JPH0772471B2 - Position measurement method of the shield machine - Google Patents

Position measurement method of the shield machine

Info

Publication number
JPH0772471B2
JPH0772471B2 JP1334830A JP33483089A JPH0772471B2 JP H0772471 B2 JPH0772471 B2 JP H0772471B2 JP 1334830 A JP1334830 A JP 1334830A JP 33483089 A JP33483089 A JP 33483089A JP H0772471 B2 JPH0772471 B2 JP H0772471B2
Authority
JP
Japan
Prior art keywords
wave
shield machine
shield
center
cutter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1334830A
Other languages
Japanese (ja)
Other versions
JPH03197792A (en
Inventor
治 巽
明夫 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP1334830A priority Critical patent/JPH0772471B2/en
Publication of JPH03197792A publication Critical patent/JPH03197792A/en
Publication of JPH0772471B2 publication Critical patent/JPH0772471B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention 【産業上の利用分野】[Industrial applications]

本発明は、対向するシールド掘進機を接合する際などの
最終掘進時の位置を測定する方法に関する。
The present invention relates to a method of measuring a position at the time of final excavation such as when joining opposing shield machines.

【従来の技術】[Prior art]

従来、シールド掘進機同士を接合する場合において、そ
の接合する位置を検出する方法を水平ボーリングを用い
るもので、第12図に示すように先行シールド掘進機Aか
ら水平ボーリングで後行シールド掘進機Bまでガイドパ
イプCを貫入させた後、先行シールド掘進機A側からガ
イドパイプC内にレーザビームを発射し、レーザ測量に
よって2台のシールド掘進機A,Bの位置と姿勢ズレ量を
測量する。
Conventionally, when joining shield excavators to each other, horizontal boring is used as a method for detecting the joining position. As shown in FIG. 12, the leading shield excavator A is horizontally boring to the trailing shield excavator B. After penetrating the guide pipe C up to, the laser beam is emitted from the side of the preceding shield machine A into the guide pipe C, and the position and attitude deviation amounts of the two shield machine A and B are measured by laser surveying.

【発明が解決しようとする課題】[Problems to be Solved by the Invention]

しかしこの方法では、水平ボーリングによって後行シー
ルド掘進機に穿孔し、また再発進に当たってガイドパイ
プを引き抜く必要があるため、次のような問題点があっ
た。 ボーリング精度の問題(孔曲がり等)があり、測量
精度が低い。 後行シールド掘進機を損傷する。 ボーリング時及び引き抜き時に止水する必要があ
る。 ボーリングに先立ち地盤改良が必要であり、時間が
かかる。 本発明の目的はこのような問題点を一掃することにあ
る。
However, this method has the following problems because it is necessary to make a hole in the trailing shield machine by horizontal boring and to pull out the guide pipe when restarting. There is a problem of boring accuracy (hole bending, etc.) and the surveying accuracy is low. Damages the trailing shield machine. It is necessary to stop the water during boring and pulling out. Ground improvement is required prior to boring, which takes time. An object of the present invention is to eliminate such problems.

【課題を解決するための手段】[Means for Solving the Problems]

本発明の第1の方法では、対向する2台のシールド掘進
機の一方のシールド掘進機のカッタ前面の中央に1個の
送波器、他方のシールド掘進機のカッタ前面で直径線上
の中央とその両側の2位置とに受波器をそれぞれ設け、
1個の送波器からの送信波(例えば音波や電磁波)を3
台の前記受波器で受信し、その到達時間の差から2台の
シールド掘進機の相対位置を求めた後、受信側の他方の
シールド掘進機のカッタを90度回転させて同じことを再
度行う。 本発明の第2の方法では、対向する2台のシールド掘進
機の一方のシールド掘進機のカッタ前面の中央に1個の
送波器、他方のシールド掘進機のカッタ前面の中央と同
一半径上の90度の位相差がある4位置とに受波器をそれ
ぞれ設け、1個の送波器からの送信波を5台の前記受波
器で受信し、その到達時間の差から2台のシールド掘進
機の相対位置を求める。 本発明の第3の方法では、対向する2台のシールド掘進
機の一方のシールド掘進機のカッタ前面の中央に1個の
送波器、他方のシールド掘進機のカッタ前面に少なくと
も1個の受波器を設け、1個の送波器からの送信波を受
波器で受信し、その到達時間から2台のシールド掘進機
の相対位置を求めた後、送信側の一方のシールド掘進機
を受信側の他方のシールド掘進機に対して所定距離だけ
前進させて同じことを再度行う。
In the first method of the present invention, one wave transmitter is provided in the center of the front face of the cutter of one shield excavator of two facing shield excavators, and the center of the diameter line is provided in front of the cutter of the other shield excavator. The wave receivers are provided at the two positions on both sides,
3 transmitted waves (eg sound waves and electromagnetic waves) from one transmitter
After receiving the wave with one of the above wave receivers and obtaining the relative position of the two shield machines from the arrival time difference, rotate the cutter of the other shield machine on the receiving side by 90 degrees and repeat the same thing. To do. According to the second method of the present invention, one wave transmitter is provided at the center of the front face of the shield machine of one of the two shield machines facing each other, and the same radius as the center of the front face of the cutter machine of the other shield machine is provided. There are wave receivers at four positions with a phase difference of 90 degrees, and the transmitted wave from one wave receiver is received by the five wave receivers. Find the relative position of the shield machine. According to the third method of the present invention, one wave transmitter is provided at the center of the front face of the cutter of one shield excavator of two facing shield excavators, and at least one receiver is provided at the front face of the cutter of the other shield excavator. The wave receiver is installed, the transmitted wave from one wave transmitter is received by the wave receiver, and the relative position of the two shield machines is calculated from the arrival time. The same thing is performed again by advancing the shield shield machine on the receiving side by a predetermined distance.

【作用】[Action]

今、第1図に示すように先行シールド掘進機Aの前面中
央の送波点aから地中に音波を発信し、これを後行シー
ルド掘進機Bの前面中央と、それより半径dだけ離れた
対称位置の計3点の受波点bc,b1,b2で受信するものと
する。両シールド掘進機A,Bの中心線が第2図のように
ズレていれば、第3図に示すように送波点aからの送波
信号が受波点b1に到達するまでの時間t1と受波点b2に到
達するまでの時間t2はΔtの伝播時間差を生ずる。 そこで、地中での音速(伝播速度)をvp、両シールド掘
進機A,B間の距離をL、両シールド掘進機A,Bの中心線の
相対ズレをδ、各受波点bc,b1,b2と送波点a間の距離
をそれぞれlc,l1,l2、各受波点bc,b1,b2での音波の
到達時間(伝播時間)をそれぞれtc、t1,t2とすると、
次の関係が成り立つ。 l1=vp×t1 ……(1) l2=vp×t2 ……(2) lc=vp×tc ……(3) l1 2=(d+δ)2+L2 ……(4) l2 2=(d−δ)2+L2 ……(5) 1c 2=δ2+L2 ……(6) そこで、上式を変換して音速vpを求める。 vpを(1),(2),(3)式に代入するとl1,l2,lc
が求まる。またδ及びLは次のようにして求まる。 l1 2−l2 2=d2+2d×δ+δ2+L2−(d2−2d×δ+δ2
L2)=4d×δ=4dδ δ=(l1 2−l2 2)÷4d ……(8) 以上から両シールド掘進機A,Bの相対的な位置関係が求
まる。垂直方向と水平方向について上記解析を行えば三
次元の位置関係を知ることができる。
Now, as shown in FIG. 1, a sound wave is transmitted from the transmitting point a at the center of the front surface of the leading shield machine A into the ground, and is separated from the center of the front surface of the trailing shield machine B by a radius d. It is assumed that the signals are received at a total of three receiving points b c , b 1 and b 2 at symmetrical positions. If the center lines of both shield machines A and B are misaligned as shown in FIG. 2, the time until the transmission signal from the transmission point a reaches the reception point b 1 as shown in FIG. The time t 2 required for reaching t 1 and the wave receiving point b 2 has a propagation time difference of Δt. Therefore, the sound velocity (propagation velocity) in the ground is v p , the distance between both shield excavators A and B is L, the relative deviation between the center lines of both shield excavators A and B is δ, and each receiving point b c , B 1 , b 2 and the transmission point a are the distances l c , l 1 , l 2 , respectively, and the arrival times (propagation times) of the sound waves at the receiving points b c , b 1 , b 2 are t, respectively. If c , t 1 and t 2 ,
The following relationship holds. l 1 = v p × t 1 (1) l 2 = v p × t 2 (2) l c = v p × t c (3) l 1 2 = (d + δ) 2 + L 2 … (4) l 2 2 = (d-δ) 2 + L 2 (5) 1 c 2 = δ 2 + L 2 (6) Then, the above equation is converted to obtain the sound velocity v p . Substituting v p into equations (1), (2), and (3) yields l 1 , l 2 , l c
Is required. Further, δ and L are obtained as follows. l 1 2 −l 2 2 = d 2 + 2d × δ + δ 2 + L 2 − (d 2 −2d × δ + δ 2 +
L 2 ) = 4d × δ = 4dδ δ = (l 1 2 −l 2 2 ) / 4d …… (8) From the above, the relative positional relationship between both shield machines A and B can be obtained. By performing the above analysis in the vertical direction and the horizontal direction, the three-dimensional positional relationship can be known.

【実施例】【Example】

以下、本発明の実施例を図面に基づき詳細に説明する。 第2図は2台のシールド掘進機A,Bが接合位置の近傍ま
で掘進してきた状態を示す。そのうちの一方を先行シー
ルド掘進機A、他方を後行シールド掘進機Bとすると、
先行シールド掘進機Aのカッタ前面中央に第4図に示す
ように音波を発信する1台の送波器1を設置し、後行シ
ールド掘進機Bのカッタ前面には第5図に示すように中
央と、同一半径上の90度の位相差がある4位置の計5点
に受波器2を設置しておき、送波器1から音波(数KHz
程度、P波でもS波でもよい)を発信し地中を伝播して
くるその音波を5点の受波器2で受信し、その受信デー
タを演算制御装置でデジタル量にして上述した式に従い
演算する。 第6図は演算制御装置による処理の流れを示す。送波器
1の発信と同時に受波器2を制御し、送波器1の発信時
点を受波器2の受信データの時間原点として、送波器1
及び受波器からのデータを取り込む(ステップ10)。受
波器2からデータのノイズ除去処理(ステップ11)を行
った後、送波器1からのデータと受波器2からのデータ
の相互相関をとり(ステップ12)、相関の大きい信号を
抽出する(ステップ13)。次に、5点の受波器2につい
て選択された信号の到達時間を計測し(ステップ14)、
その各到達時間から上記の式に従って両シールド掘進機
A,Bの相対的な位置関係を求め(ステップ15)、その結
果をディスプレイ装置上に表示または記録媒体に記録す
る(ステップ16)。 第5図のように受波器2を5点に設置した場合には、垂
直方向及び水平方向の位置計測を同時に行える。受波器
2を同一直径線上に3点設置した場合には、後行シール
ド掘進機Bのカッタを90度回転させて2回に分けて計測
することにより、垂直方向及び水平方向の位置測定が可
能である。 両シールド掘進機A,B相互の中心線のズレδ及び距離L
は、受波器2が第7図のように後行シールド掘進機Bの
中心から等距離の2点、または第8図のように中心と偏
心位置の2点、あるいは第9図のように1点のみに設置
してあっても、先行シールド機Aを掘進させてその前後
で測定、つまり送波点を掘進方向に移動して2回測定す
れば求めることができる。 第10図はその原理説明図で、先行シールド掘進機Aを掘
進させ、送波点Oとそれより任意長x前進した送波点
O′でそれぞれ音波を発信し、後行シールド掘進機Bは
同位置で停止させたまま第7図に示すような設置関係に
した受波器2(受波点b1,b2)で受信するものとする。
この場合、両シールド掘進機A,B間の距離をL、それら
の中心線のズレをδ、後行シールド掘進機Bの中心から
各受波器2までの距離をd、地中での音波伝播速度を
vp、送波器1と各受波器2間の距離をl1,l2、各受波器
2に受信された音波の伝播時間をt1,t2とすると次の式
が成り立つ。 l1=vp×t1 ……(10) l2=vp×t2 ……(11) l1 2=L2+(d+δ)2 ……(12) l2 2=L2+(d−δ)2 ……(13) (12)式と(13)式を加えると、 l1 2+l2 2=2L2+2d2+2δ2 ……(14) (12)式から(13)式を引くと、 l1 2−l2 2=4dδ ……(15) δを消すために(15)式を変形して(14)式に代入す
る。 δ=(l1 2-l2 2)/4d ……(15)′ l1 2+l2 2=2L2+2d2+(l1 2-l2 2)2/8d2 ……(14)′ (14)′式に(10)式及び(11)式を代入して、 (t1 2+t2 2)Vp 2=2L2+2d2+(t1 2-t2 2)2Vp 2/8d2 そこで、 T1=t1 2+t2 2 T2=(t1 2-t2 2)2 V=vp 2 D=d2 とすると、 T1V=2L2+2D+(T2V/8D) ……(16) xだけ先行シールド掘進機Aが掘進した場合、掘進方向
と接合軸方向に当然微小な誤差はあるが、仮にそれを1
°としても0.02%しか差がなく、送波点OとO′の距離
x′=xとしても支障はない。従って、 T1′V=2L′2+2D+(T2′V/8D) =2(L-x)2+2D+(T2′V/8D) ……(17) ここに、T1′=t12+t22 T2′=(t12−t222 (16)式よりT1V−(T2V/8D)=2L2+2D (T1-T2/8D)V=2L2+2D V=(2L2+2D)/{T1-(T2/8D)} ……(16)′ (16)′式を(17)式に代入すると、 T1′(2L2+2D)/{T1-(T2/8D)}=2(L-x)2+2D+T2′(2L
2+2D)/8D{T1−(T2/8D)} T1′(2L2+2D)=2(L-x)2{T1-(T2/8D)}+2D{T1-(T2
/8D)}+T2′(2L2+2D)/8D T3=T1−(T2/8D)とすると、 T1′L2+T1′D=(L2-2xL+x2)T3+DT3+(T2′/8D)L2
+(T2′/8) {T1′−T3−(T2′/8D)}L2+2T3xL+T1′D−T3X2
DT3−(T2′/8)=0 ∴ αL2+βL+γ=0 ……(18) 故に、(18)式の2次方程式よりLが求まり、さらに他
の値を求めることができる。すなわち(16)′式より、 (15)′式より、 δ=(t1 2+t2 2)vp 2/4d ここに、 α=T1′−T3−(T2′/8D)=(T1′−T1)−(T2′−T
2)/8d2 β=2T3x=2x{T1-(T2/8d2)} γ=T1′D−(x2+D)T3−(T2′/8)=T1′d2−(x2+d2)
{T1−(T2/8d2)}−(T2′/8) 第8図の場合も基本的にこれと同様に求めることができ
る。第9図の場合は1回目の測定後、カッタを180度回
転させて2回目の測定を行えば、第7図の場合と同様に
求めることができる。 第11図は本発明の別の実施例で、先端に送波器1を取り
付けたボーリングロッド3を例えば先行シールド掘進機
A側から途中まで水平に貫入し、両シールド掘進機A,B
の中間より音波を発信し、後行シールド掘進機B側の受
波器2で受信する。この場合、先行シールド掘進機A側
にも受波器2aを設置して受信すれば、地盤中での音波の
伝播速度を簡単に測定できる。この実施例によると、ボ
ーリングロッド3の貫入長さ分だけ位置測定可能な距離
を長くできる。 本発明によるとシールド掘進機のピッチやロール等の姿
勢検出も行える。一般的な姿勢検出精度は0.05〜0.1°
程度であるが、本発明によるとこれを0.01°程度まで高
精度にできる。 なお、本発明は1台のシールド掘進機が既設の立坑に到
達する場合の到達位置の検出にも応用できる。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 2 shows a state in which two shield excavators A and B have excavated to the vicinity of the joining position. If one of them is the leading shield machine A and the other is the trailing shield machine B,
As shown in FIG. 4, one transmitter 1 for transmitting sound waves is installed in the center of the front of the leading shield machine A as shown in FIG. 4, and as shown in FIG. 5 in front of the cutter of the trailing shield machine B as shown in FIG. The receiver 2 is installed at a total of 5 points in the center and at 4 positions with a phase difference of 90 degrees on the same radius, and the sound wave (several KHz) is transmitted from the transmitter 1.
The sound waves that originate in the P wave or S wave) and propagate in the ground are received by the five wave receivers 2, and the received data is converted into a digital amount by the arithmetic and control unit according to the above formula. Calculate FIG. 6 shows the flow of processing by the arithmetic and control unit. The wave receiver 1 is controlled simultaneously with the transmission of the wave transmitter 1, and the time point of transmission of the wave transmitter 1 is set as the time origin of the received data of the wave receiver 2
Also, the data from the receiver is taken in (step 10). After performing the noise removal processing of the data from the wave receiver 2 (step 11), the cross-correlation of the data from the wave transmitter 1 and the data from the wave receiver 2 is taken (step 12), and a signal with a large correlation is extracted. Yes (step 13). Next, the arrival times of the signals selected for the five receivers 2 are measured (step 14),
Both shield excavators according to the above formula from each arrival time
The relative positional relationship between A and B is obtained (step 15), and the result is displayed on a display device or recorded on a recording medium (step 16). When the wave receiver 2 is installed at five points as shown in FIG. 5, position measurement in the vertical direction and the horizontal direction can be performed simultaneously. When the wave receivers 2 are installed at three points on the same diameter line, the cutter of the trailing shield machine B is rotated by 90 degrees and the measurement is performed in two steps to measure the vertical and horizontal positions. It is possible. Deviation of center line between both shield machines A and B δ and distance L
Shows the wave receiver 2 at two points equidistant from the center of the trailing shield machine B as shown in FIG. 7, or at two points at the center and the eccentric position as shown in FIG. 8, or as shown in FIG. Even if it is installed at only one point, it can be obtained by advancing the preceding shield machine A and measuring before and after that, that is, by moving the transmitting point in the excavation direction and measuring twice. FIG. 10 is an explanatory view of the principle thereof. The leading shield excavator A is excavated, and sound waves are transmitted respectively at the transmitting point O and the transmitting point O ′ advanced by an arbitrary length x from that point, and the trailing shield excavator B is It is assumed that the receiver 2 (receiving points b 1 and b 2 ) in the installation relationship as shown in FIG. 7 receives the signal while stopped at the same position.
In this case, the distance between both shield machines A and B is L, the deviation of their center lines is δ, the distance from the center of the trailing shield machine B to each receiver 2 is d, and the sound wave in the ground is Propagation speed
v p , the distance between the wave transmitter 1 and each wave receiver 2 is l 1 and l 2 , and the propagation time of the sound wave received by each wave receiver 2 is t 1 and t 2 . l 1 = v p × t 1 (10) l 2 = v p × t 2 (11) l 1 2 = L 2 + (d + δ) 2 (12) l 2 2 = L 2 + ( d-δ) 2 (13) Adding equations (12) and (13), l 1 2 + l 2 2 = 2L 2 + 2d 2 + 2δ 2 (14) Equation (13) to (13) If is subtracted, l 1 2 −l 2 2 = 4dδ ………… (15) In order to eliminate δ, Eq. (15) is modified and substituted into Eq. (14). δ = (l 1 2 -l 2 2 ) / 4d …… (15) ′ l 1 2 + l 2 2 = 2L 2 + 2d 2 + (l 1 2 -l 2 2 ) 2 / 8d 2 …… (14) ′ Substituting equations (10) and (11) into equation (14) ′, (t 1 2 + t 2 2 ) V p 2 = 2L 2 + 2d 2 + (t 1 2 -t 2 2 ) 2 V p 2 / 8d 2 Therefore, if T 1 = t 1 2 + t 2 2 T 2 = (t 1 2 -t 2 2 ) 2 V = v p 2 D = d 2 , then T 1 V = 2L 2 + 2D + (T 2 (V / 8D) …… (16) When the leading shield machine A digs x, there are naturally small errors in the digging direction and the joining axis direction.
There is only a difference of 0.02% in terms of °, and there is no problem even if the distance x ′ = x between the transmitting points O and O ′. Therefore, T 1 'V = 2L' 2 + 2D + (T 2 'V / 8D) = 2 (Lx) 2 + 2D + (T 2' V / 8D) ...... (17) herein, T 1 '= t 1' 2 + t 22 T 2 ′ = (t 12 −t 22 ) 2 From the equation (16), T 1 V− (T 2 V / 8D) = 2L 2 + 2D (T 1 −T 2 / 8D) V = 2L 2 + 2D V = (2L 2 + 2D) / {T 1- (T 2 / 8D)} …… (16) ′ (16) ′ Substituting equation (17) into T 1 ′ (2L 2 + 2D) / {T 1- (T 2 / 8D)} = 2 (Lx) 2 + 2D + T 2 ′ (2L
2 + 2D) / 8D {T 1 − (T 2 / 8D)} T 1 ′ (2L 2 + 2D) = 2 (Lx) 2 {T 1- (T 2 / 8D)} + 2D {T 1- (T 2
/ 8D)} + T 2 ′ (2L 2 + 2D) / 8D T 3 = T 1 − (T 2 / 8D), T 1 ′ L 2 + T 1 ′ D = (L 2 -2xL + x 2 ) T 3 + DT 3 + (T 2 '/ 8D) L 2
+ (T 2 ′ / 8) {T 1 ′ −T 3 − (T 2 ′ / 8D)} L 2 + 2T 3 xL + T 1 ′ D−T 3 X 2
DT 3 − (T 2 ′ / 8) = 0 ∴αL 2 + βL + γ = 0 (18) Therefore, L can be obtained from the quadratic equation (18), and another value can be obtained. That is, from equation (16) ′, From equation (15) ′, δ = (t 1 2 + t 2 2 ) v p 2 / 4d where α = T 1 ′ −T 3 − (T 2 ′ / 8D) = (T 1 ′ −T 1 ) − (T 2 ′ −T
2 ) / 8d 2 β = 2T 3 x = 2x {T 1- (T 2 / 8d 2 )} γ = T 1 ′ D− (x 2 + D) T 3 − (T 2 ′ / 8) = T 1 ′ D 2 − (x 2 + d 2 )
{T 1 − (T 2 / 8d 2 )} − (T 2 ′ / 8) In the case of FIG. 8, it can be basically obtained in the same manner. In the case of FIG. 9, if the cutter is rotated 180 degrees after the first measurement and the second measurement is performed, the same measurement as in the case of FIG. 7 can be performed. FIG. 11 shows another embodiment of the present invention, in which a boring rod 3 having a wave transmitter 1 attached at its tip is horizontally penetrated from the side of the leading shield excavator A, for example, to the middle of both shield excavators A and B.
The sound wave is emitted from the middle of the above, and is received by the wave receiver 2 on the trailing shield machine B side. In this case, if the wave receiver 2a is also installed and received on the side of the leading shield machine A, the propagation velocity of the sound wave in the ground can be easily measured. According to this embodiment, the position measurable distance can be increased by the penetration length of the boring rod 3. According to the present invention, the posture of the shield machine such as pitch and roll can be detected. General posture detection accuracy is 0.05 to 0.1 °
According to the present invention, this can be made highly accurate up to about 0.01 °. The present invention can also be applied to detection of the arrival position when one shield machine reaches an existing vertical shaft.

【発明の効果】【The invention's effect】

本発明によれば、送信側のシールド掘進機のカッタ前面
に設けられた1個の送波器からの送信波を、受信側のシ
ールド掘進機のカッタ前面に設けられた少なくとも1個
の受波器で受信して、送信波の到達時間の差を求めるこ
とにより、両シールド掘進機の軸線のズレと距離との相
対位置を容易にかつ三次元に測定できる。また、送信側
のシールド掘進機については、そのカッタ前面の中央に
送波器を1個だけ設ければよく、送信側の構成を簡素に
できるとともに、送信側のシールド掘進機の軸線と送波
器との位置ズレによる補正計算をする必要がなく、計算
も容易になる。 更に、請求項1の発明によると、受信側のシールド掘進
機のカッタを90度回転させて2回測定することで、三次
元の相対位置測定を正確に行え、請求項2の発明による
と、三次元の相対位置測定を1回の測定で正確に行え、
請求項3の発明によると、受信側のシールド掘進機の受
波器の数が少なくても、送信側のシールド掘進機を掘進
させて2回の測定を行うことにより三次元の相対位置測
定を行える。
According to the present invention, the transmitted wave from one transmitter provided on the front surface of the cutter of the shield machine on the transmission side is received by at least one received on the front surface of the cutter of the shield machine on the reception side. It is possible to easily and three-dimensionally measure the relative position between the deviation of the axes of both shield machines and the distance by calculating the difference between the arrival times of the transmitted waves by the receiver. Also, for the shield machine on the transmission side, only one transmitter needs to be provided in the center of the front surface of the cutter, which simplifies the configuration on the transmission side. There is no need to make a correction calculation due to the positional deviation from the vessel, and the calculation becomes easy. Further, according to the invention of claim 1, three-dimensional relative position measurement can be accurately performed by rotating the cutter of the shield machine on the receiving side by 90 degrees and measuring twice, and according to the invention of claim 2, Accurately perform three-dimensional relative position measurement with one measurement,
According to the invention of claim 3, even if the number of receivers of the shield machine on the receiving side is small, the shield machine on the transmitting side is excavated and two times of measurement is performed to measure the three-dimensional relative position. You can do it.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の方法の原理説明図、第2図はその一実
施例の側面図、第3図は送波器からの送波信号と受波器
の受信信号のタイミングチャート、第4図は先行シール
ド掘進機における送波器の設置位置を示す前面図、第5
図は後行シールド掘進機における受波器の設置位置を示
す前面図、第6図は演算制御装置による処理の流れを示
すフローチャート、第7図、第8図及び第9図はそれぞ
れ受波器の他の設置例を示す説明図、第10図は第7図の
設置例の場合における位置測定の原理説明図、第11図は
本発明の別の実施例の側面図、第12図は従来例の側面図
である。 A……先行シールド掘進機、B……後行シールド掘進
機、1……送波器、2……受波器。
1 is an explanatory view of the principle of the method of the present invention, FIG. 2 is a side view of an embodiment thereof, FIG. 3 is a timing chart of a transmission signal from a wave transmitter and a reception signal of a wave receiver, and FIG. The figure shows the front view of the installation position of the wave transmitter in the leading shield machine,
The figure is a front view showing the installation position of the wave receiver in the trailing shield machine, FIG. 6 is a flowchart showing the flow of processing by the arithmetic and control unit, and FIGS. 7, 8, and 9 are wave receivers, respectively. FIG. 10 is an explanatory view showing another example of installation, FIG. 10 is an explanatory view of the principle of position measurement in the case of the installation example of FIG. 7, FIG. 11 is a side view of another embodiment of the present invention, and FIG. It is a side view of an example. A ... Leading shield machine, B ... Trailing shield machine, 1 ... Wave transmitter, 2 ... Wave receiver.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】対向する2台のシールド掘進機の一方のシ
ールド掘進機のカッタ前面の中央に1個の送波器、他方
のシールド掘進機のカッタ前面で直径線上の中央とその
両側の2位置とに受波器をそれぞれ設け、前記1個の送
波器からの送信波を3台の前記受波器で受信し、その到
達時間の差から2台のシールド掘進機の相対位置を求め
た後、受信側の前記他方のシールド掘進機のカッタを90
度回転させて同じことを再度行うことを特徴とするシー
ルド掘進機の最終掘進時位置測定方法。
Claim: What is claimed is: 1. One wave transmitter in the center of the front of the cutter of one of the two shield machines facing each other, and two transmitters in the center of the diameter of the front of the cutter of the other shield machine and on both sides thereof. A wave receiver is provided at each position, and the transmitted waves from the one wave receiver are received by the three wave receivers, and the relative positions of the two shield machines are obtained from the difference in the arrival times. The shield shield machine on the receiving side,
A method for measuring the final position of a shield machine, which is characterized in that the same operation is performed again by rotating the machine once.
【請求項2】対向する2台のシールド掘進機の一方のシ
ールド掘進機のカッタ前面の中央に1個の送波器、他方
のシールド掘進機のカッタ前面の中央と同一半径上の90
度の位相差がある4位置とに受波器をそれぞれ設け、前
記1個の送波器からの送信波を5台の前記受波器で受信
し、その到達時間の差から2台のシールド掘進機の相対
位置を求めることを特徴とするシールド掘進機の最終掘
進時位置測定方法。
2. One wave transmitter in the center of the front of the cutter of one of the two shield machines facing each other, and 90 on the same radius as the center of the front of the cutter of the other shield machine.
The wave receivers are provided at four positions each having a phase difference of 5 degrees, and the transmission wave from the one wave transmitter is received by the five wave receivers, and the two shields are received from the difference in arrival time. A method for measuring the final position of a shield machine, which is characterized in that the relative position of the machine is obtained.
【請求項3】対向する2台のシールド掘進機の一方のシ
ールド掘進機のカッタ前面の中央に1個の送波器、他方
のシールド掘進機のカッタ前面に少なくとも1個の受波
器を設け、前記1個の送波器からの送信波を前記受波器
で受信し、その到達時間から2台のシールド掘進機の相
対位置を求めた後、送信側の前記一方のシールド掘進機
を受信側の他方のシールド掘進機に対して所定距離だけ
前進させて同じことを再度行うことを特徴とするシール
ド掘進機の最終掘進時位置測定方法。
3. One wave transmitter is provided in the center of the front face of the shield machine of one of the two shield machines facing each other, and at least one wave receiver is provided on the front face of the cutter of the other shield machine. , The wave received from the one wave transmitter is received by the wave receiver, the relative position of the two shield machines is obtained from the arrival time, and then the one shield machine on the transmission side is received. A method for measuring a final position of a shield machine, which is characterized in that the shield machine is moved forward by a predetermined distance with respect to the other shield machine on the side and the same operation is performed again.
JP1334830A 1989-12-26 1989-12-26 Position measurement method of the shield machine Expired - Fee Related JPH0772471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1334830A JPH0772471B2 (en) 1989-12-26 1989-12-26 Position measurement method of the shield machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1334830A JPH0772471B2 (en) 1989-12-26 1989-12-26 Position measurement method of the shield machine

Publications (2)

Publication Number Publication Date
JPH03197792A JPH03197792A (en) 1991-08-29
JPH0772471B2 true JPH0772471B2 (en) 1995-08-02

Family

ID=18281695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1334830A Expired - Fee Related JPH0772471B2 (en) 1989-12-26 1989-12-26 Position measurement method of the shield machine

Country Status (1)

Country Link
JP (1) JPH0772471B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5384890B2 (en) * 2008-09-22 2014-01-08 大成建設株式会社 Soil position guidance method and soil position guidance system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2804930B2 (en) * 1989-08-11 1998-09-30 株式会社小松製作所 Underground excavator

Also Published As

Publication number Publication date
JPH03197792A (en) 1991-08-29

Similar Documents

Publication Publication Date Title
JPH0321045B2 (en)
CN105317434A (en) Borehole ultrasonic reflection three-dimensional detection apparatus and method
JP5583581B2 (en) System and method for optimizing straw
CN108303729B (en) Karst detection method for shield tunnel affected area under building
CN104133217A (en) Method and device for three-dimensional velocity joint determination of underwater moving target and water flow
EP1268977B1 (en) Method for estimating the position of a drill
JP7496452B2 (en) Exploration system, shield drilling machine and exploration method
JPH0772471B2 (en) Position measurement method of the shield machine
CN110887471A (en) Positioning system, method and controller applied to detection equipment in diversion tunnel
JP3400746B2 (en) Exploration method in front of tunnel face
JPH02157681A (en) Underground surveying method for shield method
JP2002106291A (en) Working face-forward geological prediction method using electromagnetic wave
JPS62135714A (en) Measuring method for position of shield machine
JP2676246B2 (en) Position detection method for shield machine
JPH0228586A (en) Front and sideward monitoring device by shield drilling method
CN218240402U (en) Tunnel is owed and is dug data detection and positioner based on sonar range finding
JP2834393B2 (en) Automatic detection of abnormal objects ahead in tunnel construction
JP2797008B2 (en) Apparatus and method for detecting ground deformation using AE sensor
JP3068256B2 (en) Soil identification device for small-diameter pipe propulsion machine
JP2520754B2 (en) Position detection device for shield machine
JPH0694786B2 (en) Position detection method of excavation tip in underground excavation method
JPS62101800A (en) Detector for facing of shield excavator
JPH09242472A (en) Parallel shield tunnel work execution method
JP2748151B2 (en) Excavation tip position detection method in underground drilling method
JPS62288297A (en) Method of detecting position of excavated hole

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees