩和される。この
工うに干渉計が一体得造で構成されていること、外部か
ら基板に加える力を制御して干渉計の光路長の制御を行
なっていること及び駆動素子にバイモルフを用いている
こと等によって可変干渉計の作製が容易となった。
In order to curve the transparent substrate l, a very small amount of displacement of about half the transmitted wavelength is required.In this respect, it is recommended to use a laminated piezoelectric element (the amount of displacement is about several μm) that utilizes the longitudinal effect. However, this means that the positioning of the laminated piezoelectric element and the interference device requires precision on the order of μm. The amount of displacement of the bimorph is on the order of several hundred micrometers, which greatly reduces the accuracy of the positioning of each component. The interferometer is constructed in one piece, the optical path length of the interferometer is controlled by controlling the force applied to the substrate from the outside, and a bimorph is used as the driving element. It has become easier to create a variable interferometer.

第4図に本発明による他の実施例を示す。バイモルフは
圧電材料10と弾性体11から構成されていて、圧電材
料lOが弾性体11を挾持し、−体構造となっている0
バイモルフは両端支持されている。片端支持の場合に比
べて、変位量は減少する。しかし、バイモルフの支持を
弾性体部で行ない、その弾性体に曲線部をもたせること
で、変位量の減少を低減している。両端支持の利点はバ
イモルフの取付は精度が確保できることである0動作原
理については第1図の実施例と同様である0第5図に更
に他の実施例を示す0バイモルフ5Iは透光性基板lに
直接全面あるいは一部で固着されている。バイモルフに
印加電圧に応じて発生する力は透光性基板l全体に作用
し、透光性基板1を変形させる。バイモルフ5には光線
の通る部分に孔があけである。本実施例では可変干渉装
置を小形にすることができる0そしてバイモルフと可変
干渉装置が一体となっているので、第1図及び第4図の
実施例でホルダー6に対して要求されていたバイモルフ
の取付は精度は、本実施例では全く不要である0 〈発明の効果〉 本発明によれば、一体構造のファプリーペロー干渉計の
光路長を外部から駆動系に工っで制御するため、高精度
にかつ安定に制御することができ、また複雑な機構部品
を用いず、各部品の設定精度も大幅に緩和でき、かつバ
イモルフにはほとんど電流が流れないので、消費電力も
ごくわずかで動作させることができ、分光機能をもった
小型の可変干渉装置を容易に作製することができる0
FIG. 4 shows another embodiment according to the present invention. The bimorph is composed of a piezoelectric material 10 and an elastic body 11, and the piezoelectric material 10 sandwiches the elastic body 11, forming a -body structure.
Bimorphs are supported at both ends. The amount of displacement is reduced compared to the case of one end support. However, by supporting the bimorph with an elastic body and providing the elastic body with a curved part, the decrease in displacement is reduced. The advantage of supporting both ends is that the mounting accuracy of the bimorph can be ensured.The operating principle is the same as the embodiment shown in Figure 1.Another embodiment is shown in Figure 5.Bimorph 5I is a translucent substrate. It is directly fixed to the entire surface or a part of it. The force generated in response to the voltage applied to the bimorph acts on the entire transparent substrate 1, deforming the transparent substrate 1. The bimorph 5 has a hole through which the light beam passes. In this embodiment, the variable interference device can be made compact, and since the bimorph and the variable interference device are integrated, the bimorph, which was required for the holder 6 in the embodiments of FIGS. 1 and 4, can be made compact. According to the present invention, since the optical path length of the integrated Fabry-Perot interferometer is controlled by externally modifying the drive system, It can be controlled with high precision and stability, and the setting accuracy of each part can be significantly relaxed without using complicated mechanical parts.Also, since almost no current flows through the bimorph, it operates with very little power consumption. It is possible to easily create a small variable interference device with spectroscopic function.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す可変干渉装置の斜視図
である。第2図はバイモルフの動作を説明するために供
する説明図である0第3図は第1図に示す可変干渉装置
の動作の一例を示す特性図である。第4図は本発明の他
の実施例を示す断面図である。第5図は本発明の更に他
の実施例を示す断面図である。第6図は従来の可変干渉
装置の構成断面図である。 1.2・・・透光性基板 3・・・スペーサ 4・・・
反射  −膜 5・・・バイモルフ 6・・・ホルダー
 10・・・圧電材料 11・・・弾性体 12・・・
支持具 20・・・縦効果型圧電素子 2!・・・電極
 22・・・ホルダー代理人 弁理士 杉 山 毅 至
 (他1名)笛1図 第2F55 4(X)     9に     600    70
0i 1%(nm) N3図
FIG. 1 is a perspective view of a variable interference device showing an embodiment of the present invention. FIG. 2 is an explanatory diagram for explaining the operation of the bimorph. FIG. 3 is a characteristic diagram showing an example of the operation of the variable interference device shown in FIG. 1. FIG. 4 is a sectional view showing another embodiment of the present invention. FIG. 5 is a sectional view showing still another embodiment of the present invention. FIG. 6 is a sectional view of a conventional variable interference device. 1.2... Transparent substrate 3... Spacer 4...
Reflection - Membrane 5... Bimorph 6... Holder 10... Piezoelectric material 11... Elastic body 12...
Support 20...Longitudinal effect type piezoelectric element 2! ...Electrode 22...Holder representative Patent attorney Takeshi Sugiyama (1 other person) Whistle 1 Figure 2F55 4 (X) 9 600 70
0i 1% (nm) N3 diagram

Claims (1)

【特許請求の範囲】 1、2つの対向する反射体と該反射体を支持する支持体
により上記2つの反射体に囲まれた空洞を擁するファブ
リーペロー干渉計に、上記反射体の少なくとも一方をバ
イモルフ型圧電素子を用いて変形させることにより干渉
特性を制御することを特徴とする可変干渉装置。 2、上記バイモルフ型圧電素子が圧電体と弾性体から成
り、該弾性体が厚さ方向に迂曲していることを特徴とす
る特許請求の範囲第1項記載の可変干渉装置。 3、上記バイモルフ型圧電素子が上記反射体の少なくと
も一方と一部あるいは全面で結合している特許請求の範
囲第1項記載の可変干渉装置。
[Claims] 1. A Fabry-Perot interferometer having a cavity surrounded by two opposing reflectors and a support for supporting the reflectors, in which at least one of the reflectors is bimorph A variable interference device characterized by controlling interference characteristics by deforming it using a type piezoelectric element. 2. The variable interference device according to claim 1, wherein the bimorph piezoelectric element comprises a piezoelectric body and an elastic body, and the elastic body is curved in the thickness direction. 3. The variable interference device according to claim 1, wherein the bimorph piezoelectric element is partially or entirely coupled to at least one of the reflectors.
JP26069087A 1987-10-15 1987-10-15 Variable interference device Granted JPH01101421A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26069087A JPH01101421A (en) 1987-10-15 1987-10-15 Variable interference device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26069087A JPH01101421A (en) 1987-10-15 1987-10-15 Variable interference device

Publications (2)

Publication Number Publication Date
JPH01101421A true JPH01101421A (en) 1989-04-19
JPH0575344B2 JPH0575344B2 (en) 1993-10-20

Family

ID=17351422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26069087A Granted JPH01101421A (en) 1987-10-15 1987-10-15 Variable interference device

Country Status (1)

Country Link
JP (1) JPH01101421A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0788007A2 (en) * 1996-01-31 1997-08-06 Compagnie Industrielle Des Lasers Cilas Mirror, the reflection coefficient of which is spatially variable in amplitude and phase
US6012863A (en) * 1995-04-22 2000-01-11 Nonogawa Shoji, Ltd. Case of stick-type cosmetic preparation and replaceable cartridge of stick-type cosmetic preparation used therefor
JP2008061970A (en) * 2006-09-11 2008-03-21 Olympus Corp Variable spectral element and variable spectral apparatus
JP2013505471A (en) * 2009-09-18 2013-02-14 シンテフ Actuators for moving micromechanical elements

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6012863A (en) * 1995-04-22 2000-01-11 Nonogawa Shoji, Ltd. Case of stick-type cosmetic preparation and replaceable cartridge of stick-type cosmetic preparation used therefor
US6022160A (en) * 1995-09-14 2000-02-08 Nonogawa Shoji, Ltd. Case of stick-type cosmetic preparation and replaceable cartridge of stick-type cosmetic preparation used therefor
US6315479B1 (en) 1995-09-14 2001-11-13 Nonogawa Shoji, Ltd. Case of stick-type cosmetic preparation and replaceable cartridge of stick-type cosmetic preparation used therefor
EP0788007A2 (en) * 1996-01-31 1997-08-06 Compagnie Industrielle Des Lasers Cilas Mirror, the reflection coefficient of which is spatially variable in amplitude and phase
EP0788007A3 (en) * 1996-01-31 1998-12-23 Compagnie Industrielle Des Lasers Cilas Mirror, the reflection coefficient of which is spatially variable in amplitude and phase
JP2008061970A (en) * 2006-09-11 2008-03-21 Olympus Corp Variable spectral element and variable spectral apparatus
JP2013505471A (en) * 2009-09-18 2013-02-14 シンテフ Actuators for moving micromechanical elements

Also Published As

Publication number Publication date
JPH0575344B2 (en) 1993-10-20

Similar Documents

Publication Publication Date Title
US6556338B2 (en) MEMS based variable optical attenuator (MBVOA)
US5561523A (en) Electrically tunable fabry-perot interferometer produced by surface micromechanical techniques for use in optical material analysis
US4859060A (en) Variable interferometric device and a process for the production of the same
JP2528533B2 (en) Tunable optical filter
US6608685B2 (en) Tunable Fabry-Perot interferometer, and associated methods
US9244266B2 (en) Tunable optical filter and method of manufacture thereof
JP3450180B2 (en) Tunable laser
JPH0194312A (en) Variable interference device
JPH11307864A (en) External resonator variable wavelength light source
KR20120089312A (en) Tunable spectral filter comprising fabry-perot interferometer
WO2014036844A1 (en) Polarization-irrelevant tunable fabry-perot filter
US20140198388A1 (en) Fabry-perot device with a movable mirror
JP2008046593A (en) Method of temperature compensation of optical wavelength filter apparatus and fiber etalon element
JPS62257032A (en) Variable interference apparatus
JPH01101421A (en) Variable interference device
US7027688B2 (en) Tunable optical filter based on a physically-deformable diffractive element
US20040228575A1 (en) Wavelength tunable filter capable of being bidirectionally driven by electromagnetic forces
WO2014019398A1 (en) Single-mode continuously tunable optical filter
WO2014019399A1 (en) Tunable optical filter of fixed frequency intervals and of single-mode output
JP4296974B2 (en) Fabry-Perot tunable filter and multi-channel Fabry-Perot tunable filter
US20050185680A1 (en) Tunable semiconductor laser apparatus with external resonator
US20150010026A1 (en) Mems based swept laser source
WO2018061679A1 (en) Light modulation element and light detection element
US6727562B2 (en) Basic common optical cell configuration of dual cavities for optical tunable devices
JPH0575343B2 (en)