JP4996566B2 - Underground joining method between excavators and position detection method for excavators - Google Patents

Underground joining method between excavators and position detection method for excavators Download PDF

Info

Publication number
JP4996566B2
JP4996566B2 JP2008226170A JP2008226170A JP4996566B2 JP 4996566 B2 JP4996566 B2 JP 4996566B2 JP 2008226170 A JP2008226170 A JP 2008226170A JP 2008226170 A JP2008226170 A JP 2008226170A JP 4996566 B2 JP4996566 B2 JP 4996566B2
Authority
JP
Japan
Prior art keywords
excavator
machine
reference point
excavation
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008226170A
Other languages
Japanese (ja)
Other versions
JP2010059678A (en
Inventor
裕道 宮崎
三千緒 松本
高弘 近藤
順民 山上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2008226170A priority Critical patent/JP4996566B2/en
Publication of JP2010059678A publication Critical patent/JP2010059678A/en
Application granted granted Critical
Publication of JP4996566B2 publication Critical patent/JP4996566B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Description

本発明は、掘進機同士の地中接合方法および掘進機の位置検出方法に関する。   The present invention relates to an underground bonding method between excavators and a position detection method for excavators.

トンネル工事やボーリング工事等の地下構造物の施工では、地中での現在位置を正確に把握した上で、計画の線形に沿って施工するのが一般的である。特に、地中でのトンネル同士の接合においては、トンネル同士の位置関係を正確に把握することが重要である。   In construction of underground structures such as tunnel construction and boring construction, it is common to construct along the planned alignment after accurately grasping the current position in the ground. In particular, in joining the tunnels in the ground, it is important to accurately grasp the positional relationship between the tunnels.

従来、地中での現在位置を検出するためのさまざまな方法が開発されている。例えば、(1)坑口から坑内測量を繰り返し行い切羽の位置を検出する方法(以下、「坑内測量方式」という)、(2)地上から坑内にボーリングを行って、このボーリング孔を利用して坑内の測量を行う方法(以下、「チェックボーリング方式」という)、(3)切羽から水平ボーリングを行い到達点までの位置関係を検出する方法(以下、「水平ボーリング方式」という)、(4)坑内に配設されたジャイロに生じた傾斜角により検出する方法(以下、「ジャイロ方式」という)、(5)磁気を利用して地上から掘進機の位置を検出する方法(以下、「磁気ゾンデ方式」という)、(6)坑内に配設された2つのロッドの折れ曲がり角度により地下構造物全体の形状や位置を算出する方法(以下、「リンク方式」という)、(7)CCDカメラにより撮影した画像から光学的に位置を検出する方法(以下、「画像方式」という)等が一般的に採用されている。   Conventionally, various methods for detecting the current position in the ground have been developed. For example, (1) a method of detecting the position of the face by repeatedly performing an underground survey from the wellhead (hereinafter referred to as “downhole survey method”), (2) boring from the ground to the well, and using this borehole (3) Method of detecting the positional relationship from the face to the destination by horizontal boring (hereinafter referred to as “horizontal boring method”), (4) Underground (5) A method for detecting the position of the excavator from the ground using magnetism (hereinafter referred to as a “magnetic sonde method”). (6) A method for calculating the shape and position of the entire underground structure based on the bending angle of two rods arranged in the mine (hereinafter referred to as “link method”), (7) CCD Method for detecting optically the position from the captured image by camera (hereinafter, referred to as "image method") or the like is generally adopted.

また、特許文献1および特許文献2には、地中での現在位置(計測点)を正確に検出する方法として、座標が既知である3または4点の受信点に対して計測点から弾性波を発信して、各受信点までの伝播時間を測定することにより計測点の位置を算出する地中位置検出方法が開示されている。   In Patent Document 1 and Patent Document 2, as a method for accurately detecting the current position (measurement point) in the ground, an elastic wave from a measurement point to three or four reception points whose coordinates are known is disclosed. An underground position detection method is disclosed in which the position of a measurement point is calculated by measuring the propagation time to each reception point.

特開2002−129883号公報([0013]−[0024]、図1)Japanese Laid-Open Patent Publication No. 2002-129893 ([0013]-[0024], FIG. 1) 特開2008−076352号公報([0029]−[0040]、図6)JP 2008-0763352 A ([0029]-[0040], FIG. 6)

しかしながら、(1)坑内測量方式、(4)ジャイロ方式、(6)リンク式、(7)画像方式による地中位置検出方法は、距離が長くなると測量累積誤差が大きくなる場合があった。
また、(2)チェックボーリング方式、(3)水平ボーリング方式、(5)磁気ゾンデ方式による地中位置検出方法は、既設の構造物ある等、現地の状況により、測定することができない場合があった。
However, in (1) underground survey method, (4) gyro method, (6) link method, and (7) underground image position detection method using image method, the accumulated survey error may increase as the distance becomes longer.
In addition, (2) Check boring method, (3) Horizontal boring method, (5) Underground position detection method using magnetic sonde method may not be able to be measured depending on the local conditions such as existing structures. It was.

また、前記特許文献1,2の位置検出方法は、現在位置を正確に把握した上で、施工計画に照らし合わせて、施工誤差の修正を行うため、随時、現在位置の座標の計算、施工誤差の計算、施工誤差に対する修正値の計算等を行う必要があった。   In addition, the position detection method in Patent Documents 1 and 2 accurately grasps the current position and then corrects the construction error in light of the construction plan. It was necessary to calculate the correction value and the correction value for the construction error.

そのため、トンネル工事やボーリング工事の計画線形に関わらず、多量のデータ処理を行う必要があり、そのデータ管理に手間が掛かるとともに、データ処理に要する装置に費用が嵩むという問題点を有していた。   Therefore, it is necessary to perform a large amount of data processing regardless of the planned alignment of tunnel construction and boring construction, and it takes time to manage the data, and there is a problem that the equipment required for data processing is expensive. .

本発明は、前記の問題点を解決することを目的とするものであり、簡易かつ安価に掘進機同士の地中における接合を行うことを可能とした掘進機同士の地中接合方法と、停止状態の掘進機を利用して他の掘進中の掘進機の位置を簡易かつ安価に検出することを可能とした掘進機の位置検出方法を提案することを課題とする。   The present invention is intended to solve the above-described problems, and a method for underground joining of excavators that enables simple and inexpensive joining in the ground between excavators, and a stop. It is an object of the present invention to propose a position detection method for an excavator that can easily and inexpensively detect the position of another excavator using the excavator in the state.

このような課題を解決するために、請求項1に記載の発明は、停止状態の第一掘進機に向けて、第二掘進機を掘進させることで前記第一掘進機と前記第二掘進機との接続を行う掘進機同士の地中接合方法であって、前記第一掘進機から放射状に形成された少なくとも4本のボーリング孔にそれぞれ計測基準点を設ける工程と、前記各計測基準点と前記第二掘進機の面板に設けられた機械基準点との距離を弾性波により測定する工程と、前記各計測基準点と前記機械基準点との距離を利用して前記第二掘進機の掘進方向を調整しながら当該第二掘進機を掘進させる工程と、を備えることを特徴としている。   In order to solve such a problem, the invention according to claim 1 is directed to the first excavator and the second excavator by causing the second excavator to excavate toward the stopped first excavator. And a method of providing measurement reference points to at least four boring holes formed radially from the first excavator, respectively, and each of the measurement reference points, The step of measuring the distance from the machine reference point provided on the face plate of the second excavator by means of elastic waves, and the excavation of the second excavator using the distance between each measurement reference point and the machine reference point And a step of excavating the second excavator while adjusting the direction.

かかる掘進機同士の接合方法によれば、第一掘進機の周囲に設けられた4つの計測基準点と機械基準点との距離を測定するのみで、第二掘進機の進行方向を確認することが可能なため、簡易かつ高精度に掘進機同士の接合を地中において行うことができる。
また、掘進機同士の原位置の関係により第二掘進機の掘進方向の確認を行うため、処理データ数が少なくてすみ、簡易な装備により施工を行うことが可能である。
According to the joining method between the excavators, the traveling direction of the second excavator can be confirmed only by measuring the distances between the four measurement reference points provided around the first excavator and the machine reference points. Therefore, the excavator can be joined in the ground easily and with high accuracy.
In addition, since the direction of the second excavating machine is checked based on the relationship between the original positions of the excavating machines, the number of processing data can be reduced, and construction can be performed with simple equipment.

また、請求項2に記載の発明は、停止状態の第一掘進機に向けて、第二掘進機を掘進させることで前記第一掘進機と前記第二掘進機との接続を行う掘進機同士の地中接合方法であって、前記第一掘進機の面板に少なくとも4箇所の計測基準点を設ける工程と、前記各計測基準点および前記第二掘進機の面板に設けられた機械基準点のいずれか一方から発信した弾性波の発信時間T1と他方において受信した受信時間T2との差tに土中音速Vを乗じることにより互いの距離を求める工程と、前記各計測基準点と前記機械基準点との距離を利用して前記第二掘進機の掘進方向を調整しながら当該第二掘進機を掘進させる工程と、を備えることを特徴としている。
Further, the invention according to claim 2, the digging machines that connect the first digging machine and the second digging machine by digging the second digging machine toward the stopped first digging machine. A method of providing at least four measurement reference points on the face plate of the first excavator, and each of the measurement reference points and the machine reference points provided on the face plate of the second excavator . A step of obtaining a mutual distance by multiplying a difference t between a transmission time T1 of an elastic wave transmitted from one of the waves and a reception time T2 received on the other by a sound velocity V in the ground , each of the measurement reference points and the mechanical reference And a step of excavating the second excavator while adjusting the excavation direction of the second excavator using the distance to the point.

かかる掘進機同士の接合方法は、掘進機同士の距離が近づいた場合に好適に使用される。例えば、土層の違い等による伝搬波形の変化等による誤差が生じることを防止することが可能である。   Such a bonding method between the excavators is preferably used when the distance between the excavators approaches. For example, it is possible to prevent an error due to a change in a propagation waveform due to a difference in soil layer or the like.

また、請求項3に記載の発明は、停止状態の第一掘進機を利用して掘進中の第二掘進機の位置を検出する掘進機の位置検出方法であって、前記第一掘進機と前記第二掘進機との離隔距離が大きい場合には、前記第一掘進機から放射状に形成された少なくとも4本のボーリング孔にそれぞれ計測基準点を設け、前記各計測基準点と前記第二掘進機の面板に設けられた機械基準点との距離を弾性波により測定することで前記第一掘進機と前記第二掘進機との位置関係を検出し、前記第一掘進機と前記第二掘進機との離隔距離が小さい場合には、前記第一掘進機の面板に少なくとも4箇所の計測基準点を設け、前記各計測基準点と前記第二掘進機の面板に設けられた機械基準点との距離を弾性波により測定することで前記第一掘進機と前記第二掘進機との位置関係を検出することを特徴としている。   The invention according to claim 3 is a position detection method for an excavator that detects the position of the second excavator during excavation using the first excavator in a stopped state. When the separation distance from the second excavator is large, measurement reference points are provided in at least four boring holes formed radially from the first excavator, and each of the measurement reference points and the second excavation machine are provided. The positional relationship between the first excavator and the second excavator is detected by measuring the distance from the machine reference point provided on the face plate of the machine with elastic waves, and the first excavator and the second excavator are detected. When the separation distance from the machine is small, at least four measurement reference points are provided on the face plate of the first excavator, each of the measurement reference points and the machine reference point provided on the face plate of the second excavator By measuring the distance of the first digging machine and the second digging It is characterized by detecting the positional relationship between the.

かかる掘進機の位置検出方法によれば、停止状態の第一掘進機を利用して第二掘進機の位置を検出することが可能なため、新たに測定機器などを設けることなく、簡易かつ安価に第二掘進機の位置を検出することが可能となる。   According to this excavator position detection method, it is possible to detect the position of the second excavator using the stopped first excavator, so that it is simple and inexpensive without newly providing a measuring device or the like. In addition, the position of the second excavator can be detected.

本発明の掘進機同士の地中接合方法および掘進機の位置検出方法によれば、簡易かつ安価に高品質施工を行うことが可能となる。   According to the underground bonding method between excavators and the position detection method of the excavator according to the present invention, high-quality construction can be performed easily and inexpensively.

本発明の好適な実施の形態について、図面を参照して説明する。なお、説明において、同一要素には同一の符号を用い、重複する説明は省略する。   Preferred embodiments of the present invention will be described with reference to the drawings. In the description, the same reference numerals are used for the same elements, and duplicate descriptions are omitted.

本実施形態では、図1および図2に示すように、停止状態の第一掘進機1を利用して掘進中の第二掘進機の位置を検出し、第二掘進機2を第一掘進機1に向けて掘進させることで第一掘進機1と第二掘進機2との地中接合を行う場合について説明する。
第一掘進機1と第二掘進機2との接合は、両掘進機の面板11,21を互いに突き合わせることにより行う。
In this embodiment, as shown in FIG. 1 and FIG. 2, the position of the second excavating machine during excavation is detected using the first excavating machine 1 in the stopped state, and the second excavating machine 2 is used as the first excavating machine. A case will be described in which the first excavation machine 1 and the second excavation machine 2 are joined in the ground by excavating toward 1.
The first excavator 1 and the second excavator 2 are joined by abutting the face plates 11 and 21 of the two excavators together.

本実施形態では、第一掘進機1と第二掘進機2との離隔距離が大きい場合に行う第一段階(図1参照)と、第一掘進機1と第二掘進機2との離隔距離が小さい場合に行う第二段階(図2参照)と、においてそれぞれ異なる計測方法を採用する。   In the present embodiment, the first stage (see FIG. 1) performed when the separation distance between the first digging machine 1 and the second digging machine 2 is large, and the separation distance between the first digging machine 1 and the second digging machine 2. Different measurement methods are employed in the second stage (see FIG. 2) that is performed when the value is small.

なお、本実施形態では、第二掘進機2の面板21に設けられた発信器(機械基準点22)から弾性波を発信し、第一掘進機1側に設けられた複数の受信器(計測基準点11,11,…)でこの弾性波を受信することにより、互いの位置関係を確認する。   In the present embodiment, an elastic wave is transmitted from a transmitter (machine reference point 22) provided on the face plate 21 of the second excavator 2, and a plurality of receivers (measurements) provided on the first excavator 1 side. By receiving this elastic wave at the reference points 11, 11,..., The mutual positional relationship is confirmed.

第一段階における掘進機同士の地中接合方法は、計測基準点設置工程と、距離測定工程と、掘進工程と、を備えている。   The underground joining method between the excavators in the first stage includes a measurement reference point installation process, a distance measurement process, and an excavation process.

計測基準点設置工程は、図1に示すように、第一掘進機1から放射状に4本のボーリング孔13,13,…を形成し、このボーリング孔13にそれぞれ計測基準点12を設置する工程である。   In the measurement reference point installation step, as shown in FIG. 1, four bore holes 13, 13,... Are formed radially from the first excavator 1, and the measurement reference points 12 are respectively installed in the bore holes 13. It is.

本実施形態では、第一掘進機1の側面から、削孔を行うことで、ボーリング孔13を形成する。そして、形成された各ボーリング孔13の先端に、受信器を設置することで、4箇所の計測基準点12,12,…を設定する。   In this embodiment, the boring hole 13 is formed by drilling from the side surface of the first excavator 1. Then, four measurement reference points 12, 12,... Are set by installing a receiver at the tip of each formed boring hole 13.

各ボーリング孔13の長さは限定されるものではないが、計測基準点12同士の間隔を最大限離すことが望ましい。これにより、第二掘進機2の面板21に設けられた機械基準点22と計測基準点12,12,…とを頂点とする四角錐の底辺が広がるため、位置検出精度の向上を図ることができる。
また、各ボーリング孔13の長さを同等とし、第一掘進機1の中心点Pから各計測基準点12までの距離が同一となるように設定すれば、位置関係の検出における算出が容易となる。
The length of each boring hole 13 is not limited, but it is desirable that the distance between the measurement reference points 12 be maximized. As a result, the base of the quadrangular pyramid with the machine reference point 22 and the measurement reference points 12, 12,... Provided on the face plate 21 of the second excavating machine 2 as vertices widens, so that the position detection accuracy can be improved. it can.
Moreover, if the length of each boring hole 13 is made equal and the distance from the center point P of the first excavator 1 to each measurement reference point 12 is set to be the same, the calculation for detecting the positional relationship is easy. Become.

なお、本実施形態では、第一掘進機1の側面からボーリングを行うものとしたが、第一掘進機1の後方から行ってもよく、ボーリング孔13の形成方法は限定されるものではない。また、計測基準点12の設置箇所は、ボーリング孔13の先端に限定されるものではなく、適宜配置することが可能である。   In the present embodiment, the boring is performed from the side of the first excavator 1, but the boring hole 13 may be formed from behind the first excavator 1, and the method for forming the boring hole 13 is not limited. Further, the installation location of the measurement reference point 12 is not limited to the tip of the boring hole 13 and can be appropriately arranged.

距離測定工程は、第二掘進機2の面板21に設けられた機械基準点22から弾性波を発信し、機械基準点22から計測基準点12までの距離を測定することで第一掘進機1と第二掘進機2との位置関係を検出する工程である。   In the distance measuring step, an elastic wave is transmitted from a machine reference point 22 provided on the face plate 21 of the second excavator 2, and a distance from the machine reference point 22 to the measurement reference point 12 is measured to thereby measure the first excavator 1. This is a step of detecting the positional relationship between the second excavator 2 and the second excavator 2.

本実施形態では、機械基準点22(第二掘進機2の先端)の座標XYZおよび土中音速Vの4つの未知数を算出するため、計測基準点12を4点以上設けている。なお、計測基準点12の数は、4箇所以上であれば限定されるものではない。   In the present embodiment, four or more measurement reference points 12 are provided in order to calculate four unknowns of the coordinates XYZ of the machine reference point 22 (the tip of the second excavator 2) and the sound velocity V in the soil. The number of measurement reference points 12 is not limited as long as it is four or more.

機械基準点22は、第二掘進機2の面板21の中心に発信器を設置することにより設定されている。
なお、機械基準点22の設置箇所は、面板21の中心に限定されるものではなく、適宜設定することが可能である。
The machine reference point 22 is set by installing a transmitter at the center of the face plate 21 of the second excavator 2.
The installation location of the machine reference point 22 is not limited to the center of the face plate 21 and can be set as appropriate.

機械基準点22から各計測基準点12までの距離の測定は、発信器からの弾性波の発信時間T1と、受信器による弾性波の受信時間T2との差tに、土中音速Vを乗じることにより、互いの距離を求める。なお、距離測定工程における機械基準点22と計測基準点12との位置関係の計算方法としては、適宜公知の計算方法を採用することが可能である。   The distance from the machine reference point 22 to each measurement reference point 12 is measured by multiplying the difference t between the elastic wave transmission time T1 from the transmitter and the elastic wave reception time T2 by the receiver by the sound velocity V in the ground. Thus, the mutual distance is obtained. In addition, as a calculation method of the positional relationship between the machine reference point 22 and the measurement reference point 12 in the distance measurement process, a known calculation method can be appropriately employed.

掘進工程は、機械基準点22から各計測基準点12までの各距離Lを利用して第二掘進機2の掘進方向を調整しながら第二掘進機2を掘進させる工程である。   The digging step is a step of digging the second digging machine 2 while adjusting the digging direction of the second digging machine 2 using each distance L from the machine reference point 22 to each measurement reference point 12.

距離測定工程において、機械基準点と各計測基準点との位置関係が算出されるため、第二掘進機の掘進方向を調整しながら第一掘進機に向けて掘進する。
ここで、第一掘進機1の中心点Pと各計測基準点12までの距離が同一であれば、第二掘進機2の方向調整は、機械基準点22と各計測基準点12までの各距離Lが同一となるように、行えばよい。
In the distance measurement step, since the positional relationship between the machine reference point and each measurement reference point is calculated, excavation toward the first excavator is performed while adjusting the excavation direction of the second excavator.
Here, if the distance between the center point P of the first excavator 1 and each measurement reference point 12 is the same, the direction adjustment of the second excavator 2 is performed for each of the machine reference point 22 and each measurement reference point 12. What is necessary is just to carry out so that the distance L may become the same.

掘進工程における第二掘進機2による掘進を一定距離行ったら、再度距離測定工程を行い、第一掘進機1と第二掘進機2との位置関係の確認を再度行う。そして、その結果に基づき、掘進工程を行う。同様に、第一掘進機1と第二掘進機2との離隔距離が所定の距離になるまで、距離測定工程および掘進工程を繰り返し行う。
なお、各計測基準点12は、第二掘進機2が第一掘進機1に近づくに伴い、ボーリング孔13内において、第一掘進機1方向に近づけてもよい。
When excavation by the second excavator 2 is performed for a certain distance in the excavation process, the distance measurement process is performed again, and the positional relationship between the first excavator 1 and the second excavator 2 is confirmed again. And based on the result, an excavation process is performed. Similarly, the distance measurement process and the digging process are repeated until the separation distance between the first digging machine 1 and the second digging machine 2 reaches a predetermined distance.
Each measurement reference point 12 may be moved closer to the first digging machine 1 direction in the borehole 13 as the second digging machine 2 approaches the first digging machine 1.

第一段階における掘進機同士の地中接合方法により、第一掘進機1と第二掘進機2との距離が近くなったら、第二段階に移行する。
なお、第一段階から第二段階への移行時期は限定されるものではないが、例えば、機械基準点と計測基準点とを結ぶ直線が、第一掘進機1の面板により遮断される位置まで近づいたときとする。
When the distance between the first excavating machine 1 and the second excavating machine 2 is reduced by the underground bonding method between the excavating machines in the first stage, the process proceeds to the second stage.
In addition, although the transition time from the first stage to the second stage is not limited, for example, to a position where the straight line connecting the machine reference point and the measurement reference point is blocked by the face plate of the first excavator 1 When approaching.

第二段階における掘進機同士の地中接合方法は、計測基準点設置工程と、距離測定工程と、掘進工程と、を備えている。   The underground joining method between the excavators in the second stage includes a measurement reference point installation process, a distance measurement process, and an excavation process.

計測基準点設置工程は、図2に示すように、第一掘進機1の面板11に受信器を設置することにより、4箇所の計測基準点14,14,…を設置する工程である。   As shown in FIG. 2, the measurement reference point installation step is a step of installing four measurement reference points 14, 14,... By installing a receiver on the face plate 11 of the first excavator 1.

計測基準点14の設置箇所は、第一掘進機1の面板11内であれば限定されるものではないが、本実施形態では、面板11の中心点から各計測基準点14までの距離が同一となるように設置する。   The installation location of the measurement reference point 14 is not limited as long as it is within the face plate 11 of the first excavator 1, but in this embodiment, the distance from the center point of the face plate 11 to each measurement reference point 14 is the same. Install so that.

第一掘進機1と第二掘進機2との距離が近いため、機械基準点22および計測基準点14,14,…を頂点とする四角錐の頂角が鋭角になることはなく、位置検出を高精度に行うことができる。   Since the distance between the first excavator 1 and the second excavator 2 is short, the apex angle of the quadrangular pyramid with the machine reference point 22 and the measurement reference points 14, 14,. Can be performed with high accuracy.

距離測定工程は、第二掘進機の面板に設けられた機械基準点22から弾性波を発信し、計測基準点14,14,…までの距離を測定する工程である。
なお、距離測定工程における測定方法等は、第一段階において説明した内容と同様なため、詳細な説明は省略する。
The distance measuring step is a step of measuring the distance to the measurement reference points 14, 14,... By transmitting an elastic wave from the machine reference point 22 provided on the face plate of the second excavator.
In addition, since the measuring method in a distance measurement process is the same as the content demonstrated in the 1st step, detailed description is abbreviate | omitted.

掘進工程は、機械基準点22から各計測基準点14までの各距離により掘進方向を調整しながら第二掘進機2を掘進させる工程である。
なお、第二段階における掘進工程の内容は、第一段階において説明した内容と同様なため、詳細な説明は省略する。
The digging process is a process of digging the second digging machine 2 while adjusting the digging direction according to each distance from the machine reference point 22 to each measurement reference point 14.
In addition, since the content of the excavation process in the second stage is the same as that described in the first stage, detailed description thereof is omitted.

そして、第二掘進機2が第一掘進機1に到達するまで、距離測定工程と掘進工程とを繰り返し行う。   Then, the distance measuring process and the digging process are repeated until the second digging machine 2 reaches the first digging machine 1.

以上、本実施形態に係る掘進機同士の地中接合方法および掘進機の位置検出方法によれば、第一掘進機1と第二掘進機2との距離が離れた位置では、第一掘進機1を中心として放射状に配設された複数の計測基準点12,12,…を利用して計測を行うため、機械基準点22と計測基準点12,12,…とを結ぶ直線により形成される四角錐が鋭角とならず、位置検出を高精度に行うことが可能となる。   As described above, according to the underground joining method between the excavators and the position detection method of the excavator according to the present embodiment, the first excavator is located at a position where the distance between the first excavator 1 and the second excavator 2 is long. In order to perform measurement using a plurality of measurement reference points 12, 12,..., Which are arranged radially with respect to 1 as a center, it is formed by a straight line connecting the machine reference point 22 and the measurement reference points 12, 12,. The quadrangular pyramid does not have an acute angle, and position detection can be performed with high accuracy.

一方、第一掘進機1と第二掘進機2との距離が近い場合は、第一掘進機1の面板11に設定された計測基準点14,14,…を利用して計測を行うため、土中音波の誤差等の地質条件による影響を受ける可能性が低く、高精度に検出することが可能となる。   On the other hand, when the distance between the first excavator 1 and the second excavator 2 is short, measurement is performed using the measurement reference points 14, 14,... Set on the face plate 11 of the first excavator 1, It is unlikely to be affected by geological conditions such as soil acoustic wave errors, and can be detected with high accuracy.

計測基準点12,14の設定は、第一掘進機1から形成されたボーリング孔13または第一掘進機1の面板11を利用して行うため、地上から新たなボーリング孔を形成するなどの手間を要することなく、簡易に行うことが可能である。
そのため、深度の深い箇所での地中接合であっても、比較的簡易に施工を行うことができる。
Since the measurement reference points 12 and 14 are set using the boring hole 13 formed from the first excavator 1 or the face plate 11 of the first excavating machine 1, it is troublesome to form a new boring hole from the ground. It is possible to carry out easily without requiring.
Therefore, even if it is underground joining in a deep location, construction can be performed relatively easily.

計測基準点12,14を4点以上設けているため、速度検層が困難な場所における掘進機同士の地中接合であっても、土中音速を算出することが可能となり、第一掘進機1と第二掘進機2との位置関係を高精度に算出することができる。   Since four or more measurement reference points 12 and 14 are provided, it is possible to calculate the sound speed in the soil even when the excavator is underground connected in a place where velocity logging is difficult. The positional relationship between 1 and the second excavator 2 can be calculated with high accuracy.

以上、本発明の好適な実施形態についての一例を説明したが、本発明は当該実施形態に限定されず、本発明の趣旨を逸脱しない範囲で適宜設計変更が可能である。
例えば、前記実施の形態では、第二掘進機に設定された機械基準点に発信器、第一掘進機側に設定された計測基準点に受信器を設置し、機械基準点から弾性波を発信することにより第一掘進機と第二掘進機との位置関係を測定するものとしたが、各計測基準点に発信器、機械基準点に受信器をそれぞれ設置し、計測を行ってもよい。
As mentioned above, although an example about a suitable embodiment of the present invention was explained, the present invention is not limited to the embodiment, and design change is possible suitably in the range which does not deviate from the meaning of the present invention.
For example, in the above embodiment, a transmitter is installed at the machine reference point set on the second excavator and a receiver is installed at the measurement reference point set on the first excavator side, and an elastic wave is transmitted from the machine reference point. Thus, the positional relationship between the first excavator and the second excavator is measured, but a transmitter may be installed at each measurement reference point and a receiver may be installed at each machine reference point to perform measurement.

また、第一掘進機の面板の中心に機械基準点、第二掘進機の面板に4箇所の計測基準点を設けてもよい。   Further, a machine reference point may be provided at the center of the face plate of the first excavator and four measurement reference points may be provided on the face plate of the second excavator.

また、前記実施形態では、掘進機同士の距離が離れている場合と近い場合との2段階に分けて、それぞれ異なる位置に計測基準点を設置して測定を行うものとしたが、いずれか一方の計測基準点のみを利用して掘進機同士の地中接合を行ってもよい。   Moreover, in the said embodiment, it divided into two steps, the case where the distance between excavation machines is separated, and the case where it is near, and it was assumed that the measurement reference point was installed at each different position, and the measurement was performed. You may perform underground joining between excavators using only the measurement reference point.

なお、距離測定工程における機械基準点と計測基準点との位置関係の計算方法としては、適宜公知の計算方法を採用することが可能であるが、下記に一例として、最小二乗法による収束計算を示す。   In addition, as a calculation method of the positional relationship between the machine reference point and the measurement reference point in the distance measurement step, a known calculation method can be adopted as appropriate, but as an example below, convergence calculation by the least square method is performed. Show.

計測基準点12(14)での弾性波の到達時間t、媒質の音速V、2点間の距離Lには式1の関係が成り立つ。 The relationship of Equation 1 holds for the elastic wave arrival time t i at the measurement reference point 12 (14), the sound velocity V of the medium, and the distance L i between the two points.

Figure 0004996566
Figure 0004996566

測定値には誤差εが含まれるため、式1は、次のようになる。   Since the measurement value includes an error ε, Equation 1 is as follows.

Figure 0004996566
Figure 0004996566

式2の両辺に音速Vを乗じると、式3となる。なお、機械基準点座標(X,Y,Z)、計測基準点座標(xi,yi,zi)とする。   Multiplying both sides of Equation 2 by the speed of sound V yields Equation 3. The machine reference point coordinates (X, Y, Z) and the measurement reference point coordinates (xi, yi, zi) are used.

Figure 0004996566
Figure 0004996566

式3は、非線形であるため、式3を線形の式に変換し、初期値(X,Y,Z,V)からの補正量(ΔX,ΔY,ΔZ,ΔV)を最小二乗法で算出する。
まず、式3を初期値においてテーラー展開し、一次まで展開し、式4を得る。
Since Equation 3 is non-linear, Equation 3 is converted into a linear equation, and the correction amount (ΔX, ΔY, ΔZ, ΔV) from the initial value (X 0 , Y 0 , Z 0 , V 0 ) is reduced to a minimum of two. Calculate by multiplication.
First, Taylor expansion is performed on Equation 3 at an initial value, and then it is expanded to the first order to obtain Equation 4.

Figure 0004996566
Figure 0004996566

式4により、式5が得られる。   By equation 4, equation 5 is obtained.

Figure 0004996566
Figure 0004996566

次に、誤差εの二乗和が最小となるΔX,ΔY,ΔZ,ΔVを求める。   Next, ΔX, ΔY, ΔZ, ΔV that minimizes the sum of squares of the error ε is obtained.

Figure 0004996566
Figure 0004996566

式6のΔX,ΔY,ΔZ,ΔVをそれぞれ偏微分し、その結果を0とおく。   ΔX, ΔY, ΔZ, ΔV in Equation 6 are partially differentiated, and the result is set to zero.

Figure 0004996566
Figure 0004996566

これらの式を整理すると、4元連立方程式となり、行列表現すると、以下の通りとなる。   When these equations are arranged, a quaternary simultaneous equation is obtained, and the matrix expression is as follows.

Figure 0004996566
Figure 0004996566

前記行列式をクラメルの公式を用いて解き、算出されたΔX,ΔY,ΔZ,ΔVで初期値を補正し、再度上記の計算を行う。同様に、補正量Δが十分小さくなるまで、繰り返し行うことで収束させる。   The determinant is solved using Kramel's formula, the initial values are corrected by the calculated ΔX, ΔY, ΔZ, ΔV, and the above calculation is performed again. Similarly, convergence is performed by repeating until the correction amount Δ is sufficiently small.

なお、本実施形態に係る距離測定工程において利用した検出方法は、掘進機同士の地中接合方法に限定されるものではなく、例えば、図3に示す自在ボーリングなどの先端位置検定にも適用可能である。   Note that the detection method used in the distance measurement process according to the present embodiment is not limited to the underground bonding method between the excavators, and can be applied to tip position verification such as free boring shown in FIG. It is.

図3は、地上の既存構造物Bの直下の地盤改良を行うための複数のボーリング孔3,3,…を、自在ボーリングを利用して形成する場合の模式図である。   FIG. 3 is a schematic view when a plurality of boring holes 3, 3,... For improving the ground directly under the existing structure B on the ground are formed using free boring.

このとき、図3(b)に示すように、自在ボーリング30の先端に発信器を設置し機械基準点31を設ける。一方、自在ボーリング30の到達点付近には、2本の縦ボーリングを行い、各縦ボーリング孔4,4に、上下2箇所に受信器を設置することで計4箇所の計測基準点41,41,…を設ける。   At this time, as shown in FIG. 3B, a transmitter is installed at the tip of the universal boring 30 to provide a machine reference point 31. On the other hand, two vertical borings are performed in the vicinity of the reaching point of the universal boring 30 and receivers are installed at two vertical positions in each of the vertical boring holes 4, 4, for a total of four measurement reference points 41, 41. , ... are provided.

そして、機械基準点31から弾性波を発信し、計測基準点41までの到達時間を計測する。計測結果を利用して、前記検出方法により機械基準点31と計測基準点41との位置関係を算出することで、自在ボーリング30の先端位置を検定する。
これにより、既存構造物Bの直下に、地盤改良の注入孔としてのボーリング孔3,3,…を高精度に形成することが可能となる。
Then, an elastic wave is transmitted from the machine reference point 31 and the arrival time to the measurement reference point 41 is measured. Using the measurement result, the positional relationship between the machine reference point 31 and the measurement reference point 41 is calculated by the detection method, so that the tip position of the universal boring 30 is verified.
Thereby, it becomes possible to form the boring holes 3, 3,... As the injection holes for improving the ground directly under the existing structure B with high accuracy.

本発明の好適な実施の形態に係る掘進機同士の地中接合方法の第一段階を示す模式図である。It is a schematic diagram which shows the 1st step of the underground joining method of the excavation machines which concern on suitable embodiment of this invention. 同掘進機同士に地中接合方法の第二段階を示す模式図である。It is a schematic diagram which shows the 2nd step of the underground joining method between the excavation machines. 自在ボーリングの位置検定方法の概略を示す図であって、(a)は斜視図、(b)は平面図である。It is a figure which shows the outline of the position verification method of a universal boring, Comprising: (a) is a perspective view, (b) is a top view.

符号の説明Explanation of symbols

1 第一掘進機
11 面板
12 計測基準点
13 ボーリング孔
14 計測基準点
2 第二掘進機
21 面板
22 機械基準点
DESCRIPTION OF SYMBOLS 1 1st excavation machine 11 Face plate 12 Measurement reference point 13 Boring hole 14 Measurement reference point 2 2nd excavation machine 21 Face plate 22 Machine reference point

Claims (3)

停止状態の第一掘進機に向けて、第二掘進機を掘進させることで前記第一掘進機と前記第二掘進機との接続を行う掘進機同士の地中接合方法であって、
前記第一掘進機から放射状に形成された少なくとも4本のボーリング孔にそれぞれ計測基準点を設ける工程と、
前記各計測基準点と前記第二掘進機の面板に設けられた機械基準点との距離を弾性波により測定する工程と、
前記各計測基準点と前記機械基準点との距離を利用して前記第二掘進機の掘進方向を調整しながら当該第二掘進機を掘進させる工程と、
を備えることを特徴とする、掘進機同士の地中接合方法。
For the first excavation machine in a stopped state, it is an underground joining method between the excavation machines for connecting the first excavation machine and the second excavation machine by excavating the second excavation machine,
Providing measurement reference points respectively in at least four bore holes formed radially from the first excavator;
Measuring the distance between each measurement reference point and the machine reference point provided on the face plate of the second excavator by means of elastic waves;
Digging the second excavator while adjusting the excavation direction of the second excavator using the distance between each measurement reference point and the machine reference point;
An underground joining method between excavators, characterized by comprising:
停止状態の第一掘進機に向けて、第二掘進機を掘進させることで前記第一掘進機と前記第二掘進機との接続を行う掘進機同士の地中接合方法であって、
前記第一掘進機の面板に少なくとも4箇所の計測基準点を設ける工程と、
前記各計測基準点および前記第二掘進機の面板に設けられた機械基準点のいずれか一方から発信した弾性波の発信時間T1と他方において受信した受信時間T2との差tに土中音速Vを乗じることにより互いの距離を求める工程と、
前記各計測基準点と前記機械基準点との距離を利用して前記第二掘進機の掘進方向を調整しながら当該第二掘進機を掘進させる工程と、
を備えることを特徴とする、掘進機同士の地中接合方法。
For the first excavation machine in a stopped state, it is an underground joining method between the excavation machines for connecting the first excavation machine and the second excavation machine by excavating the second excavation machine,
Providing at least four measurement reference points on the face plate of the first excavator;
The sound velocity V in the soil is determined by the difference t between the transmission time T1 of the elastic wave transmitted from one of the measurement reference points and the machine reference point provided on the face plate of the second excavator and the reception time T2 received at the other. Obtaining each other's distance by multiplying
Digging the second excavator while adjusting the excavation direction of the second excavator using the distance between each measurement reference point and the machine reference point;
An underground joining method between excavators, characterized by comprising:
停止状態の第一掘進機を利用して掘進中の第二掘進機の位置を検出する掘進機の位置検出方法であって、
前記第一掘進機と前記第二掘進機との離隔距離が大きい場合には、前記第一掘進機から放射状に形成された少なくとも4本のボーリング孔にそれぞれ計測基準点を設け、前記各計測基準点と前記第二掘進機の面板に設けられた機械基準点との距離を弾性波により測定することで前記第一掘進機と前記第二掘進機との位置関係を検出し、
前記第一掘進機と前記第二掘進機との離隔距離が小さい場合には、前記第一掘進機の面板に少なくとも4箇所の計測基準点を設け、前記各計測基準点と前記第二掘進機の面板に設けられた機械基準点との距離を弾性波により測定することで前記第一掘進機と前記第二掘進機との位置関係を検出することを特徴とする、掘進機の位置検出方法。
A position detection method for an excavator that detects the position of the second excavator during excavation using the first excavator in a stopped state,
When the separation distance between the first excavator and the second excavator is large, measurement reference points are respectively provided in at least four bore holes formed radially from the first excavator, Detecting the positional relationship between the first engraving machine and the second engraving machine by measuring the distance between the point and the machine reference point provided on the face plate of the second encircling machine by means of elastic waves,
When the separation distance between the first excavator and the second excavator is small, at least four measurement reference points are provided on the face plate of the first excavator, and the measurement reference points and the second excavator are provided. A position detection method for an excavator, wherein a positional relationship between the first excavator and the second excavator is detected by measuring a distance from a machine reference point provided on the face plate with an elastic wave. .
JP2008226170A 2008-09-03 2008-09-03 Underground joining method between excavators and position detection method for excavators Active JP4996566B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008226170A JP4996566B2 (en) 2008-09-03 2008-09-03 Underground joining method between excavators and position detection method for excavators

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008226170A JP4996566B2 (en) 2008-09-03 2008-09-03 Underground joining method between excavators and position detection method for excavators

Publications (2)

Publication Number Publication Date
JP2010059678A JP2010059678A (en) 2010-03-18
JP4996566B2 true JP4996566B2 (en) 2012-08-08

Family

ID=42186766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008226170A Active JP4996566B2 (en) 2008-09-03 2008-09-03 Underground joining method between excavators and position detection method for excavators

Country Status (1)

Country Link
JP (1) JP4996566B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016002479A1 (en) 2016-03-03 2017-09-07 Tracto-Technik Gmbh & Co. Kg Method for drilling a hole in the ground and earth drilling device and use

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2804930B2 (en) * 1989-08-11 1998-09-30 株式会社小松製作所 Underground excavator
JPH10205282A (en) * 1997-01-22 1998-08-04 Shimizu Corp Measuring method of shield joint position and measuring device
JP2006028903A (en) * 2004-07-16 2006-02-02 Fujita Corp Method of measuring location of shield machine

Also Published As

Publication number Publication date
JP2010059678A (en) 2010-03-18

Similar Documents

Publication Publication Date Title
US8593147B2 (en) Resistivity logging with reduced dip artifacts
US7617049B2 (en) Distance determination from a magnetically patterned target well
US6736221B2 (en) Method for estimating a position of a wellbore
JP5818355B2 (en) Well position determination method using hypocenter and seismic receiver
US11434749B2 (en) Locating multiple wellbores
SA516371012B1 (en) Drilling Collision Avoidance Apparatus, Methods, and Systems
CN110595367B (en) Method for finely detecting deformation and displacement of existing tunnel structure
CN107387167A (en) Shallow tunnel advance core extrudes system for monitoring displacement and method
CN110886329B (en) Device for detecting perpendicularity of pile foundation and application method thereof
KR102095799B1 (en) Apparatus for mapping buried object and ground cavity through electromagneticwave analysis
CN113835122A (en) Method for determining pile side position by using pile side hole reflection wave method
JP4996566B2 (en) Underground joining method between excavators and position detection method for excavators
US11015429B2 (en) Passive ranging using acoustic energy originating from a target wellbore
CN107702638A (en) Country rock excavation deformation overall process monitoring system and application method
JP2008076352A (en) Underground position detecting method
US10310094B2 (en) Rig heave, tidal compensation and depth measurement using GPS
CN113566686A (en) Method and device for verifying buried depth position based on ultra-large buried depth pipeline
JPH0387612A (en) Position detector for underground excavator
KR102620800B1 (en) Pre-piling construction method of offshore jacket foundation structure using surveying templete and the surveying templete thereof
CN110985009B (en) Inclined drilling construction method
JPS62288297A (en) Method of detecting position of excavated hole
CN117514151A (en) Magnetic positioning method for resisting magnetic interference and drilling device
CN116771328A (en) Ranging method, related method, system and application of batch horizontal well group
JPS61262673A (en) Method for searching underground embedded article
JPH0468192A (en) Position detecting method for shield excavator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120511

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20180518

Year of fee payment: 6

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4996566

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150