JP2804930B2 - Underground excavator - Google Patents

Underground excavator

Info

Publication number
JP2804930B2
JP2804930B2 JP1206967A JP20696789A JP2804930B2 JP 2804930 B2 JP2804930 B2 JP 2804930B2 JP 1206967 A JP1206967 A JP 1206967A JP 20696789 A JP20696789 A JP 20696789A JP 2804930 B2 JP2804930 B2 JP 2804930B2
Authority
JP
Japan
Prior art keywords
underground
excavator
underground excavator
excavators
electromagnetic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1206967A
Other languages
Japanese (ja)
Other versions
JPH0372195A (en
Inventor
晃 岡本
昇一 坂西
勇 長野
信次郎 竹内
福夫 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP1206967A priority Critical patent/JP2804930B2/en
Publication of JPH0372195A publication Critical patent/JPH0372195A/en
Application granted granted Critical
Publication of JP2804930B2 publication Critical patent/JP2804930B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)
  • Radar Systems Or Details Thereof (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、地中掘削機で、特に、地中にて相対向する
地中掘削機の相対位置を求めることができるようにした
地中掘削機に関するものである。
The present invention relates to an underground excavator, and more particularly, to an underground excavator capable of determining a relative position of an opposing underground excavator in the ground. It relates to an excavator.

〔従来の技術〕[Conventional technology]

従来から、例えば地中掘削機を用いたシールド工法に
おけるシールド掘削機運転のための測量は、トランシッ
トなどによる坑内測量のほかに、シールド掘削機の発進
立坑内にレーザー等のコヒーレントな光を発生させる光
学発信装置を設置して、この装置より、トンネル計画線
を照射し、シールド掘削機に取り付けたターゲット上の
光点を読み取ることによってシールド掘削機の偏位、偏
角を求めている。
Conventionally, for example, surveying for shield excavator operation in the shield construction method using an underground excavator, in addition to underground surveying by transit, etc., generates coherent light such as laser in the starting shaft of the shield excavator An optical transmission device is installed, and this device illuminates the tunnel planning line and reads the light spot on the target attached to the shield excavator, thereby obtaining the displacement and declination of the shield excavator.

あるいは、方位ジャイロと、圧力式沈下計、傾斜計及
びセグメント長さを基準とする走行距離計を組み合わせ
て、基準位置からの相対的な位置を求める方法も知られ
ている。
Alternatively, a method is known in which an azimuth gyro is combined with a pressure squat gauge, an inclinometer, and an odometer based on a segment length to determine a relative position from a reference position.

一方海底下にトンネルを構築する場合は立坑を多く設
置できないので、地中掘削機の掘削距離を短くするため
地中掘削機を相対向して発進し、地中内でトンネルを接
合する必要があるが、その際2台の地中掘削機の相対的
な位置を計測することはこれまでなかった。
On the other hand, when constructing a tunnel below the seabed, it is not possible to install many shafts, so it is necessary to start the underground excavator in opposition to join the tunnel underground to shorten the excavation distance of the underground excavator However, at that time, the relative position of two underground excavators has not been measured so far.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

従来の位置計測手段を用いた地中掘削機にあっては以
下のような問題があった。
The underground excavator using the conventional position measuring means has the following problems.

(1)トランシット等による坑内測量は、トンネルが屈
曲して掘削される場合、測定点を多く持つ必要があって
リアルタイムに計測できず実際的でない。
(1) Underground surveying using a transit or the like is not practical because it is necessary to have many measurement points when a tunnel is bent and excavated, and it cannot be measured in real time.

(2)レーザー光を用いる方法は、トンネル計画線が屈
曲していると、立坑からのレーザー光が、ターゲットに
照射できない場合が生じ、光学発信装置を適切な位置に
移動しなければならない。しかも、レーザー光を直接計
画路線の全長に照射できないので、ターゲットと光学測
量装置とトンネル計画線との位置関係をそれぞれ互い角
度や距離を測定し、その結果から計算により計画路線を
求めた後に、シールド掘削機の偏位、偏角が算出される
ことになる。このため、光学発信装置の移設や、測定及
び計算に人手がかかり、掘進作業の能率が低下するとい
う問題があった。
(2) In the method using laser light, if the tunnel planning line is bent, the laser light from the shaft may not be able to irradiate the target, and the optical transmitter must be moved to an appropriate position. In addition, since the laser beam cannot be directly applied to the entire length of the planned route, the relative positions of the target, the optical surveying instrument, and the tunnel planned line are measured with respect to each other, and the distance is measured. The deviation and the declination of the shield excavator are calculated. For this reason, there has been a problem in that the optical transmission device is relocated, and the measurement and the calculation require labor, and the efficiency of the excavation work is reduced.

(3)ジャイロを用いた方法は、累積誤差の問題があ
り、長距離掘削には向かず、また急曲線、連続曲線に対
しても同様に不向きである。そして地中接合のように2
台の地中掘削機の位置を計測する場合はこの誤差はさら
に増大する。
(3) The method using a gyro has a problem of accumulated errors, and is not suitable for long-distance excavation, and is similarly unsuitable for sharp curves and continuous curves. And 2 like underground joining
This error is further increased when measuring the position of the underground excavator.

本発明は上記従来の地中接合の持つ問題点に着目して
なされたものであり、トンネル計画線が長く及び曲線で
あっても、リアルタイムに2台の地中掘削機の相対位置
を自動的、かつ効率的に計測することができる地中掘削
機を提供することを目的とするものである。
The present invention has been made in view of the problems of the above-mentioned conventional underground junction, and automatically determines the relative positions of two underground excavators in real time even if the tunnel planning line is long and curved. It is an object of the present invention to provide an underground excavator capable of performing efficient and efficient measurement.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的を達成するために、本発明に係る地中掘削機
は、対向方向に互いに掘進する2台の地中掘削機におい
て、この両地中掘削機の少なくとも一方に地中掘削機の
前面に、電磁波または弾性波を前方へ送出する複数の発
信装置を設け、また上記両掘削機の少なくとも他方の地
中掘削機の前面に、上記一方の地中掘削機の発信装置か
ら発信された電磁波または弾性波を受信する複数の受信
装置を設け、またこの受信装置を有する一方の地中掘削
機に、上記発信装置から発信された電磁波または弾性波
と上記各受信装置が検出する電磁波または弾性波の位相
差あるいは伝播時間の一方を検出する検知手段と、上記
複数の送信装置及び受信装置間のそれぞれの電磁波また
は弾性波の位相差あるいは伝播時間の一方から上記両地
中掘削機の相対位置を算出する演算手段とを備えた構成
となっている。
In order to achieve the above object, an underground excavator according to the present invention includes, in two underground excavators that excavate in opposite directions, at least one of the two underground excavators and a front surface of the underground excavator. A plurality of transmitting devices for transmitting electromagnetic waves or elastic waves forward is provided, and in front of at least the other underground excavator of the two excavators, the electromagnetic wave transmitted from the transmitting device of the one underground excavator or A plurality of receiving devices for receiving elastic waves are provided, and one underground excavator having the receiving devices is provided with an electromagnetic wave or an elastic wave transmitted from the transmitting device and an electromagnetic wave or an elastic wave detected by each of the receiving devices. Detecting means for detecting one of a phase difference and a propagation time; and a relative position of the two underground excavators based on one of a phase difference and a propagation time of each electromagnetic wave or elastic wave between the plurality of transmitting devices and receiving devices. It has become and a calculating means for calculating configuration.

〔作用〕[Action]

検知手段にて、相対向する送信装置と受信装置間の電
磁波または弾性波の位相差あるいは伝播時間を検知する
ことで送受信装置間の距離を検知し、この各送受装置間
での位相差あるいは伝播時間から演算手段にて両地中掘
削機の相対位置が算出される。
The distance between the transmitting and receiving devices is detected by detecting the phase difference or propagation time of the electromagnetic wave or elastic wave between the transmitting device and the receiving device facing each other by the detecting means, and the phase difference or propagation between the transmitting and receiving devices is detected. The relative position of the two underground excavators is calculated from the time by the calculating means.

〔実 施 例〕〔Example〕

本発明の実施例を図面に基づいて説明する。 An embodiment of the present invention will be described with reference to the drawings.

図中A,Bはそれぞれ第1,第2の地中掘削機であり、こ
の両地中掘削機A,Bは地中において対向する方向に掘進
し、かつ接合するように配置されている。そして第1の
地中掘削機Aの前面に複数個の電磁波を送出する送信器
Ta,Te,Tcが前方へ向けて設けてあり、また第2の地中掘
削機Bの前面に、上記送信器と対向する数の電磁波を受
信する受信器Ra,Rb,Rcが前方へ向けて設けてある。
In the figure, A and B denote first and second underground excavators, respectively, and these two underground excavators A and B are arranged so as to excavate and join in the ground in opposite directions. A transmitter for transmitting a plurality of electromagnetic waves to the front of the first underground excavator A
Ta, Te, Tc are provided forward, and receivers Ra, Rb, Rc for receiving electromagnetic waves of the number opposite to the transmitter are provided on the front surface of the second underground excavator B. It is provided.

上記送信器Ta,Tb,Tc及び受信器Ra,Rb,Rcは、一例とし
てそれぞれ地中掘削機A,Bの軸心に対してZ軸(垂直方
向)上側のrの位置と、Y軸(水平方向の左右rの位置
にそれぞれ3個ずつ設けられている。また上記受信器R
a,Rb,Rcを設けた方の第2の地中掘削機Bに位相検知器
と演算装置(いずれも図示せず)が設置されている。
As an example, the transmitters Ta, Tb, Tc and the receivers Ra, Rb, Rc each include, as an example, the position of r above the axis of the underground excavator A, B on the Z axis (vertical direction), and the Y axis ( Three receivers are provided at each of the right and left positions r in the horizontal direction.
A phase detector and an arithmetic unit (neither is shown) are installed in the second underground excavator B provided with a, Rb, and Rc.

そして上記各送信器Ta,Tb,Tcから送出された電磁波は
地中を伝播して各受信器Ra,Rb,Rcにて受信されるが、こ
のとき、地中を伝播してきた各電磁波には、途中の障害
物により、送信器に入力される電磁波との間に位相差の
αTRが生じ、これが位相検知器にて検出される。この各
送受信器間における電磁波の位相差αTRと各送受信器間
の距離lTRとの関係は、 ただし、λ:電磁波の波長 f:電磁波の周波数 v:電磁波の伝播速度 であらわされる。従って各送信受器相互間を伝播する電
磁波の位相差αTRを検出することにより、各送受信器相
互間の送信受信間距離lTRが得られる。
The electromagnetic waves transmitted from the transmitters Ta, Tb, and Tc propagate through the ground and are received by the receivers Ra, Rb, and Rc. Due to an obstacle on the way, a phase difference α TR is generated between the electromagnetic wave input to the transmitter and this is detected by the phase detector. The relationship between the phase difference α TR of the electromagnetic wave between each transceiver and the distance l TR between each transceiver is Where λ: wavelength of electromagnetic wave f: frequency of electromagnetic wave v: velocity of propagation of electromagnetic wave. Accordingly, by detecting the phase difference α TR of the electromagnetic wave propagating between the respective transmission receivers, the transmission / reception distance l TR between the respective transmitter / receivers can be obtained.

次に、第1の地中掘削機Aの前面の中心をX,Y,Z座標
の原点にとると、第1の地中掘削機A側に設けられた送
信器Ta,Tb,Tcの座標は、 Ta(o,o,r) Tb(o,r,o) Tc(o,−r,o) であらわされ、これに対して、第2の地中掘削機Bに
設けられた受信機Ra,Rb,Rcの座標は、 Ra(XRa,YRa,ZRa) Rb(XRb,YRb,ZRb) Rc(XRc,YRc,ZRc) とすると、以下の式が成りたつ。なお式laa,lba,…lcc
は第1図に示すように、各送受信器間の距離を示す。
Next, taking the center of the front surface of the first underground excavator A as the origin of the X, Y, Z coordinates, the coordinates of the transmitters Ta, Tb, Tc provided on the first underground excavator A side Is represented by Ta (o, o, r) Tb (o, r, o) Tc (o, −r, o), while the receiver provided in the second underground excavator B is If the coordinates of Ra, Rb, and Rc are Ra (XRa, YRa, ZRa), Rb (XRb, YRb, ZRb), and Rc (XRc, YRc, ZRc), the following equation is obtained. Note that the formula laa, lba, ... lcc
Indicates the distance between the transceivers as shown in FIG.

XRa2+YRa2+(ZRa−r)=l aa2 …(2) XRa2+(YRa−r)+ZRa2=l ba2 …(3) XRa2+(YRa+r)+ZRa2=l ca2 …(4) XRb2+YRb2+(ZRb−r)=l ab2 …(5) XRb2+(YRb−r)+ZRb2=l bb2 …(6) XRb2+(YRb+r)+ZRb2=l cb2 …(7) XRc2+YRc2+(ZRc−r)=l ac2 …(8) XRc2+(YRc−r)+ZRc2=l bc2 …(9) XRc2+(YRc+r)+ZRc2=l cc2 …(10) この連立方程式を解くことにより各受信器Ra,Rb,Rcの
第1の地中掘削機Aの中心に対する位置が決定される。
XRa 2 + YRa 2 + (ZRa-r) 2 = l aa 2 ... (2) XRa 2 + (YRa-r) 2 + ZRa 2 = l ba 2 ... (3) XRa 2 + (YRa + r) 2 + ZRa 2 = l ca 2 ... (4) XRb 2 + YRb 2 + (ZRb-r) 2 = l ab 2 ... (5) XRb 2 + (YRb-r) 2 + ZRb 2 = l bb 2 ... (6) XRb 2 + (YRb + r) 2 + ZRb 2 = l cb 2 ... (7) XRc 2 + YRc 2 + (ZRc-r) 2 = l ac 2 ... (8) XRc 2 + (YRc-r) 2 + ZRc 2 = l bc 2 ... (9) XRc 2 + (YRc + r) 2 + ZRc 2 = l cc 2 ... (10) each receiver Ra by solving the simultaneous equations, Rb, position with respect to the center of the first underground excavator a of Rc is determined.

一方第2の地中掘削機Bの中心座標XBo,YBo,ZBoは、 XBo=(XRb+XRc)/2 …(11) YBo=(YRb+YRc)/2 …(12) ZBo=(ZRb+ZRc)/2 …(13) であるから、上記各受信器Ra,Rb,Rcの位置及びこの(1
1)〜(13)式から、第1の地中掘削機Aに対する第2
の地中掘削機Bの相対位置が求められる。
On the other hand, the center coordinates XBo, YBo, ZBo of the second underground excavator B are as follows: XBo = (XRb + XRc) / 2 ... (11) YBo = (YRb + YRc) / 2 ... (12) ZBo = (ZRb + ZRc) / 2 ... ( 13) Therefore, the position of each of the above receivers Ra, Rb, Rc and this (1)
From equations (1) to (13), the second underground excavator A
Of the underground excavator B is determined.

またこのときのY軸の対する第2の地中掘削機Bの傾
きをθとすると第2図により、 にて算出され、 同様に、地中掘削機Bのz軸に対する傾きをΦとする
と、第3図に にて算出される。これにより 第4図は本発明に係る構成を示すもので、信号発生器
1にて生成される一定周波数の信号は送信器切換器2を
経由して第1の地中掘削機Aに設けた送信器Ta,Tb,Tcに
選択的に送ると共に、第2の地中掘削機B側の各受信器
Ra,Rb,Rcに接続した位相検出器PDa,PDb,PDcに入力され
る。
Assuming that the inclination of the second underground excavator B with respect to the Y axis at this time is θ, FIG. Similarly, assuming that the inclination of the underground excavator B with respect to the z-axis is Φ, FIG. Is calculated. FIG. 4 shows a configuration according to the present invention, in which a signal of a constant frequency generated by the signal generator 1 is provided to the first underground excavator A via the transmitter switch 2. The transmitters are selectively sent to the transmitters Ta, Tb, and Tc, and each receiver on the second underground excavator B side
It is input to the phase detectors PDa, PDb, PDc connected to Ra, Rb, Rc.

送信切換器2にて選択された送信器から電磁波が送出
されると、この電磁波は地中に伝播されて第2の地中掘
削機Bの前面に取り付けられた受信器Ra,Rb,Rcにて受信
される。そしてこのときの各受信器Ra,Rb,Rcにて受信し
た信号と、信号発生器1から送出した信号との位相差α
TRが各位相検出器PDa,PDb,PDcにて検出され、この各位
相差は演算装置3に入力される。演算装置3ではこの各
位相差から各送受信器間の距離を演算し、それにより、
第1の地中掘削機Aに対する第2の地中掘削機Bの相対
的な位置が算出され、表示装置4にてその結果が表示さ
れる。
When an electromagnetic wave is transmitted from the transmitter selected by the transmission switch 2, the electromagnetic wave propagates underground and is transmitted to the receivers Ra, Rb, and Rc attached to the front surface of the second underground excavator B. Received. Then, the phase difference α between the signal received by each of the receivers Ra, Rb, and Rc and the signal transmitted from the signal generator 1 at this time.
TR is detected by each of the phase detectors PDa, PDb, and PDc, and the respective phase differences are input to the arithmetic unit 3. The arithmetic unit 3 calculates the distance between each transceiver from each phase difference,
The relative position of the second underground excavator B with respect to the first underground excavator A is calculated, and the display device 4 displays the result.

なお上記実施例では、受信器にて受信した信号と、信
号発生器から送出した信号との位相差を位相差検出器に
て検出するようにした例を示したが、上記位相差検出器
を、送信器から受信機へ地中を伝播する電磁波の伝播時
間を検出する伝播時間検知器に置きかえ、両地中掘削機
の相対位置を算出するのに、この電磁波の伝播時間を用
いてもよい。また、電磁波と超音波(弾性波)におきか
えてもよい。
In the above-described embodiment, an example has been described in which the phase difference between the signal received by the receiver and the signal transmitted from the signal generator is detected by the phase difference detector. The propagation time of the electromagnetic wave may be used to calculate the relative position between the two underground excavators, replacing the propagation time detector that detects the propagation time of the electromagnetic wave propagating underground from the transmitter to the receiver. . Further, electromagnetic waves and ultrasonic waves (elastic waves) may be replaced.

〔発明の効果〕〔The invention's effect〕

本発明によれば、シールド掘削機の海底下での地中接
合などに必要とされる2台の地中掘進機A,Bの3次元的
な相対位置を自動的、連続的、かつリアルタイムに計測
できると共に、計測による掘削休止の必要がなく、また
計測による人手がいらないので、作業能率を向上するこ
とができる。さらに、トンネル計画路線が急曲線、連続
曲線掘削であっても、屈曲に伴う計測の必要もない。そ
してさらに、シールド径が小さくても計測が可能とな
る。さらに積算計測ではないので、長距離掘削を行って
も誤差が生じないという効果が得られる。
According to the present invention, the three-dimensional relative positions of two underground excavators A and B required for underground joining of a shield excavator under the sea floor and the like are automatically, continuously, and in real time. Since the measurement can be performed, there is no need to suspend the excavation by the measurement, and no manpower is required by the measurement, so that the work efficiency can be improved. Furthermore, even if the planned tunnel line is a sharp curve or a continuous curve excavation, there is no need for measurement associated with bending. Further, even if the shield diameter is small, measurement can be performed. Furthermore, since the measurement is not an integrated measurement, an effect that no error occurs even when excavation is performed over a long distance is obtained.

【図面の簡単な説明】[Brief description of the drawings]

図面は本発明の実施例を示すもので、第1図は相対向す
る2台の地中掘削機相互の送受信機による計測状態を示
す斜視図、第2図、第3図はそれぞれ第1の地中掘削機
に対する第2の地中掘削機のY軸、Z軸に対する傾きを
算出するための説明図、第4図は本発明の実施例を示す
ブロック図である。 A,Bは地中掘削機、Ta,Tb,Tcは送信器、Ra,Rb,Rcは受信
器、PDa,PDb,PDcは位相検出器、1は信号発生器、2は
送信器切換器、3は演算装置。
BRIEF DESCRIPTION OF THE DRAWINGS The drawings show an embodiment of the present invention. FIG. 1 is a perspective view showing a state of measurement by a transceiver between two opposing underground excavators, and FIG. 2 and FIG. FIG. 4 is an explanatory diagram for calculating the inclination of the second underground excavator with respect to the Y axis and the Z axis with respect to the underground excavator, and FIG. 4 is a block diagram showing an embodiment of the present invention. A, B is an underground excavator, Ta, Tb, Tc is a transmitter, Ra, Rb, Rc is a receiver, PDa, PDb, PDc is a phase detector, 1 is a signal generator, 2 is a transmitter switch, 3 is an arithmetic unit.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 長野 勇 石川県金沢市長坂台17―30 (72)発明者 竹内 信次郎 福岡県北九州市八幡東区枝光2丁目1番 15号 (72)発明者 酒井 福夫 福岡県北九州市八幡東区枝光2丁目1番 15号 審査官 中槙 利明 (56)参考文献 特開 平2−259514(JP,A) 特開 平2−145910(JP,A) ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Isamu Nagano 17-30 Nagasakadai, Kanazawa City, Ishikawa Prefecture (72) Inventor Shinjiro Takeuchi 2-1-1-15 Edamitsu, Yawatahigashi-ku, Kitakyushu-shi, Fukuoka Prefecture (72) Inventor Sakai Fukuo 2-1-1-15 Edamitsu, Yawataigashi-ku, Kitakyushu-shi, Fukuoka Examiner Toshiaki Nakamaki (56) References JP-A-2-259514 (JP, A) JP-A-2-145910 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】対向方向に互いに掘進する2台の地中掘削
機において、この両地中掘削機の少なくとも一方の地中
掘削機の前面に、電磁波または弾性波を前方へ送出する
複数の発信装置を設け、また上記両掘削機の少なくとも
他方の地中掘削機の前面に、上記一方の地中掘削機の発
信装置から発信された電磁波または弾性波を受信する複
数の受信装置を設け、またこの受信装置を有する一方の
地中掘削機に上記各発信装置から発信された電磁波また
は弾性波と上記各受信装置が検出する電磁波または弾性
波の位相差あるいは伝播時間の一方を検出する検知手段
と、上記複数の送信装置及び受信装置間のそれぞれの電
磁波または弾性波の位相差あるいは伝播時間の一方から
上記両地中掘削機の相対位置を算出する演算手段とを備
えたことを特徴とする地中掘削機。
1. A plurality of underground excavators which excavate each other in opposing directions, a plurality of transmissions for transmitting electromagnetic waves or elastic waves forward in front of at least one of the two underground excavators. A device, and a plurality of receiving devices for receiving electromagnetic waves or elastic waves transmitted from a transmitting device of the one underground excavator on a front surface of at least the other underground excavator of the two excavators; Detecting means for detecting one of a phase difference or a propagation time between the electromagnetic wave or the elastic wave transmitted from each of the transmitting devices and the electromagnetic wave or the elastic wave detected by each of the receiving devices on one underground excavator having the receiving device; Computing means for calculating a relative position of the two underground excavators from one of a phase difference or a propagation time of each electromagnetic wave or elastic wave between the plurality of transmitting devices and receiving devices. That underground excavator.
JP1206967A 1989-08-11 1989-08-11 Underground excavator Expired - Fee Related JP2804930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1206967A JP2804930B2 (en) 1989-08-11 1989-08-11 Underground excavator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1206967A JP2804930B2 (en) 1989-08-11 1989-08-11 Underground excavator

Publications (2)

Publication Number Publication Date
JPH0372195A JPH0372195A (en) 1991-03-27
JP2804930B2 true JP2804930B2 (en) 1998-09-30

Family

ID=16531970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1206967A Expired - Fee Related JP2804930B2 (en) 1989-08-11 1989-08-11 Underground excavator

Country Status (1)

Country Link
JP (1) JP2804930B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0772471B2 (en) * 1989-12-26 1995-08-02 株式会社間組 Position measurement method of the shield machine
JP4996566B2 (en) * 2008-09-03 2012-08-08 大成建設株式会社 Underground joining method between excavators and position detection method for excavators
JP5384890B2 (en) * 2008-09-22 2014-01-08 大成建設株式会社 Soil position guidance method and soil position guidance system
DE102016002479A1 (en) * 2016-03-03 2017-09-07 Tracto-Technik Gmbh & Co. Kg Method for drilling a hole in the ground and earth drilling device and use

Also Published As

Publication number Publication date
JPH0372195A (en) 1991-03-27

Similar Documents

Publication Publication Date Title
RU2175368C2 (en) System for detection of drilling tool position, system of trenchless underground drilling and method of determination of drilling tool position
ES2331948T3 (en) SYSTEM AND PROCEDURE FOR DATA ACQUISITION AND EXCAVATOR CONTROL.
US6003376A (en) Acoustic system for measuring the location and depth of underground pipe
JPH03260281A (en) Position detector of underground excavator
JP2804930B2 (en) Underground excavator
JP3723661B2 (en) Underground excavator position measurement device
JP2001099945A (en) Survey instrument for surveying front side of working face, and recording medium
RU2740297C1 (en) Method for visualization of current condition of bottom topography during operation of dredger
EP0481077B1 (en) Device for measuring position of underground excavator
JPH0953936A (en) Gps staff
JP2002116026A (en) Measuring system for excavation position of shield machine
JPH0379646B2 (en)
WO1991003708A1 (en) Position detecting device for underground excavator
JP2757058B2 (en) Underground excavator relative position detector
JP3989624B2 (en) Position measuring device for submarine or submarine civil engineering machinery or cable burying machine
JPS5855467B2 (en) Shield excavator position measuring device
JPS62135714A (en) Measuring method for position of shield machine
JPH0335184A (en) Position measuring instrument of underground drilling machine
JP2819044B2 (en) Underground excavator position detector
JP2834393B2 (en) Automatic detection of abnormal objects ahead in tunnel construction
JP2913041B2 (en) Underground excavator displacement detection device
JPH0335185A (en) Position measuring instrument of underground drilling machine
JP3295157B2 (en) Shield surveying method
JP2520754B2 (en) Position detection device for shield machine
WO1991000531A1 (en) Position measuring device of underground excavator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees