JPS6324122A - Laying method for magnetic field producing cable for position measurement by underground drilling machine - Google Patents

Laying method for magnetic field producing cable for position measurement by underground drilling machine

Info

Publication number
JPS6324122A
JPS6324122A JP62025202A JP2520287A JPS6324122A JP S6324122 A JPS6324122 A JP S6324122A JP 62025202 A JP62025202 A JP 62025202A JP 2520287 A JP2520287 A JP 2520287A JP S6324122 A JPS6324122 A JP S6324122A
Authority
JP
Japan
Prior art keywords
magnetic field
depth
ground surface
line
cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62025202A
Other languages
Japanese (ja)
Inventor
Akira Okamoto
晃 岡本
Hideji Arakawa
秀治 荒川
Tatsuo Mimura
三村 龍夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Publication of JPS6324122A publication Critical patent/JPS6324122A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the real quantity of horizontal displacement by laying going and returning lines of a magnetic field producing loop cable across the construction plan line of an underground drilling machine on the ground surface at intervals of distance corresponding to the construction plan depth of the underground drilling machine. CONSTITUTION:The reception level ratio R of a magnetic field detecting element provided in the underground drilling machine 4 to the equal quantities of horizontal displacement of a magnetic field detecting element is right affected inverse ways by the depth D of the element and the laying interval l of the magnetic field producing cable to the construction plan line on the ground surface to each other. Consequently, the going and returning lines of the magnetic field producing cable 6 are laid in a loop across the construction plane line 7 on the ground surface 1 so that the interval is increased at a constant rate initially from a starting vertical shaft 2 to an arrival vertical shaft 3 corresponding to the depth variation of the digging-depth program line 5, held equal from the point where the digging depth is largest to the point where the depth begins to decrease, and decreased at the same rate with the depth variation until the arrival vertical shaft 3.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、地中掘削機の地中位置を地表で計測するため
に設置する磁界発生ケーブルの敷設方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of laying a magnetic field generating cable installed to measure the underground position of an underground excavator on the ground surface.

(従来の技術) 地中掘削機を使って地中を掘削する場合、施工計画通り
て掘削できるか否かが重要な課題となる。
(Prior Art) When excavating underground using an underground excavator, an important issue is whether or not the excavation can be carried out according to the construction plan.

そのため、従来から掘削作業時には常に掘削機の位置を
監視し、もし施工計画線からずれるようなことが起ると
、即座に掘削機の位置を修正するようにしている。
For this reason, conventionally, the position of the excavator is constantly monitored during excavation work, and if something deviates from the construction plan, the position of the excavator is immediately corrected.

この監視手段としては一一般にレーザ光の直進性を利用
し、掘削機の姿勢を制御するとか、或は掘削機内から電
磁波を発振し、地表でそれを追跡しつつ掘削機の地中位
置を確認する等の手段が採用されてきた。しかるに、こ
の場合、前者にあっては施工計画線が直線であるときに
は採用可能ではあるが、施工計画線が曲線であるときに
は採用が難しく、また後者にあっては地表で掘削機の進
行に随伴して走査する必要があって地形等のため採用が
不可能な場合が多い。
This monitoring means generally uses the straightness of laser light to control the excavator's attitude, or oscillates electromagnetic waves from within the excavator and tracks them on the ground surface to confirm the underground position of the excavator. Measures such as doing this have been adopted. However, in this case, although it is possible to adopt the former when the construction plan line is a straight line, it is difficult to use it when the construction plan line is a curve, and in the latter case, it is difficult to use it when the construction plan line is curved. However, this is often impossible due to terrain etc.

そこで、これら従来の監視手段て代る新しい手段が提案
されている。例えば、特開昭60 23049.8号公
報に記載されている装置がそれで、これを簡単π紹介す
ると、地表の施工計画線を挾んでその両側に平行で、か
つ前記計画線からの離隔距離を等しく一本の磁界発生ケ
ーブルをループ状に敷設置7、その両端を交流電源に接
続する一方、地中掘削機に磁界検出器を装着し、地表に
敷設された前記磁界発生ケーブルに電流を流して磁界を
発生させ、これを地中で作業中の掘削機に装備された磁
界検出器で検出し、その信号を制御器で演算し掘削機の
姿勢を修正する指令を発するようにしている。
Therefore, new means have been proposed to replace these conventional monitoring means. For example, there is a device described in Japanese Patent Application Laid-Open No. 60-23049.8.To briefly introduce this, it is a device that is parallel to both sides of the construction plan line on the ground surface, and that has a separation distance from the plan line. A single magnetic field generating cable is equally laid in a loop 7, both ends of which are connected to an AC power source, while a magnetic field detector is attached to the underground excavator and a current is passed through the magnetic field generating cable laid on the ground surface. This system generates a magnetic field, which is detected by a magnetic field detector installed on an excavator working underground, and the signal is calculated by a controller that issues a command to correct the excavator's attitude.

この提案されている掘削機の地中位置計測装置にあって
は、これまでの同種装置に比較して、自動化も可能でか
つ掘削機を追跡走査する必要がなく、更には直線掘削に
限らず曲線掘削をも可能とするものでは、あるが、磁界
発生ケーブルの往復線を地表に設置するにあたって、単
に地中掘削機の地表における施工計画線を挾んでその両
側に等間隔をおいて敷設するだけの方法であり、地中に
おける掘削機の深度に考慮が払われていないのが現状で
ある。
Compared to existing similar devices, this proposed underground position measuring device for excavators can be automated, does not require tracking and scanning of the excavator, and is not limited to straight-line excavation. There are devices that can also perform curved excavation, but when installing the reciprocating lines of the magnetic field generation cable on the ground surface, they are simply laid across the construction line of the underground excavator on the ground surface at equal intervals on both sides. Currently, this method does not take into account the depth of the excavator underground.

一方、発明者等の研究によると、前記のような磁界発生
ケーブルの敷設方法を■襲し、磁界発生ケーブルから発
生させる磁界を地中の掘削機に装備した磁界検出素子で
受信しながら掘削機の水平変位(施工計画線からのずれ
量)を求めようとしても、どうしても地中掘削機の現位
置における深度の影響を受けることとなって、真の水平
変位量が求められないことが分った。これを正確に求め
るには、その都度深度の情報を与えて補正演算を行う必
要があった。
On the other hand, according to research by the inventors, the method of laying magnetic field generating cables as described above has been improved, and the magnetic field generated from the magnetic field generating cable is received by a magnetic field detection element installed in an underground excavator. Even if we try to find the horizontal displacement (the amount of deviation from the construction plan line), it will inevitably be affected by the depth at the current position of the underground excavator, and it turns out that the true horizontal displacement cannot be found. Ta. To accurately determine this, it was necessary to provide depth information and perform correction calculations each time.

(発明が解決しようとする問題点) このように、先に提案された地中掘削機の位置計測装置
を使って計測を行おうとする場合、磁界発生ケーブルの
敷設にあたり地中掘削機の深度について何らの考慮も払
われていないため、特に施工計画線が深6度まで変更さ
れるよう々ときには地中掘削機の真の水平変位量を求め
ることができず、その計測だ信頼性がおけないという問
題点があった・ 本発明は、この点に鑑みて研究開発されたもので、たと
え深度が変化中るような計画施工線であっても、磁界発
生ケーブルをその深度変化をも考慮して敷設すれば、地
中掘削機に装備した磁界検出素子によシ検出されたデー
タを何ら補正することなくその−1ま利用して、真の水
平変位量が得られるという知見の下に、そのための新た
な地中掘削機の位置計測用磁界発生ケーブルの敷設方法
を提供しようとするものである。
(Problems to be Solved by the Invention) In this way, when attempting to perform measurements using the previously proposed position measuring device for an underground excavator, it is difficult to determine the depth of the underground excavator when laying a magnetic field generating cable. Because no consideration is taken, it is not possible to determine the true amount of horizontal displacement of the underground excavator, especially when the construction plan line is changed to a depth of 6 degrees, making the measurement unreliable. The present invention has been researched and developed in view of this point, and even if the planned construction line is one where the depth is changing, the magnetic field generating cable can be connected in consideration of the change in depth. Based on the knowledge that if the magnetic field detection element installed in the underground excavator is installed, the true amount of horizontal displacement can be obtained by using the data detected by the magnetic field detection element installed in the underground excavator without any correction. To this end, the present invention attempts to provide a new method for laying a magnetic field generating cable for position measurement of an underground excavator.

(問題点を解決するだめの手段) このため、本発明は磁界発生ケーブルの往復線を地表に
敷設し磁界を発生させて、その磁界を地中掘削機内の磁
界検出素子で受信することにより、地中掘削機の地中位
置を計測するにあたシ、地表における地中掘削機の施工
計画線を挾んで、その両側へ地中掘削機の施工計画深度
に応じた距離だけ離隔して磁界発生ケーブルの往復線を
敷設することを構成として、これを上記問題点の解決手
段とするものである。
(Means for Solving the Problem) Therefore, the present invention lays a reciprocating line of a magnetic field generation cable on the ground surface to generate a magnetic field, and receives the magnetic field with a magnetic field detection element in an underground excavator. To measure the underground position of an underground excavator, place a magnetic field on both sides of the planned construction line of the underground excavator at a distance corresponding to the planned construction depth of the underground excavator. This is a solution to the above problem by installing a reciprocating line of the generation cable.

(作用) 例えば、2個1組の磁界検出素子が夫々受信する地表か
らの磁界の強さの割合は、磁界検出素子の水平変位量に
よって変化するとともに、検出素子の地表からの深さに
よっても変化する。更に加えて、この値は地表の施工計
画線を挾む磁界発生ケーブルの往復線離間距離によって
も変化する。
(Function) For example, the ratio of the strength of the magnetic field from the ground surface that each pair of magnetic field detection elements receives changes depending on the amount of horizontal displacement of the magnetic field detection elements, and also depends on the depth of the detection elements from the ground surface. Change. In addition, this value also changes depending on the distance between the round trip lines of the magnetic field generating cables that sandwich the construction plan line on the ground surface.

そして、これら磁界検出素子の水平変位量、深度及び往
復線離間距離の間には相関的々関係がある。
There is a correlation between the horizontal displacement amount, the depth, and the distance between the two magnetic field detection elements.

従って、前記一対の検出素子が受ける磁界強さの割合を
、前記深度による影響を打ち消すべく前記往復線の離間
距離を設定し、深度に応じて往復線を敷設すれば一対の
磁界検出素子による受信磁界強さの割合の値がそのまま
真の水平変位量と対応することになる。
Therefore, by setting the separation distance of the reciprocating lines in order to cancel the influence of the depth on the ratio of the magnetic field strength received by the pair of magnetic field detecting elements, and by laying the reciprocating lines according to the depth, the reception by the pair of magnetic field detecting elements is The value of the ratio of magnetic field strength directly corresponds to the true amount of horizontal displacement.

(実施例) 以下、本発明の実施例を図面を参照しつつ説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

まず、その説明に先立って、発明者らの研究により得ら
れた地中深度が如何に磁界検出素子の検出量に影響を与
えるかについて枦明する。
First, prior to the explanation, we will briefly explain how the underground depth obtained through research by the inventors affects the amount detected by the magnetic field detection element.

第3図は地表に敷設された磁界発生ケーブル、地表の施
工計画線及び地中の磁界検出素子の位置関係を示千図で
ある。
FIG. 3 is a diagram showing the positional relationship of the magnetic field generating cable laid on the ground surface, the construction plan line on the ground surface, and the magnetic field detection element underground.

1は地表を示し、6a、6bは地表における施工計画線
7を挾んで等距離に離隔されて往復して敷設された磁界
発生ケーブルの復線、復線であり、11a 、+ ll
bは地中における2個一対の磁界検出素子である。この
磁界検出素子11a 、 llbは互に検出方向が直交
し、夫々垂線に対し45°の傾きをもって移動するもの
とする。
1 indicates the ground surface, 6a and 6b are the return lines and return lines of the magnetic field generating cables that are laid in a reciprocating manner at equal distances between the construction planned line 7 on the ground surface, 11a, + ll
b is a pair of magnetic field detection elements underground. It is assumed that the detection directions of the magnetic field detection elements 11a and 11b are orthogonal to each other, and each moves at an inclination of 45° with respect to the perpendicular line.

いま、同図において、磁界発生ケーブル6a、6bから
地表における施工計画線との各離間距離をL/2、磁界
検出素子11a 、 llbの交叉中心点から地表まで
の距離(深度)をD、同じく磁界検出素子11a 、 
llbの交叉中心点の施工計画線7からの水平変位量を
X、同中心点と磁界発生ケーブル6a、6bの各水平離
間距離を夫々X2.X、 、同中心点から磁界発生ケー
ブル6a、6bに到る距離をγ7.r1磁界発生ケーブ
ル6a、6bを夫々中心としてその垂線と磁界検出素子
11a 、 llbの交叉中心点とでなす角度を夫々θ
2.θ、とする。
Now, in the same figure, the distance from the magnetic field generation cables 6a and 6b to the construction line on the ground surface is L/2, and the distance (depth) from the intersection center point of the magnetic field detection elements 11a and llb to the ground surface is D, and magnetic field detection element 11a,
The amount of horizontal displacement of the intersection center point of llb from the construction plan line 7 is X, and the horizontal distance between the center point and the magnetic field generating cables 6a and 6b is each X2. X, , the distance from the concentric point to the magnetic field generating cables 6a, 6b is γ7. R1 magnetic field generating cables 6a and 6b are respectively centered, and the angles formed by the perpendicular lines thereof and the intersection center points of magnetic field detection elements 11a and llb are respectively θ.
2. Let θ be.

このとき、磁界検出素子11a 、 llbの水平変位
量Xを施工計画線を原点として右方向を正とすると、次
式が成立つ。
At this time, if the horizontal displacement amount X of the magnetic field detection elements 11a and 11b is set to the right direction with the construction plan line as the origin, then the following equation holds true.

X、=−CX−L/2)  、  X2=(X+L/2
)  1また、このときの各磁界検出素子11a 、 
llbが受ける磁界の強さは、磁界検出素子には指向性
があり、かつ2つの磁界発生ケーブル6a、6bからの
磁界を夫々受けるため、次式のような関係式が成立つ。
X, =-CX-L/2), X2=(X+L/2
) 1 Also, each magnetic field detection element 11a at this time,
Regarding the strength of the magnetic field received by llb, since the magnetic field detection element has directivity and receives the magnetic fields from the two magnetic field generating cables 6a and 6b, the following relational expression holds true.

ここで、vllは磁界発生ケーブル6bから発生する磁
界を磁界検出素子11bで受信した起電圧 ■+2は磁界発生ケーブル6bから発生する磁界を磁界
検出素子11aで受信した起電圧 焉、は磁界発生ケーブル6aから発生する磁界を磁界検
出素子Llbで受信した起電圧 鳳は磁界発生ケーブル6aから発生する磁界を磁界検出
素子11aで受信した起電圧 但シ、■〜■式B V++ 、 VI2 、V21 、
 V22 各起’t 圧K 共通する係数I/2π(I
:ケーブル電流、π:円周率)は省略されている。
Here, vll is the electromotive force generated when the magnetic field detection element 11b receives the magnetic field generated from the magnetic field generation cable 6b.+2 is the electromotive force generated when the magnetic field detection element 11a receives the magnetic field generated from the magnetic field generation cable 6b. The electromotive force generated when the magnetic field generated from the magnetic field generating cable 6a is received by the magnetic field detection element Llb is the electromotive force generated when the magnetic field generated from the magnetic field generation cable 6a is received by the magnetic field detection element 11a.
V22 Each pressure K Common coefficient I/2π(I
: cable current, π: pi) are omitted.

以上の関係式から各磁界検出素子11a 、 llbの
磁界の受信量が、D、Lの影響を大きく受けることが分
る。
From the above relational expressions, it can be seen that the amount of magnetic field received by each magnetic field detection element 11a, llb is greatly influenced by D and L.

そして、この各磁界検出素子が受信量る夫々の磁界の強
さの比を受信レベル比Rとすると、こわけ次式で表わさ
れる。
If the ratio of the strength of the magnetic fields received by each magnetic field detection element is defined as the reception level ratio R, then it can be expressed by the following equation.

ここで、L+:4(H)、I>1.2.3(m)として
、各式(で代入しプロットして得た図が算4図である。
Here, assuming L+: 4(H) and I>1.2.3(m), the diagram obtained by substituting and plotting each equation is the calculation 4 diagram.

横軸は磁界検出素子の水平変位tXである。The horizontal axis is the horizontal displacement tX of the magnetic field detection element.

同図から明らかな如く、磁界発生ケーブルと地表にお汁
る施工計画線との離間距離を一定(L=4”)としたと
き、深度(1,2,3町の変動により受信しくル比Rの
値が大きく影響されることが分る。
As is clear from the figure, when the distance between the magnetic field generating cable and the construction plan line on the ground surface is constant (L = 4"), the reception becomes poor due to variations in depth (1, 2, 3 inches). It can be seen that the value of R is greatly affected.

同様に、深度りを一定にして地表における施工計画線と
磁界発生ケーブルとの離間距離りを変化させても前記受
信レベル比が変動することは理解できよう。
Similarly, it will be understood that even if the depth is kept constant and the distance between the construction plan line and the magnetic field generating cable on the ground surface is changed, the reception level ratio will vary.

従って、前記離間距離りと深度りとの相関を調べ、深度
の影響を打ち消す離間距離りを求めれば、磁界検出素子
の受信レベル比により、何ら深度変化に対する補正を行
うこと々く真の水平変位量を把握できることになる8 ただ、ここで留意すべき点は、上記図示例では様々な前
提をテえであるため模式的ド関係式が得られたが、一般
的には地中掘削機内に装備される磁界検出素子の使用数
量、配置、姿勢等は位置計測システムの設計目標により
決定されるものであるから、上記深度りと離間距離りの
関係はその都度変化することKなり、亘常的に一定の関
係にあるものではないということにある。
Therefore, if we investigate the correlation between the separation distance and depth and find the separation distance that cancels out the influence of depth, we can obtain the true horizontal displacement without making any correction for depth changes based on the reception level ratio of the magnetic field detection element. 8 However, the point to keep in mind here is that although the above illustrated example was based on various assumptions, a schematic D relational expression was obtained, but in general, Since the number, arrangement, orientation, etc. of the magnetic field detection elements to be installed are determined by the design goals of the position measurement system, the relationship between the depth and separation distance described above will change from time to time. The reason is that there is no fixed relationship between them.

以下、第1図及び第2図に従って本発明の1実施例を説
明することにする。
Hereinafter, one embodiment of the present invention will be described with reference to FIGS. 1 and 2.

第1図は本実施例を横からみだ断面図であり、第2図は
同地表からみた平面図である。
FIG. 1 is a side sectional view of this embodiment, and FIG. 2 is a plan view of the same as seen from the ground surface.

図中、1は地表であシ、2は発進立坑、3は到達立技、
5は地中における掘削探度計画線、7は同じく地表にお
ける掘削施工計画線を夫々示し、地中掘削機4は前記発
進立坑2から掘削を開始し、その計画線に沿って掘進し
て到達立技3に到達する。
In the diagram, 1 is on the ground surface, 2 is the starting shaft, 3 is the arrival technique,
Reference numeral 5 indicates an underground excavation exploration planned line, and 7 similarly indicates an excavation construction planned line on the ground surface, and the underground excavator 4 starts excavation from the starting shaft 2, and excavates along the planned line to reach the planned line. Reach Tatewaza 3.

本実施例にあっては図示のとおり、前記掘削計画線は発
進立坑2から一旦一定の割合で徐々に深度を増しながら
掘進し、所定の深度に達してから地表と平行に進み、そ
のまま所定の距離を進んで上 から一定の割合で深度を7げつつ到達立技3まで掘進す
るように計画されている。地表1における施工計画線7
は直線である。
In this embodiment, as shown in the figure, the excavation plan line excavates from the starting shaft 2 while gradually increasing the depth at a constant rate, and after reaching a predetermined depth, proceeds parallel to the ground surface, and then continues to the predetermined position. The plan is to advance the distance and increase the depth by 7 at a constant rate from the top until reaching Tatewaza 3. Construction plan line 7 on ground surface 1
is a straight line.

ここで、本実施例では地中掘削機4内に装備する磁界検
出素子の受信レベル比Rは、磁界検出素子の同一水平変
位量に対して、その深度りと地表の施工計画線に対する
磁界発生ケーブルの敷設間隔lとの間には頂層反比例の
関係にある。
Here, in this embodiment, the reception level ratio R of the magnetic field detection element installed in the underground excavator 4 is determined by the magnetic field generation relative to the depth and the construction plan line on the ground surface for the same horizontal displacement amount of the magnetic field detection element. There is an inversely proportional relationship between the cable laying interval l and the top layer.

そこで、磁界発生ケーブル6は地表1の施工計画線7を
挾んで、掘削深度計画線5の深度変化に対応して発進立
坑2から到達立技3に到るまで当初は一定割合で間隔が
拡げられていき、掘削深度が最も深くなる地点から同深
度が小さくなり始める地点まで等間隔とされ、それ以降
は到達立技3に到るまで深度変化と同じ割合をもって狭
まるように往復線をもってループ状に敷設される。
Therefore, the magnetic field generating cables 6 sandwich the construction planned line 7 on the ground surface 1, and initially the interval increases at a constant rate from the starting shaft 2 to the arrival vertical shaft 3 in response to the depth change of the excavation depth planned line 5. The distance between the point where the excavation depth is the deepest and the point where the same depth begins to decrease is set at equal intervals, and from then on, the loop shape is formed with a reciprocating line so that it narrows at the same rate as the depth change until reaching the third step. will be laid down.

このように磁界発生ケーブル6を敷設して同ケーブル6
に交流電流を供給すると、磁界発生ケーブル6の各往゛
復線な中心に同心円状の磁界8が発生′し、この磁界は
地中掘削機4に装備された複数の磁界検出素子により検
出される。各磁界検出素子により検出された磁界は図示
せぬ演算制御器に入力され、該演算制御器内で比較演算
されて上記受信レベル比Rが求められる。この受信しく
ル比Rが予め設定された受信レベル比と比較され磁界検
出素子、即ち地中掘削機4の水平位置の変位量を計測し
、変動がある場合てはその位置を修正するように指令が
発せられる。このとき、前記水平位置の変動量は、予め
地中掘削機4の深度変化を考慮して、その影響を打ち消
すべく磁界発生ケーブル6の地表における施工計画線と
の敷設間隔を設定して敷設しであるため、前記受信しは
ル比の上には深度の影響がなく、従って前記受信レベル
比の演算にあたっては深度に基づく補正を行う必要がな
く、そのままの値を水平位置変位量の換算に使用される
ことになる。
By laying the magnetic field generating cable 6 in this way, the cable 6
When an alternating current is supplied to the magnetic field generating cable 6, a concentric magnetic field 8 is generated at the center of each reciprocating line, and this magnetic field is detected by a plurality of magnetic field detection elements equipped on the underground excavator 4. . The magnetic field detected by each magnetic field detection element is input to an arithmetic controller (not shown), and is compared and calculated in the arithmetic controller to determine the reception level ratio R. This reception level ratio R is compared with a preset reception level ratio to measure the amount of displacement of the horizontal position of the magnetic field detection element, that is, the underground excavator 4, and if there is a change, the position is corrected. A command is issued. At this time, the amount of variation in the horizontal position is determined by taking into consideration the depth change of the underground excavator 4 in advance, and setting the installation interval between the magnetic field generating cable 6 and the construction planned line on the ground surface in order to cancel the effect. Therefore, there is no effect of depth on the reception level ratio, and therefore, there is no need to perform correction based on depth when calculating the reception level ratio, and the value as it is can be converted into the amount of horizontal position displacement. will be used.

図示実施例では、磁界検出素子の受信しくル比て対し、
地中掘削機の深度と磁界発生ケーブルの地表における敷
設間隔との間には、お互てその影響を打ち消す、方向で
比例関係にある場合について述べたが、両者間の関係は
常に一律ではなく地中掘削機4内に装備される磁界検出
素子の数量・配置・姿勢等によシ変化するものであるか
ら、これらを考慮して予めそれらの特性・相関を把握し
、実際の施工現場に即応1.て磁界発生ケーブルの敷明
鳩書の浄書(内容に変更なし) 股を決定していく必要がある。
In the illustrated embodiment, the reception ratio of the magnetic field detection element is
We have described the case where there is a proportional relationship in the direction between the depth of the underground excavator and the spacing between the magnetic field generating cables on the ground surface, which cancels out their effects, but the relationship between the two is not always uniform. Since it changes depending on the number, arrangement, orientation, etc. of the magnetic field detection elements installed in the underground excavator 4, it is necessary to take these into consideration and understand their characteristics and correlation in advance, and then use them at the actual construction site. Immediate response 1. It is necessary to make a final copy of the drafting letter for the magnetic field generation cable (no changes to the content).

(発明の効果) 以上、詳細VCM9明1.た如く本発明によると、地中
掘削機内の磁界検出素子の受信特性のうち、その深度の
影響を打ち消すようにし、磁界発生ケーブルと地表にお
ける施工計画線との敷設間隔を設定し、磁界発生ケーブ
ルを敷設するようべしたため、磁界検出素子により検出
された値をそのま5真の水平位置の変位量に換算するこ
とができ、煩雑な補正演算の必要がなくなり、従って演
算制御器における位置計測回路を簡単圧することができ
る上に、結果に対する信頼性も一段と増大させることが
できるものである。
(Effects of the invention) The detailed VCM9 Mei 1. According to the present invention, the influence of the depth of the reception characteristics of the magnetic field detection element in the underground excavator is canceled out, the installation interval between the magnetic field generation cable and the construction planned line on the ground surface is set, and the magnetic field generation cable is Since the value detected by the magnetic field detection element can be directly converted into the amount of displacement in the horizontal position, there is no need for complicated correction calculations, and therefore the position measurement circuit in the arithmetic controller can be Not only can the results be easily determined, but the reliability of the results can also be further increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に係る地中掘削機の位置計測用
磁界発生ケーブルの敷設状態を示す地中断面図、第2図
は同地表平面図、第3図は磁界発生ケーブルと地中の磁
界検出素子の位置関係を示す模式図、第4図は地中厖削
機の深度変化による磁界受信レベルの影響を示す図であ
る。 図の主要部分の説明 4、・地中掘削機   5・・掘削深度計画線6・・・
磁界発生ケーブル D・・深度!・・地表の施工計画線
と磁界発生ケーブルの敷設間隔(距離)
Fig. 1 is a cross-sectional view of the ground showing the installation state of the magnetic field generating cable for position measurement of an underground excavator according to an embodiment of the present invention, Fig. 2 is a plan view of the same ground surface, and Fig. 3 shows the magnetic field generating cable and the ground. FIG. 4 is a schematic diagram showing the positional relationship of the magnetic field detection elements inside the underground excavator, and FIG. 4 is a diagram showing the influence of the magnetic field reception level due to changes in the depth of the underground excavator. Explanation of the main parts of the diagram 4. Underground excavator 5. Excavation depth planning line 6.
Magnetic field generation cable D...Depth! ... Construction plan line on the ground surface and installation interval (distance) of the magnetic field generation cable

Claims (1)

【特許請求の範囲】[Claims] 磁界発生ケーブルの往復線を地表に敷設し磁界を発生さ
せて、その磁界を地中掘削機内の磁界検出素子で受信す
ることにより、地中掘削機の地中位置を計測するにあた
り、地表における地中掘削機の施工計画線を挾んで、そ
の両側へ地中掘削機の施工計画深度に応じた距離だけ離
隔して磁界発生ケーブルの往復線を敷設することを特徴
とする地中掘削機の位置計測用磁界発生ケーブルの敷設
方法。
A reciprocating line of a magnetic field generation cable is laid on the ground surface to generate a magnetic field, and the magnetic field is received by a magnetic field detection element inside the underground excavator. A position of an underground excavator characterized by laying a reciprocating line of a magnetic field generating cable on both sides of the intermediate excavator's planned construction line at a distance corresponding to the planned construction depth of the underground excavator. How to lay the magnetic field generation cable for measurement.
JP62025202A 1986-03-05 1987-02-05 Laying method for magnetic field producing cable for position measurement by underground drilling machine Pending JPS6324122A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP61-48060 1986-03-05
JP4806086 1986-03-05

Publications (1)

Publication Number Publication Date
JPS6324122A true JPS6324122A (en) 1988-02-01

Family

ID=12792799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62025202A Pending JPS6324122A (en) 1986-03-05 1987-02-05 Laying method for magnetic field producing cable for position measurement by underground drilling machine

Country Status (1)

Country Link
JP (1) JPS6324122A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01214692A (en) * 1988-02-23 1989-08-29 Komatsu Ltd Horizontal displacement measuring device for underground drilling machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01214692A (en) * 1988-02-23 1989-08-29 Komatsu Ltd Horizontal displacement measuring device for underground drilling machine

Similar Documents

Publication Publication Date Title
US8841913B2 (en) Determining formation parameters using electromagnetic coupling components
US6457537B1 (en) Mapping tool for tracking and/or guiding an underground boring tool
US7617049B2 (en) Distance determination from a magnetically patterned target well
US20100127708A1 (en) Resistivity Logging with Reduced Dip Artifacts
JPH11508004A (en) Positioning of independent underground boring machines
US20040174168A1 (en) Locating arrangement and method using boring tool and cable locating signals
CN109869140A (en) Offset well distance-measuring device and method based on magnetic field gradient
JPS6324122A (en) Laying method for magnetic field producing cable for position measurement by underground drilling machine
CN113566686A (en) Method and device for verifying buried depth position based on ultra-large buried depth pipeline
JPH0521483B2 (en)
JPH0387612A (en) Position detector for underground excavator
JPS625121A (en) Position detector of excavating machine
JPS62169012A (en) Horizontal displacement measuring apparatus for underground excavator
JPS62132111A (en) Apparatus for measureing horizontal displacement of underground excavator
CN103015995B (en) Method and device for measuring stratigraphic dip by resistivity device with tilt coil
JP4996566B2 (en) Underground joining method between excavators and position detection method for excavators
JP2786238B2 (en) Excavator horizontal position measurement device
JPH0226194B2 (en)
JPH03260284A (en) Horizontal displacement detector of underground moving body
CN117514151A (en) Magnetic positioning method for resisting magnetic interference and drilling device
JPS6295480A (en) Receiver for position measurement of tunnel drilling machine
JPS62132110A (en) Apparatus for measuring horizontal displacement quantity of underground excavator
JP2000292147A (en) Horizontal displacement measuring instrument and its installing method
JPS60230498A (en) Position detection apparatus of drilling machine
JP2641985B2 (en) Optimal attitude control method for shield machine