JPS62132111A - Apparatus for measureing horizontal displacement of underground excavator - Google Patents

Apparatus for measureing horizontal displacement of underground excavator

Info

Publication number
JPS62132111A
JPS62132111A JP60272993A JP27299385A JPS62132111A JP S62132111 A JPS62132111 A JP S62132111A JP 60272993 A JP60272993 A JP 60272993A JP 27299385 A JP27299385 A JP 27299385A JP S62132111 A JPS62132111 A JP S62132111A
Authority
JP
Japan
Prior art keywords
magnetic field
excavator
horizontal displacement
cable
underground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60272993A
Other languages
Japanese (ja)
Inventor
Hideji Arakawa
秀治 荒川
Tatsuo Mimura
三村 龍夫
Akira Okamoto
晃 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP60272993A priority Critical patent/JPS62132111A/en
Publication of JPS62132111A publication Critical patent/JPS62132111A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

PURPOSE:To continuously obtain the accurate data of the horizontal displacement mode of an underground excavator from an execution scheme line in a real time, by laying one or more magnetic field generating cables to the surface of the earth and an appropriate magnetic field detection element is arranged in the side of the underground excavator to detect the magnetic field generated from each of said cables. CONSTITUTION:A current is supplied to the magnetic field generating cable 10 laid on the surface of the earth EP from an operation panel 30 while magnetic field detection elements S1, S2 are arranged to an underground excavator 20. The element S1 is fixed so that a magnetic field detecting direction is inclined by a predetermined angle from a vertical direction when looked from the front surface of the excavator 20 in the advance direction thereof and the element S2 is fixed so that a magnetic field detecting direction crosses the magnetic field detecting direction of the element S1 at an angle coming to line symmetry with respect to a vertical direction axis when looked from the front surface of the excavator 20 in the advance direction and both elements detect the magnetic field generated from the cable 10. The operation panel 30 compares the detected magnetic field levels by the elements S1, S2 to judge the horizontal displacement of the excavator 20 in the left and right direction with respect to the cable 10.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、水道管・ガス管等を地中埋設するためにトン
ネル掘進を行う地中掘削機を施工計画線通シ推進すべく
、該地中掘削機の地中における水平変位を計測する地中
掘削機の計測装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is aimed at promoting the construction schedule of an underground excavator that excavates tunnels to bury water pipes, gas pipes, etc. underground. The present invention relates to a measurement device for an underground excavator that measures the horizontal displacement of an underground excavator underground.

〔従来の技術〕[Conventional technology]

従来、こうした水道管やガス管を埋設することを目的と
した比較的小口径の地中掘削機においては、掘削ス4−
スが小さい上に曲線掘削なども頻繁に行なわれるなどと
いった性格上、この掘削位置を計測、確認するに、レー
デトランシット等を用いた光学測量は適用できないし、
特にこの水平方向の変位に関してはこれを正確に計測す
ること自体が不可能であるというのが実情であった。こ
れに対し最近、地中掘削機内部に磁気発生・素子を設置
し、この磁気発生素子から発生する交番磁界の地表での
特徴を利用して、地中掘削機の真上の地表点あるいは真
上の地表点からの変位を計測する方法が%侵昭58−1
1030発明の名称「シールド機の水平位置探知方法」
を基本としていくつか提案されている。
Conventionally, relatively small-diameter underground excavators for the purpose of burying water pipes and gas pipes have been
Due to the small size of the excavation site and the frequent curved excavation, optical surveying using radar transit etc. cannot be applied to measure and confirm the excavation position.
In particular, the reality is that it is impossible to accurately measure displacement in the horizontal direction. In response to this problem, recently a magnetic generation element has been installed inside the underground excavator, and the characteristics of the alternating magnetic field generated from this magnetic generation element on the earth's surface are used to generate a magnetic field directly above the underground excavator. The method of measuring the displacement from the above ground point was
1030 Title of invention: “Horizontal position detection method for shield aircraft”
Several proposals have been made based on this.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

こうした方法によれば、地中掘削機の水平位置について
確かにこれを計測することはできるものの、この実用に
際しては、上記の磁気検出素子が所定の姿勢で設置され
た探査器を地表の目標地点へ運搬し、設↑釘、探査せね
ばならないことから、計測担当人員の増加や計測の手間
・時間がかかる等の新たな問題が生じることとなる。ま
して、交通址の多い道路ではこのような計測方法は不可
能に等しく、頻繁な交通遮断を行うに至っては地中掘削
機を用いた管理設方法の本来の利点を失なわせるもので
ある。
Although this method can certainly measure the horizontal position of an underground excavator, in practical use it is difficult to measure the horizontal position of an underground excavator, but in practical use, the probe with the magnetic detection The need to transport, install, and explore new problems will arise, such as an increase in the number of people in charge of measurements and the need for more labor and time for measurements. Furthermore, such a measurement method is almost impossible on roads with a lot of traffic, and frequent traffic closures would negate the original advantage of the management method using underground excavators.

〔問題点を解決するための手段および作用〕この発明で
は、地中掘削機の施工計画線に応じて例えばこれに一致
するよう地表面に1乃至複数の磁界発生ケーブルを敷設
し、地中掘削機の側に適宜の磁界検出素子を配設してこ
れに上記ケーブルの発生磁界を検出せしめるLうにする
。この磁界は、同ケーブルの鉛直面を境とする有半方向
と左半方向とでその特徴が異なるものであり、こうした
磁界の特徴の相異を上記磁界検出素子の出力に基づいて
判別するようにすれば、当該地中掘削機が上記ケーブル
の鉛直面について右方にあるか左方にあるかその水平変
位態様を有効にしかもリアルタイムで連続的に識別計測
することができる。
[Means and effects for solving the problem] In the present invention, one or more magnetic field generating cables are laid on the ground surface in accordance with the construction plan line of the underground excavator, and An appropriate magnetic field detection element is disposed on the side of the machine to detect the magnetic field generated by the cable. The characteristics of this magnetic field are different between the positive half direction and the left half direction with the vertical plane of the same cable as a boundary, and the difference in the characteristics of the magnetic field is determined based on the output of the magnetic field detection element described above. By doing so, it is possible to effectively and continuously identify and measure in real time whether the underground excavator is to the right or to the left with respect to the vertical plane of the cable.

因みに、こうした地中掘削機の水平変位補正に際しては
、該計測によって得られる右変位あるいは左変位といっ
た2値の情報のみで、十分にその制御が可能である。
Incidentally, when correcting the horizontal displacement of such an underground excavator, it is possible to sufficiently control the horizontal displacement with only binary information such as rightward displacement or leftward displacement obtained by the measurement.

〔発明の効果〕〔Effect of the invention〕

このように、この発明によれば、施工計画線に応じて地
表面に予め磁界発生ケーブルを敷設しておくだけで、地
中掘削機の当該施工計画線からの水平変位態様について
の正確なデータをリアルタイムで連続的に得ることがで
きる。したがって、車輛の通過等に対する上記ケーブル
の保鏝さえ行なっておけば、交通を一切遮断する必要も
なく、また上述したデータのリアルタイムによる連続採
取に伴なって当の地中掘削機を連続制御するようにすれ
ば、施工精度も格段に向上する。
As described above, according to the present invention, accurate data regarding the horizontal displacement mode of an underground excavator from the construction planning line can be obtained by simply laying the magnetic field generating cable on the ground surface in advance according to the construction planning line. can be obtained continuously in real time. Therefore, as long as the above-mentioned cables are protected against passing vehicles, etc., there is no need to block traffic at all, and the underground excavator in question can be continuously controlled in accordance with the continuous collection of the above-mentioned data in real time. This will greatly improve construction accuracy.

〔実施例〕〔Example〕

はじめに、第4図乃至第6図を参照してこの発明の詳細
な説明する。
First, the present invention will be explained in detail with reference to FIGS. 4 to 6.

いま、第4図に示すように、地表面EP上に磁界発生ケ
ーブル10を敷設し、これに適宜の電流を流したとする
と、該ケーブル1oを中心としてその周囲には同第4図
に示す態様で同心円状に磁界Hが発生する。この発明で
は、こうして発生される磁界Hを同図に示すような2つ
の磁界検出素子S1およびS2に同時に検出せしめる。
Now, as shown in Fig. 4, if a magnetic field generating cable 10 is laid on the earth's surface EP and an appropriate current is passed through it, the cable 1o is centered and its surroundings are as shown in Fig. 4. A magnetic field H is generated concentrically in this manner. In this invention, the magnetic field H thus generated is simultaneously detected by two magnetic field detection elements S1 and S2 as shown in the figure.

そしてここでは簡単のため、これら2つの磁界検出素子
S1およびS2は互いにその磁界検出方向が直交し、か
つそれぞれが上記ケーブル1oの鉛直面vpに対して4
5度の角度に維持されるとする。
For the sake of simplicity, these two magnetic field detection elements S1 and S2 have their magnetic field detection directions perpendicular to each other, and each has an angle of
Assume that the angle is maintained at 5 degrees.

こうした条件下におけば、上記2つの磁界検出素子81
およびS2による検出磁界のレベル比は、上記磁界発生
ケーブル10から見たその鉛直面vpとこれら磁界検出
素子S1およびS2とのなす角θによって第5図に示す
ような4つの領域に対応した4種の値をとるようになる
Under these conditions, the two magnetic field detection elements 81
The level ratio of the magnetic field detected by S2 is determined by the angle θ formed by the vertical plane VP seen from the magnetic field generating cable 10 and these magnetic field detecting elements S1 and S2. It now takes the value of the species.

すなわち同第5図に示すように、これら検出磁界のレベ
ル比iRで表わすと、該レベル比Ri、それぞれ ■ θ≦−45°である領域AにおいてはR:=cot
(θ−45°) ■ −45°≦θ≦09である領域BにおいてR=−e
at(θ−45°) ■ 06≦θ≦45°である領域CにおいてはR=−j
an(θ−45°) ■ 450≦θである領域りにおいてはR=jan(θ
−450) といった値をとることとなる。なおこの第5図において
、Dは上記磁界検出素子S1およびS2の地中深さを示
す直であり、この地中深さDの値別に該レベル比Rの値
を数値計算してこれをグラフ化したのが第6図である。
That is, as shown in FIG. 5, when expressed by the level ratio iR of these detected magnetic fields, the level ratio Ri is R:=cot in the region A where θ≦−45°, respectively.
(θ-45°) ■ R=-e in region B where -45°≦θ≦09
at(θ-45°) ■ In region C where 06≦θ≦45°, R=-j
an(θ-45°) ■ In the region where 450≦θ, R=jan(θ
-450). In this FIG. 5, D indicates the underground depth of the magnetic field detection elements S1 and S2, and the value of the level ratio R is numerically calculated for each value of the underground depth D, and this is graphed. Figure 6 shows the result.

この第6図のグラフでは、D=1m、2m、3mといっ
た3様の地中深さを想定し、これら地中深さ別に上記磁
界検出素子S1およびS2による検出磁界のレベル比R
と同磁界検出素子S1およびS2のケーブル10鉛直面
vpからの水平変位量との関係を表わしている。
In the graph of FIG. 6, three types of underground depths such as D=1 m, 2 m, and 3 m are assumed, and the level ratio R of the magnetic field detected by the magnetic field detecting elements S1 and S2 is assumed for each of these underground depths.
This represents the relationship between the amount of horizontal displacement of the magnetic field detection elements S1 and S2 from the vertical plane vp of the cable 10.

さてこの第6図のグラフによれば、上述し九条件下にお
かれる2つの磁界検出素子S1およびS2が前記ケーブ
ル10に対してその鉛直面■Pすなわち水平変位量「0
」の位置にあれば、その地中深さDがいかなる値であれ
、その各検出磁界のレベル比は「1」となることがわか
る。しかも、これら磁界検出素子S1およびS2が上記
水平変位量「0」の位置から右半方向に変位する場合は
、同レベル比Rが R(1 となり、逆に左半方向に変位する場合は、同レベル比R
が R)1 となってこの例外は生じない。
Now, according to the graph of FIG. 6, the two magnetic field detection elements S1 and S2 placed under the above-mentioned nine conditions are displaced with respect to the cable 10 in the vertical plane ■P, that is, the horizontal displacement amount is "0".
'', it can be seen that the level ratio of each detected magnetic field is ``1'' no matter what the underground depth D is. Moreover, when these magnetic field detection elements S1 and S2 are displaced in the right half direction from the position of the horizontal displacement amount "0", the same level ratio R becomes R(1; conversely, when they are displaced in the left half direction, Same level ratio R
becomes R)1, and this exception does not occur.

以上総括すれば、磁界検出方向が互いに直交し、かつそ
のそれぞれが磁界発生ケーブル1oの鉛直面vPに対し
て45度の角度に維持される2つの磁界検出素子S1お
よびS2にて同ケーブル1゜の発生磁界を検出するとき
、これら検出磁界のレベル比RがR=1であればこれら
磁界検出素子S1およびS2は同ケーブル10に対して
水平変位量「0」の位置にあり、同レベル比RがR<1
であれば同磁界検出素子S1およびS2は同ケーブル1
0に対して右半方向に変位した位置にお夛、サラに同レ
ベル比RがR)lであれば同磁界検出素子SlおよびS
2は同ケーブル10に対して左半方向に変位した位置に
あるといった結論を得る。
To summarize the above, two magnetic field detection elements S1 and S2 whose magnetic field detection directions are orthogonal to each other and each maintained at an angle of 45 degrees with respect to the vertical plane vP of the magnetic field generating cable 1o can be used to When detecting the generated magnetic field, if the level ratio R of these detected magnetic fields is R = 1, these magnetic field detection elements S1 and S2 are at the position of horizontal displacement "0" with respect to the same cable 10, and the same level ratio R is R<1
If so, the same magnetic field detection elements S1 and S2 are connected to the same cable 1.
If the same level ratio R is R)l at a position displaced in the right half direction with respect to 0, the same magnetic field detecting elements Sl and S
2 is at a position displaced in the left half direction with respect to the same cable 10.

なおここでは、上記2つの磁界検出素子81およびS2
の上記ケーブル鉛直面vPに対する配置角度を上述の如
く限定したが、基本的には、これら磁界検出素子S1お
よびS2の磁界検出方向が同ケーブル鉛直面vPについ
て互いに対称となるような角度に維持されさえすれば、
上記と同様の原理に基づいてその水平変位態様に関する
判断を第1図乃至!3図は、こうした原理に基づいて構
成したこの発明にかかる地中掘削機の水平変位計測装置
の一実施例を示すものであシ、以下これら第1図乃至第
3図を参照して該実施例の構成並びに動作を詳述する。
Note that here, the above two magnetic field detection elements 81 and S2
Although the arrangement angle with respect to the cable vertical plane vP is limited as described above, basically, the magnetic field detection directions of these magnetic field detection elements S1 and S2 are maintained at an angle that is symmetrical with respect to the cable vertical plane vP. All you have to do is
Judgments regarding the horizontal displacement mode are made based on the same principle as above in Figures 1 to ! FIG. 3 shows an embodiment of the horizontal displacement measuring device for an underground excavator according to the present invention constructed based on such a principle. The configuration and operation of the example will be explained in detail.

第1図は作業状態にあるとする地中掘削機を含む該実施
例装置の大まかな構成を横断面図をもって模式的に示し
た。ものであシ、また第2図は同地中掘削機の進行方向
から見虎該実施例装置の要部断面構造を模式的に示した
ものであシ、これら図において、EPは地表面、10は
該地表面EP上の施工計画線(図示せず)に溢って敷設
された磁界発生ケーブル、20は地中掘削機、21は該
掘削機20のへ、ド、22は該ヘラP21を支持する支
持アーム、23は該支持アーム22を推進せしめる推進
シャツキ、SlおよびS2は例えばコイルからなる前述
した磁界検出素子、24はこれら磁界検出素子S1およ
びS2の磁界検出方向が常に先の第4図に示した関係と
なるようこれを地中掘)11J機20の支持アーム22
内に支持する姿勢支持枠、25は上記磁界検出素子S1
およびS2の検出信号を伝送する信号線、30は図示の
如く地上に設けらnて上記ケーブルlOに対する給電を
行なうとともに上記信号線25を介して伝送される磁界
検出素子S1およびS2の検出信号に基づき当の地中掘
削機20の水平変位計測のための信号処理を一括して実
行する操作盤をそれぞれ示す。この操作盤30の構成に
ついては第3図に詳しく示す。
FIG. 1 schematically shows, with a cross-sectional view, the rough configuration of the apparatus of this embodiment including an underground excavator in a working state. In addition, FIG. 2 schematically shows the cross-sectional structure of the main part of the apparatus of this embodiment as seen from the direction of movement of the underground excavator. In these figures, EP is the ground surface, 10 is a magnetic field generating cable laid over the construction plan line (not shown) on the ground surface EP, 20 is an underground excavator, 21 is a part of the excavator 20, and 22 is the spatula P21. 23 is a propulsion arm that propels the support arm 22; S1 and S2 are the aforementioned magnetic field detection elements made of coils, and 24 is the magnetic field detection direction of these magnetic field detection elements S1 and S2 that is always first. 4) Support arm 22 of the 11J machine 20
A posture support frame 25 supports the magnetic field detection element S1
A signal line 30 for transmitting the detection signals of the magnetic field detecting elements S1 and S2 is provided on the ground as shown in the figure, and supplies power to the cable IO, and also transmits the detection signals of the magnetic field detecting elements S1 and S2 via the signal line 25. Based on the drawings, operation panels for collectively executing signal processing for horizontal displacement measurement of the underground excavator 20 in question are shown. The configuration of this operation panel 30 is shown in detail in FIG.

すなわち第3図に示すように1この操作盤30は、適宜
の繰り返し周波数を有する交流信号を発振する発振器3
1.該発振された交流信号を電力増幅してこれを前記磁
界発生ケーブル10に供給する電力増幅器32、前記信
号線25を介して伝送される磁界検出素子SlおよびS
2の磁界検出信号を各別に同一の利得をもって増幅する
信号増幅器33aおよび33b、これら増幅された2つ
の磁界検出信号の信号レベルを比較するレベル比較器3
4、そして該レベル比較結果に基づいて例えば右変位指
示用および左変位指示用の2つのランプからなる表示器
36のこれらランプの点灯IQ様を制御する表示器ドラ
イバ35をそれぞれ具えて構成されるもので、先の原理
に基づき次に述べる態様をもって地中掘削機20の水平
変位計測のための信号処理を実行する。
That is, as shown in FIG.
1. A power amplifier 32 that amplifies the power of the oscillated AC signal and supplies it to the magnetic field generation cable 10, and magnetic field detection elements Sl and S that are transmitted via the signal line 25.
Signal amplifiers 33a and 33b that amplify the two magnetic field detection signals with the same gain, and a level comparator 3 that compares the signal levels of these two amplified magnetic field detection signals.
4, and a display driver 35 that controls the lighting IQ of a display 36 consisting of two lamps, one for indicating right displacement and one for indicating left displacement, based on the level comparison result. Based on the above principle, signal processing for measuring the horizontal displacement of the underground excavator 20 is executed in the following manner.

いま、上記発振器31および電力増幅器32を通じて前
記磁界発生ケーブルIOK交流電流が供給されたとする
と、例えば先の第4図に示したような同ケーブル10を
中心とした同心円磁界Hが発生する。地中掘削機20内
に同第4図に示す態様で搭載された磁界検出素子S1お
よびS2が向ケーブル10の鉛直面VPについて左半方
向にある左半方向であるかによって、この発生さnた磁
界についてのこれら素子S1およびS2による検出磁界
のレベル比Rが「l」を境にして上下することは先の原
理の説明において述べた通シである。
Now, if the magnetic field generating cable IOK AC current is supplied through the oscillator 31 and the power amplifier 32, a concentric magnetic field H centered on the cable 10 as shown in FIG. 4, for example, is generated. This occurrence depends on whether the magnetic field detection elements S1 and S2 mounted in the underground excavator 20 in the manner shown in FIG. The level ratio R of the magnetic field detected by these elements S1 and S2 with respect to the magnetic field detected by the elements S1 and S2 increases and decreases with "l" as the boundary, as stated in the previous explanation of the principle.

この操作盤30は、こうし九2つの磁界検出素子Slお
よびS2による検出磁界のレベル比RがR(1であるが
R)1であるかといった関係を、これら各検出磁界のレ
ベルの大小関係として監視するもので、上記レベル比較
器34を通じてこれら検出磁界のレベルの大小関係を直
接判別する。
This operation panel 30 displays the relationship such as whether the level ratio R of the detected magnetic field by these 92 magnetic field detecting elements Sl and S2 is R (1 but R) 1, and the magnitude relationship of the level of each detected magnetic field. The magnitude relationship between the levels of these detected magnetic fields is directly determined through the level comparator 34.

この結果1例えば磁界検出素子5IICよる検出磁界の
レベルが磁界検出素子S2による検出磁界のレベルよう
も大きかった場合には、上記表示器ドライバ35を通じ
て表示器36の右変位指示用ランプを点灯し、当の地中
掘削機20が施工計画線に対して現在右方向に変位して
いる旨表示する。
As a result 1, for example, if the level of the magnetic field detected by the magnetic field detecting element 5IIC is higher than the level of the magnetic field detected by the magnetic field detecting element S2, the right displacement indication lamp of the display 36 is lit through the display driver 35, It is displayed that the underground excavator 20 in question is currently displaced to the right with respect to the construction plan line.

これらレベルの大小関係が逆であれば同表示器36の左
変位指示用ランプを点灯する。ただし、こうしたランプ
の点灯態様は、同装置の構成や結線の態様によって逆と
なることもあり、実用に際してはそnぞれ装置の実情に
応じた適正な変位計測がなさnるよう同点灯因様の調整
が図られる。
If the magnitude relationship between these levels is reversed, the left displacement indicating lamp on the display 36 is turned on. However, the lighting mode of these lamps may be reversed depending on the configuration of the device and the mode of wiring, so in practical use, the same lighting factor may be used to ensure proper displacement measurement according to the actual situation of the device. Adjustments will be made.

こうして地中掘削機20による掘削作業に伴なって該掘
削機20の上記ケーブル10からの(施工計画線からの
)水平変位態様が連続的だ計測さn、上記表示器36を
通じてこの計測内容が逐次リアルタイムでモニタされる
。また先の第6図に基づけばこの変位量を計測すること
も容易である。
In this way, as the underground excavator 20 excavates, the horizontal displacement of the excavator 20 from the cable 10 (from the construction plan line) is continuously measured, and the content of this measurement is displayed through the display 36. Monitored sequentially in real time. Furthermore, it is easy to measure this amount of displacement based on FIG. 6 above.

なお、上記の実施例では、磁界発生ケーブル10に交流
電流を供給するようにしたが、この供給する電流は直流
電流であっても勿論よい。
In the above embodiment, an alternating current is supplied to the magnetic field generating cable 10, but the supplied current may of course be a direct current.

ま九、この磁界発生ケーブル10自体単線である必要は
なく、複数のケーブル若しくはこnら複数のケーブルを
束ねたものであってもよい。例えば、一定の間隔を保っ
て往復するようケーブルを敷設し、これらケーブルの中
心を施工計画線に一致させるようにしても上述と同等の
効果を得ることができる。
Also, the magnetic field generating cable 10 itself does not have to be a single wire, and may be a plurality of cables or a bundle of a plurality of cables. For example, the same effect as described above can be obtained by laying cables so as to reciprocate at constant intervals and aligning the centers of these cables with the construction plan line.

また、同実施例では、先の@4図乃至第6図に基づいて
説明した原理に従って、2つの磁界検出素子の各磁界検
出方向(角度)を設定したが、同原理の説明で補足した
ように、基本的には、これら素子の磁界検出方向は上記
ケーブルの鉛直面について互いに対称となるような角度
に維持さnさえすればよい。すなわちこうした場合、前
述した左右の変位態様を判別するためのこれら磁界検出
素子による検出磁界のレベル比(R)の値を該設定した
角度に応じて変更すnばよい。
In addition, in the same example, the magnetic field detection directions (angles) of the two magnetic field detection elements were set according to the principle explained based on @Figures 4 to 6, but as supplemented in the explanation of the same principle. Basically, the magnetic field detection directions of these elements only need to be maintained at angles that are symmetrical to each other with respect to the vertical plane of the cable. That is, in such a case, the value of the level ratio (R) of the magnetic field detected by these magnetic field detecting elements for determining the above-mentioned left and right displacement mode may be changed according to the set angle.

因みに、同地中掘削機の深さ方向の変位については、周
知の傾斜計を用いることでこれを十分な精度でM計測す
ることができる。
Incidentally, the displacement of the underground excavator in the depth direction can be measured with sufficient accuracy by using a well-known inclinometer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明にかかる地中掘削機の水平変位計測装
置の一実施例についてその構成の概要を模式的に示す横
断面図、第2図は同実施例装置の正面方向からみた部分
断面図、第3図は同実施例装置の操作盤構成を示すプロ
、り図、wc4図および第5図はこの発明の計測原理を
説明するだめの略図、第6図は第4図および第5図に示
した2つの磁界検出素子によって検出される磁界のレベ
ル比とその磁界中心からの水平変位量との関係を示すグ
ラフである。 10・・・磁界発生ケーブル、20−・・地中掘削機、
21・・・へ、ド、22・・・支持アーム、23−・・
推進ジヤツキ、24・・・姿勢支持枠、25・・・信号
線、30・・・操作盤、31・・・発振器、32・・・
電力増幅器、33a 、33b・・・信号増幅器、34
・・・レベル比較器、35・・・表示器ドライバ、36
・・・表示器、Sl。 S2・・・磁界検出素子。
FIG. 1 is a cross-sectional view schematically showing the configuration of an embodiment of the horizontal displacement measuring device for an underground excavator according to the present invention, and FIG. 2 is a partial cross-sectional view of the same embodiment as seen from the front direction. Figures 3 and 3 are schematic diagrams showing the configuration of the operation panel of the same embodiment device, Figures 4 and 5 are schematic diagrams for explaining the measurement principle of this invention, and Figure 6 is a schematic diagram showing the configuration of the operation panel of the same embodiment device. It is a graph which shows the relationship between the level ratio of the magnetic field detected by the two magnetic field detection elements shown in the figure, and the amount of horizontal displacement from the center of the magnetic field. 10... Magnetic field generation cable, 20-... Underground excavator,
21... To, C, 22... Support arm, 23-...
Propulsion jack, 24... Attitude support frame, 25... Signal line, 30... Operation panel, 31... Oscillator, 32...
Power amplifier, 33a, 33b... Signal amplifier, 34
... Level comparator, 35 ... Display driver, 36
...Indicator, Sl. S2...Magnetic field detection element.

Claims (3)

【特許請求の範囲】[Claims] (1)地表面に敷設される1乃至複数の磁界発生ケーブ
ルと、 該ケーブルに適宜の電流を供給する電流供給手段と、 地中掘削機に配設され、磁界検出方向が該掘削機の進行
方向正面からみて鉛直方向から所定角度傾斜した方向と
なるよう固定支持されて前記ケーブルから発生される磁
界を検出する第1の磁界検出素子と、 同じく地中掘削機に配設され、磁界検出方向が該掘削機
の進行方向正面からみて前記第1の磁界検出素子の磁界
検出方向と鉛直方向軸について線対称となる角度をもっ
て交差する方向となるよう固定支持されて前記ケーブル
から発生される磁界を検出する第2の磁界検出素子と、 これら第1および第2の磁界検出素子による検出磁界レ
ベルの比較に基づいて前記地中掘削機の前記ケーブルに
対する右左方の水平変位を判定する判定手段と を具えた地中掘削機の水平変位計測装置。
(1) One or more magnetic field generating cables laid on the ground surface, a current supply means for supplying an appropriate current to the cables, and a current supply means disposed on an underground excavator such that the magnetic field detection direction is set in the direction of travel of the excavator. A first magnetic field detection element is fixedly supported to detect the magnetic field generated from the cable and is tilted at a predetermined angle from the vertical direction when viewed from the front; is fixedly supported in a direction that intersects the magnetic field detection direction of the first magnetic field detection element at an angle that is symmetrical about the vertical axis when viewed from the front in the traveling direction of the excavator, and the magnetic field generated from the cable is transmitted. a second magnetic field detecting element for detecting; and a determining means for determining horizontal displacement of the underground excavator to the right or left with respect to the cable based on a comparison of the magnetic field levels detected by the first and second magnetic field detecting elements. Horizontal displacement measurement device for underground excavators.
(2)前記第1および第2の磁界検出素子の前記掘削機
の進行方向正面からみて鉛直方向となす所定角度は45
度である特許請求の範囲第(1)項記載の地中掘削機の
水平変位計測装置。
(2) The predetermined angle of the first and second magnetic field detection elements with respect to the vertical direction when viewed from the front in the traveling direction of the excavator is 45
A horizontal displacement measuring device for an underground excavator according to claim (1).
(3)前記判定手段は、前記第1および第2の磁界検出
素子による各検出磁界レベルの大小関係に基づいて前記
地中掘削機の水平変位を判定する特許請求の範囲第(2
)項記載の地中掘削機の水平変位計測装置。
(3) The determination means determines the horizontal displacement of the underground excavator based on the magnitude relationship between the magnetic field levels detected by the first and second magnetic field detection elements.
Horizontal displacement measuring device for an underground excavator as described in ).
JP60272993A 1985-12-04 1985-12-04 Apparatus for measureing horizontal displacement of underground excavator Pending JPS62132111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60272993A JPS62132111A (en) 1985-12-04 1985-12-04 Apparatus for measureing horizontal displacement of underground excavator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60272993A JPS62132111A (en) 1985-12-04 1985-12-04 Apparatus for measureing horizontal displacement of underground excavator

Publications (1)

Publication Number Publication Date
JPS62132111A true JPS62132111A (en) 1987-06-15

Family

ID=17521654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60272993A Pending JPS62132111A (en) 1985-12-04 1985-12-04 Apparatus for measureing horizontal displacement of underground excavator

Country Status (1)

Country Link
JP (1) JPS62132111A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6454246A (en) * 1987-08-25 1989-03-01 Nippon Kokan Kk Correction of measuring position for pig for inspecting pipe body
JP2002365005A (en) * 2001-06-08 2002-12-18 San Shield Kk Position detecting method and position detecting system for shield machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6454246A (en) * 1987-08-25 1989-03-01 Nippon Kokan Kk Correction of measuring position for pig for inspecting pipe body
JP2002365005A (en) * 2001-06-08 2002-12-18 San Shield Kk Position detecting method and position detecting system for shield machine

Similar Documents

Publication Publication Date Title
CN108120474A (en) A kind of contact net contact line measuring method and device
JPH0772472B2 (en) Horizontal deviation measuring device for underground excavator
JPS62132111A (en) Apparatus for measureing horizontal displacement of underground excavator
US5208538A (en) Apparatus having a pair of magnetic field generating cables for measuring position of an underground excavator
JPH0754254B2 (en) Horizontal displacement measuring device for underground excavator
JP2866078B2 (en) Excavation propulsion position detecting device and position detecting method
JP3224004B2 (en) Drilling tube tip location method
EP0446360A1 (en) Position detecting device for underground excavator
JPS625121A (en) Position detector of excavating machine
JPS62132112A (en) Method and apparatus for measuring horizontal displacement of underground excavator
JPS625117A (en) Position detector of excavating machine
JPS62168013A (en) Position measuring instrument for underground excavator
JPH03257321A (en) Relative position detecting apparatus of underground excavator
JPS60230498A (en) Position detection apparatus of drilling machine
JP3553831B2 (en) Method and apparatus for detecting relative orientation of underground pipeline
JPS63305208A (en) Method for searching route shape of embedded pipeline
JP2002106286A (en) Propulsion head position and direction measuring method and propulsion head position and direction measuring instrument
JPH0372291A (en) Method and device for measuring position of underground excavator
JP2786238B2 (en) Excavator horizontal position measurement device
JPS62132110A (en) Apparatus for measuring horizontal displacement quantity of underground excavator
JPS625119A (en) Position detector of excavating machine
JPS63265110A (en) Horizontal displacement measuring apparatus of underground excavator
JPS63142213A (en) Apparatus for measuring horizontal displacement of underground drilling machine
JPS6324122A (en) Laying method for magnetic field producing cable for position measurement by underground drilling machine
JPS625118A (en) Position detector of excavating machine