JPS6324121Y2 - - Google Patents

Info

Publication number
JPS6324121Y2
JPS6324121Y2 JP119984U JP119984U JPS6324121Y2 JP S6324121 Y2 JPS6324121 Y2 JP S6324121Y2 JP 119984 U JP119984 U JP 119984U JP 119984 U JP119984 U JP 119984U JP S6324121 Y2 JPS6324121 Y2 JP S6324121Y2
Authority
JP
Japan
Prior art keywords
support
hole
holder
support tube
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP119984U
Other languages
Japanese (ja)
Other versions
JPS60113370U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP119984U priority Critical patent/JPS60113370U/en
Publication of JPS60113370U publication Critical patent/JPS60113370U/en
Application granted granted Critical
Publication of JPS6324121Y2 publication Critical patent/JPS6324121Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

本考案は板状の黒鉛、金属などの基材に化学蒸
着法により被膜を形成するための化学気相蒸着装
置の改良に関する。 化学気相蒸着法とは高温での気相化学反応、例
えば揮発性の金属ハロゲン化物、金属の有機化合
物、炭化水素化合物などの熱分解、水素還元、置
換反応などによつて金属、黒鉛などの基材の表面
に高融点金属、炭化物、硼化物、珪化物、窒化物
などの蒸着層を形成させる方法である。 上記の場合における反応温度は使用する原料ガ
ス、対象となる被膜の材質あるいは被膜の性質
(例えば結晶形態、物理特性など)によつて異な
るが、一般に500〜2000℃の範囲から選定される。 さらに上記の原料ガスを蒸着装置内部に搬送し
場合によつては上記気相反応において還元などの
重要な役割をもつ、いわゆるキヤリアガスとして
は水素などの活性ガスやまたは窒素、アルゴンな
どの不活性ガスが使用されているが、キヤリアガ
スに活性ガスが使用され、かつ反応温度が高い
(一般に1400℃以上)場合には蒸着装置の構造部
材の耐熱性が問題となり構造部材の寿命に影響を
与えるばかりでなく、構造部材が熱劣化する過程
で有害なガスを発生し正常な気相反応が行なわれ
ないなどの問題があつた。 上記につきさらに図面により説明する。 第1図は従来使用されている代表的な化学気相
蒸着装置であり、図において、3は被膜が形成さ
れる基材であり、これは通常黒鉛製の円板状の支
持体16に載置される。そして上記支持体16は
チヤンバーベース4とワークコイルカバー8,
9,10に囲まれた空間内に収納された銅製のワ
ークコイル7によつて高周波誘導を受け発熱し基
材3を加熱する。そしてチヤンバーベース4の中
央に設けられた孔4aに挿入されたノズルホルダ
ー11およびノズル12を通つた原料ガス(キヤ
リアガスも含む)1はチヤンバー5に囲まれた空
間内を矢印の方向に流動し基材3に蒸着被膜を形
成する。 さらに支持体16における中央に設けられた孔
部17は上部孔17aと該上部孔17aと同心
で、かつこれより内径の大きい下部孔17bとで
構成され、上記孔部17に該孔部17に相当する
オス形の外面形状を有する通常黒鉛製のホルダー
15を下方から嵌着し支持体16が支えられる。
そしてホルダー15は下側から支持管14に接続
され該支持管14はさらにチヤツク13に支持さ
れている。 上記構造の部材構成の材料としては従来最も高
温となる支持体16と、該支持体16に次いで高
温となり、かつ熱勾配を生じ易くさらに支持体1
6との融着を防止する必要があるホルダー15に
は前述のように通常黒鉛が使用されている。次に
支持管14には石英、SiC,Si3N4,アルミナ磁
器など、さらにチヤツク13にはこの部分は回転
駆動源との連結およびガスシール機構の付属があ
るため強度、機械加工上からステンレス鋼が使用
されている。 なお、支持管14またはチヤツク13のいずれ
かは、支持体16に発生する誘導電流が外部へ漏
洩して加熱効率の低下、感電事故あるいは正常な
蒸着反応の阻害を生ずることがないように電気絶
縁体でなくてはならない。 以上従来装置の構造について説明したが、本構
造の場合、反応温度が1400℃未満では正常に運転
することが可能であつた。しかし反応温度が1400
℃以上でキヤリアガスが活性の場合、例えば基材
3の表面温度が1500℃必要のときには直接の加熱
源である支持体16自体は1500℃以上の高温とし
なくてはならない。基材3が10mm程度の黒鉛板で
支持体16の厚さが20mmのとき100℃位の温度差
を必要とする。この場合、支持体16に直接接触
するホルダー15は支持体16から熱移動を受け
るとともに、つば部下面15aでも高周波誘導を
受けしたがつてホルダー15も支持体16と同程
度の高温度となるので黒鉛が用いられる。この場
合、上記黒鉛材は高伝熱性を有するためホルダー
下側接続部15bも1400℃以上の高温となり、こ
れに接続される支持管14の上端も高熱を受ける
ことになる。上記支持管の材質としては、断熱性
と電気絶縁性を必要とするため従来前述のように
石英やSiCなどが使用されているが、上記高温に
より石英の場合には軟化、溶融し容易に変形し、
またSiCあるいはアルミナ磁器などの場合には急
激な熱勾配および電気的負荷によりクラツクが発
生し、さらにSi3N4の場合には水素ガスおよび各
種原料ガス(特に金属ハロゲン化物)からなる高
温の活性ガス雰囲気中では化学的な消耗が激しく
不具合である。 本考案の目的は上記のような問題点を解決し、
反応温度1400℃以上でかつキヤリアガスとして活
性ガスを用いた場合においても安定した高温度の
化学蒸着操作が可能な化学気相蒸着装置を提供す
ることにある。 本考案は化学気相反応を行なうための反応室
と、該反応室に原料ガスを供給する供給管と、上
記反応室内に水平に配置する円板状の黒鉛製の支
持体および該支持体の下方に設けた加熱部材を具
備し、かつ上記ガス供給管を上記加熱部材と上記
支持体の中央の孔部に取付けられた黒鉛製のホル
ダーおよび該ホルダーを支持する支持管を貫通し
て立設してなる化学気相蒸着装置において、上部
孔と該上部孔と同心で、かつこれより内径の大き
い下部孔からなる支持体の中央の孔部に外周に上
記支持体の下面よりも上方となる下面を有するつ
ば部を形成した円筒状のホルダーを、上記つば部
の上面と上記下部孔の上面との互いに接触する面
のいずれかにおよび上記つば部の上方となる円筒
部の外周面と上記上部孔の内周面との互いに接触
する面のいずれかに、周溝部を設けて接触面積を
減少させて取付けるとともに、上記ホルダーの下
部に軸方向となる複数のスリツトを設けた黒鉛製
の中空円筒状の上部支持管を接続し、さらに該上
部支持管の下部に電気絶縁性中空円筒状の下部支
持管を接続してなる化学気相蒸着装置に関する。 本発明において、ホルダーの材質は耐熱性、耐
熱衝撃性及び耐食性に優れる黒鉛を使用する。上
部支持管もホルダーと同様な理由で黒鉛を使用す
る。下部支持管は断熱性及び電気絶縁性の点から
石英が好ましいが、蒸着条件によつてはアルミナ
磁器、Si3N4等のセラミツクス材料を使用しても
よい。 以下図面により本考案を説明する。 第2図は本考案の一実施例になる化学気相蒸着
装置の要部縦断面図、第3図はホルダーの一部切
欠断面図、第4図は上部支持管の正面図である。
図において、20は黒鉛製の支持体であり該支持
体20の中央に設けられた孔部21は上部孔21
aと該上部孔21aと同心でかつこれより内径の
大きい下部孔21bとで構成した。この場合、下
部孔21bの深さ(すなわち下面20aから下部
孔21bの上面21cまでの高さ)は高周波誘導
の影響を避けるために強度的に許される限り大き
くとることが好ましい。当実施例ではホルダーの
つば部厚みの2倍とした。 次に黒鉛製のホルダー19は第3図に示すよう
に、上部円筒面19a、つば部上面19b、つば
部円筒面19c、つば部下面19d、下部円筒面
19e、上部円筒面19aに設けられた深さ0.1
〜5mm程度の円筒形の周溝部19f、さらにつば
部上面19bに設けられた深さ0.1〜5mm程度の
円筒形の周溝部19gおよび下部接続孔19hか
ら構成した。なお上記つば部下面19dは前述し
たように支持体20の下面20aよりも上方とな
るように設けた。上記ホルダー19は周溝部19
fを除いた上部円筒面19aを支持体20の上部
孔21aの内周面に、また周溝部19gを除いた
つば部上面19bを支持体20の下部孔21bの
上面21cに接触せしめて孔部21に取付けた。
次にホルダー19の下部接続孔19hに接続され
る黒鉛製の上部支持管18は第4図に示すように
上部孔18a、上部円筒面18b、中間円錐面1
8c、下部円筒面18d、下部孔18eさらに上
部円筒面18bから下部円筒面18dに至る軸方
向のスリツト18fの4個から構成した。なお上
部支持管18の長さは運転中に下部孔18eが
1000℃を越えないように設定し、下部支持管22
は石英製で中空円筒形としてチヤツク13に対し
断熱性と絶縁性とを確保した。 本実施例における上記以外の部分の構成は第1
図に示した従来の装置と同一である。 上記したように実施例では、まず支持体20の
孔部21に取付けたホルダー19のつば部下面1
9dを支持体20の下面20aより上方としたの
で高周波誘導加熱によるホルダーにおける発熱が
抑制され、さらに支持体の孔部におけるホルダー
との直接接触する面積を少なくするとともに、気
体断熱膜を形成する周溝部を設けたので支持体か
らホルダーを経て支持管への移動熱裏を軽減する
ことができた。さらに支持管を分割し黒鉛製の上
部支持管と石英製の下部支持管としたため、全体
的に耐熱性、耐熱衝撃性、耐食性、断熱性、電気
絶縁性が向上した。また上部支持管の軸方向にス
リツトを設けたため周方向への高周波誘導電流の
流れを防止するとともに、上方から下方への熱移
動も抑制された。 次に実施例の化学気相蒸着装置と従来のものに
つき高温蒸着を行つた場合における結果は第1表
に示すごとくである。 なお実験条件は、基材が黒鉛(外径160mm円板)
蒸着被膜がSiC、原料ガスがSiCl4およびCCl4(モ
ル比Si/C1.0)、キヤリヤガスがH2、反応温度
が基材表面1500℃(±20℃)、支持体1600〜1630
℃、操作時間が昇温20分、蒸着60分、冷却60分で
ある。
The present invention relates to an improvement of a chemical vapor deposition apparatus for forming a film on a substrate such as plate-shaped graphite or metal by a chemical vapor deposition method. Chemical vapor deposition is a chemical vapor deposition method that uses vapor phase chemical reactions at high temperatures, such as thermal decomposition of volatile metal halides, metal organic compounds, hydrocarbon compounds, hydrogen reduction, substitution reactions, etc. to produce metals, graphite, etc. This is a method of forming a vapor deposition layer of a high melting point metal, carbide, boride, silicide, nitride, etc. on the surface of a base material. The reaction temperature in the above case varies depending on the raw material gas used, the material of the target film, or the properties of the film (eg, crystal form, physical properties, etc.), but is generally selected from the range of 500 to 2000°C. Furthermore, the so-called carrier gas, which transports the above-mentioned raw material gas into the interior of the vapor deposition apparatus and, in some cases, plays an important role such as reduction in the above-mentioned gas phase reaction, is an active gas such as hydrogen, or an inert gas such as nitrogen or argon. However, if an active gas is used as the carrier gas and the reaction temperature is high (generally over 1400°C), the heat resistance of the structural members of the vapor deposition equipment becomes a problem, which only affects the lifespan of the structural members. However, there were problems such as harmful gases being generated during the process of thermal deterioration of structural members and normal gas phase reactions not being carried out. The above will be further explained with reference to the drawings. FIG. 1 shows a typical chemical vapor deposition apparatus conventionally used. In the figure, 3 is a substrate on which a coating is formed, and this is usually mounted on a disc-shaped support 16 made of graphite. be placed. The support body 16 includes the chamber base 4 and the work coil cover 8,
A copper work coil 7 housed in a space surrounded by 9 and 10 receives high frequency induction and generates heat to heat the base material 3. The raw material gas (including carrier gas) 1 that passes through the nozzle holder 11 and nozzle 12 inserted into the hole 4a provided in the center of the chamber base 4 flows in the direction of the arrow in the space surrounded by the chamber 5. A vapor deposition film is formed on the base material 3. Furthermore, the hole 17 provided at the center of the support body 16 is composed of an upper hole 17a and a lower hole 17b that is concentric with the upper hole 17a and has a larger inner diameter than the upper hole 17a. A support 16 is supported by fitting a holder 15, which is usually made of graphite and has a corresponding male external shape, from below.
The holder 15 is connected to a support tube 14 from below, and the support tube 14 is further supported by the chuck 13. As for the materials of the member configuration of the above structure, the support 16 has the highest temperature conventionally, and the support 16 has the second highest temperature after the support 16 and is likely to cause a thermal gradient.
Graphite is usually used for the holder 15, which needs to be prevented from being fused to the holder 6, as described above. Next, the support tube 14 is made of quartz, SiC, Si 3 N 4 , alumina porcelain, etc., and the chuck 13 is made of stainless steel for strength and machining reasons since this part is connected to the rotational drive source and has a gas seal mechanism. steel is used. Note that either the support tube 14 or the chuck 13 is electrically insulated so that the induced current generated in the support 16 does not leak to the outside and cause a decrease in heating efficiency, an electric shock accident, or an obstruction to the normal vapor deposition reaction. It has to be the body. The structure of the conventional apparatus has been described above, and in the case of this structure, it was possible to operate normally at a reaction temperature of less than 1400°C. However, the reaction temperature is 1400
When the carrier gas is active at temperatures above 1500°C, for example, when the surface temperature of the substrate 3 is required to be 1500°C, the support 16 itself, which is a direct heating source, must be heated to a high temperature of 1500°C or above. When the base material 3 is a graphite plate of about 10 mm and the thickness of the support 16 is 20 mm, a temperature difference of about 100° C. is required. In this case, the holder 15 that is in direct contact with the support 16 receives heat transfer from the support 16, and also receives high frequency induction on the lower surface 15a of the brim, so the holder 15 also has a temperature as high as that of the support 16. Graphite is used. In this case, since the graphite material has high heat conductivity, the lower connecting portion 15b of the holder will also reach a high temperature of 1400° C. or higher, and the upper end of the support tube 14 connected thereto will also be exposed to high heat. As mentioned above, quartz and SiC are conventionally used as the material for the support tube because they require thermal insulation and electrical insulation properties, but quartz softens, melts, and easily deforms due to the high temperatures mentioned above. death,
In addition, in the case of SiC or alumina porcelain, cracks occur due to sudden thermal gradients and electrical loads, and in the case of Si 3 N 4 , cracks occur due to high temperature activation caused by hydrogen gas and various raw material gases (especially metal halides). In a gas atmosphere, chemical consumption is severe and this is a problem. The purpose of this invention is to solve the above problems,
An object of the present invention is to provide a chemical vapor deposition apparatus capable of stable high-temperature chemical vapor deposition even when the reaction temperature is 1400° C. or higher and an active gas is used as a carrier gas. The present invention includes a reaction chamber for carrying out a chemical vapor phase reaction, a supply pipe for supplying raw material gas to the reaction chamber, a disk-shaped graphite support placed horizontally in the reaction chamber, and a support for the support. A heating member is provided below, and the gas supply pipe is erected through a graphite holder attached to a hole in the center of the heating member and the support, and a support pipe that supports the holder. In a chemical vapor deposition apparatus comprising: an upper hole and a lower hole that is concentric with the upper hole and has a larger inner diameter than the upper hole; A cylindrical holder formed with a flange having a lower surface is attached to one of the surfaces where the upper surface of the flange and the upper surface of the lower hole are in contact with each other, and to the outer circumferential surface of the cylindrical portion above the flange. A hollow made of graphite is provided with a circumferential groove on one of the surfaces in contact with the inner peripheral surface of the upper hole to reduce the contact area, and a plurality of slits in the axial direction are provided in the lower part of the holder. The present invention relates to a chemical vapor deposition apparatus in which a cylindrical upper support tube is connected, and an electrically insulating hollow cylindrical lower support tube is connected to the lower part of the upper support tube. In the present invention, the material of the holder is graphite, which has excellent heat resistance, thermal shock resistance, and corrosion resistance. The upper support tube also uses graphite for the same reason as the holder. The lower support tube is preferably made of quartz from the standpoint of thermal insulation and electrical insulation, but ceramic materials such as alumina porcelain and Si 3 N 4 may also be used depending on the deposition conditions. The present invention will be explained below with reference to the drawings. FIG. 2 is a longitudinal cross-sectional view of a main part of a chemical vapor deposition apparatus according to an embodiment of the present invention, FIG. 3 is a partially cutaway cross-sectional view of a holder, and FIG. 4 is a front view of an upper support tube.
In the figure, 20 is a support made of graphite, and a hole 21 provided in the center of the support 20 is an upper hole 21.
a, and a lower hole 21b that is concentric with the upper hole 21a and has a larger inner diameter than the upper hole 21a. In this case, the depth of the lower hole 21b (that is, the height from the lower surface 20a to the upper surface 21c of the lower hole 21b) is preferably set as large as possible in terms of strength in order to avoid the influence of high frequency induction. In this example, the thickness is twice the thickness of the holder's brim. Next, as shown in FIG. 3, the graphite holder 19 is provided on an upper cylindrical surface 19a, a collar upper surface 19b, a collar cylindrical surface 19c, a lower collar surface 19d, a lower cylindrical surface 19e, and an upper cylindrical surface 19a. depth 0.1
It consists of a cylindrical circumferential groove part 19f with a depth of about 0.1 to 5 mm, a cylindrical circumferential groove part 19g with a depth of about 0.1 to 5 mm, and a lower connecting hole 19h provided on the upper surface 19b of the collar part. Note that the lower surface 19d of the brim is provided above the lower surface 20a of the support 20, as described above. The holder 19 has a circumferential groove 19
The upper cylindrical surface 19a excluding f is brought into contact with the inner peripheral surface of the upper hole 21a of the support body 20, and the collar upper surface 19b excluding the circumferential groove portion 19g is brought into contact with the upper surface 21c of the lower hole 21b of the support body 20 to form a hole. Installed on 21.
Next, the graphite upper support tube 18 connected to the lower connection hole 19h of the holder 19 has an upper hole 18a, an upper cylindrical surface 18b, and an intermediate conical surface 1 as shown in FIG.
8c, a lower cylindrical surface 18d, a lower hole 18e, and an axial slit 18f extending from the upper cylindrical surface 18b to the lower cylindrical surface 18d. Note that the length of the upper support pipe 18 is determined by the length of the lower hole 18e during operation.
Set it so that the temperature does not exceed 1000℃, and lower the support tube 22.
The chuck 13 is made of quartz and has a hollow cylindrical shape to ensure heat insulation and insulation properties for the chuck 13. The configuration of the parts other than the above in this example is as follows.
This is the same as the conventional device shown in the figure. As described above, in the embodiment, first, the lower surface 1 of the collar of the holder 19 is attached to the hole 21 of the support 20.
9d is placed above the lower surface 20a of the support 20, heat generation in the holder due to high-frequency induction heating is suppressed, and furthermore, the area in the hole of the support that comes into direct contact with the holder is reduced, and the circumference forming the gas insulating film is Since the groove was provided, it was possible to reduce heat transfer from the support body to the support tube via the holder. Furthermore, by dividing the support tube into an upper support tube made of graphite and a lower support tube made of quartz, the overall heat resistance, thermal shock resistance, corrosion resistance, heat insulation, and electrical insulation properties were improved. Furthermore, since the upper support tube was provided with a slit in the axial direction, it was possible to prevent the flow of high frequency induced current in the circumferential direction, and also to suppress heat transfer from above to below. Next, Table 1 shows the results when high-temperature vapor deposition was performed using the chemical vapor deposition apparatus of the example and the conventional chemical vapor deposition apparatus. The experimental conditions were as follows: The base material was graphite (160 mm outer diameter disk).
The deposited film is SiC, the raw material gases are SiCl 4 and CCl 4 (molar ratio Si/C 1.0), the carrier gas is H 2 , the reaction temperature is 1500°C (±20°C) on the substrate surface, and the support is 1600 to 1630°C.
℃, and the operation time was 20 minutes for heating, 60 minutes for vapor deposition, and 60 minutes for cooling.

【表】 第1表の結果より明らかなように実施例の化学
気相蒸着装置は、従来装置のような支持管の損傷
がなく高温度における基材への被膜形成処理に優
れている。 なお、実施例ではホルダー側に周溝を形成し、
これによりホルダーと支持体孔部との接触面積を
低減したが、これと反応に支持体孔部内側の方に
周溝を形成してもよいことはいうまでもない。 本考案によれば、反応温度1400℃以上でかつ活
性ガスの雰囲気中でも安定した高温度の化学蒸着
操作が可能であり、支持管などの繰返しの使用が
可能となる。
[Table] As is clear from the results in Table 1, the chemical vapor deposition apparatus of the example does not damage the support tube unlike the conventional apparatus, and is excellent in forming a film on a substrate at high temperatures. In addition, in the example, a circumferential groove is formed on the holder side,
Although this reduces the contact area between the holder and the support hole, it goes without saying that a circumferential groove may be formed inside the support hole in response to this. According to the present invention, stable high-temperature chemical vapor deposition operation is possible at a reaction temperature of 1400° C. or higher even in an active gas atmosphere, and support tubes and the like can be repeatedly used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の化学気相蒸着装置の縦断面図、
第2図は本考案の一実施例になる化学気相蒸着装
置の要部縦断面図、第3図はホルダーの一部切欠
断面図、第4図は上部支持管の正面図である。 符号の説明、1……原料ガス、2……排ガス、
3……基材、4……チヤンバーベース、5……チ
ヤンバー、6……パツキング、7……ワークコイ
ル、8,9,10……ワークコイルカバー、11
……ノズルホルダー、12……ノズル、13……
チヤツク、14……支持管、15……ホルダー、
15a……つば部、15b……下側接続部、16
……支持体、17……孔部、17a……上部孔、
17b……下部孔、18……上部支持管、18a
……上部孔、18b……上部円筒面、18c……
中間円錐面、18d……下部円筒面、18e……
下部孔、18f……スリツト、19……ホルダ
ー、19a……上部円筒面、19b……つば部上
面、19c……つば部円筒面、19d……つば部
下面、19e……下部円筒面、19f……周溝
部、19g……周溝部、19h……下部接続孔、
20……支持体、20a……下面、21……孔
部、21a……上部孔、21b……下部孔、21
c……上面、22……下部支持管。
Figure 1 is a vertical cross-sectional view of a conventional chemical vapor deposition apparatus.
FIG. 2 is a longitudinal cross-sectional view of a main part of a chemical vapor deposition apparatus according to an embodiment of the present invention, FIG. 3 is a partially cutaway cross-sectional view of a holder, and FIG. 4 is a front view of an upper support tube. Explanation of symbols, 1... Raw material gas, 2... Exhaust gas,
3... Base material, 4... Chamber base, 5... Chamber, 6... Packing, 7... Work coil, 8, 9, 10... Work coil cover, 11
... Nozzle holder, 12 ... Nozzle, 13 ...
chuck, 14... support tube, 15... holder,
15a...Brim part, 15b...Lower connection part, 16
... Support body, 17 ... Hole, 17a ... Upper hole,
17b... lower hole, 18... upper support tube, 18a
...Top hole, 18b...Top cylindrical surface, 18c...
Middle conical surface, 18d...Lower cylindrical surface, 18e...
Lower hole, 18f...Slit, 19...Holder, 19a...Upper cylindrical surface, 19b...Brim upper surface, 19c...Brim cylindrical surface, 19d...Brim lower surface, 19e...Lower cylindrical surface, 19f ... Peripheral groove part, 19g ... Peripheral groove part, 19h ... Lower connection hole,
20... Support body, 20a... Lower surface, 21... Hole, 21a... Upper hole, 21b... Lower hole, 21
c...Top surface, 22...Lower support tube.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 化学気相反応を行うための反応室と、該反応室
に原料ガスを供給するガス供給管と、上記反応室
内に水平に配置する円板状の黒鉛製の支持体およ
び該支持体の下方に設けた加熱部材を具備し、か
つ上記ガス供給管を上記加熱部材と上記支持体の
中央の孔物に取付けられた黒鉛製のホルダーおよ
び該ホルダーを支持する支持管を貫通して立設し
てなる化学気相蒸着装置において、上部孔と該上
部孔と同心でかつこれより内径の大きい下部孔と
からなる支持体の中央の孔部に、外周に上記支持
体の下面よりも上方となる下面を有するつば部を
形成した円筒状のホルダーを、上記つば部の上面
と上記下部孔の上面との互いに接触する面のいず
れかにおよび上記つば部の上方となる円筒部の外
周面と上記上部孔の内周面との互いに接触する面
のいずれかに周溝部を設けて接触面積を減少させ
て取付けるとともに、上記ホルダーの下部に軸方
向の複数のスリツトを設けた黒鉛製の中空円筒状
の上部支持管を接続し、さらに該上部支持管の下
部に、電気絶縁性中空円筒状の下部支持管を接続
してなる化学気相蒸着装置。
A reaction chamber for carrying out a chemical vapor phase reaction, a gas supply pipe for supplying raw material gas to the reaction chamber, a disk-shaped graphite support disposed horizontally within the reaction chamber, and a support below the support. and a heating member provided therein, and the gas supply pipe is erected through the heating member and a graphite holder attached to a hole in the center of the support, and a support pipe that supports the holder. In a chemical vapor deposition apparatus, a support consisting of an upper hole and a lower hole concentric with the upper hole and having a larger inner diameter than the upper hole has a lower surface on the outer periphery that is above the lower surface of the support. A cylindrical holder having a flange formed thereon is placed between the upper surface of the flange and the upper surface of the lower hole that contact each other, and between the outer peripheral surface of the cylindrical portion above the flange and the upper surface of the cylindrical holder. A hollow cylinder made of graphite is provided with a circumferential groove on one of the surfaces in contact with the inner peripheral surface of the hole to reduce the contact area, and a plurality of slits in the axial direction are provided at the bottom of the holder. A chemical vapor deposition apparatus comprising an upper support tube connected to the upper support tube, and an electrically insulating hollow cylindrical lower support tube connected to the lower part of the upper support tube.
JP119984U 1984-01-09 1984-01-09 chemical vapor deposition equipment Granted JPS60113370U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP119984U JPS60113370U (en) 1984-01-09 1984-01-09 chemical vapor deposition equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP119984U JPS60113370U (en) 1984-01-09 1984-01-09 chemical vapor deposition equipment

Publications (2)

Publication Number Publication Date
JPS60113370U JPS60113370U (en) 1985-07-31
JPS6324121Y2 true JPS6324121Y2 (en) 1988-07-01

Family

ID=30473727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP119984U Granted JPS60113370U (en) 1984-01-09 1984-01-09 chemical vapor deposition equipment

Country Status (1)

Country Link
JP (1) JPS60113370U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6013113B2 (en) 2012-09-27 2016-10-25 東京エレクトロン株式会社 Manufacturing method of heating element

Also Published As

Publication number Publication date
JPS60113370U (en) 1985-07-31

Similar Documents

Publication Publication Date Title
US4794220A (en) Rotary barrel type induction vapor-phase growing apparatus
JP4285789B2 (en) Vertical electric furnace
US4347431A (en) Diffusion furnace
WO2004028208A1 (en) Wafer holder and system for producing semiconductor
WO1994017353B1 (en) A rapid thermal processing apparatus for processing semiconductor wafers
US5954881A (en) Ceiling arrangement for an epitaxial growth reactor
JP2005166354A (en) Ceramic heater
JP2007088324A (en) Heating element holding structure, insulated structure, heating unit and substrate processing equipment
US6953918B2 (en) Heating apparatus which has electrostatic adsorption function, and method for producing it
JPS6324121Y2 (en)
WO1999043874A1 (en) Ceiling arrangement for an epitaxial growth reactor
JP4509433B2 (en) Substrate processing apparatus and semiconductor device manufacturing method
JPH058270B2 (en)
JPH1072292A (en) Heat insulation cylinder for silicon single crystal pulling-up device
JP4367173B2 (en) Single crystal manufacturing equipment using crucible
JP2671914B2 (en) Susceptor
JPH07249580A (en) Thin film manufacturing device
JPS6327435Y2 (en)
KR930004238B1 (en) Vertical type vapor phase growth apparatus and method thereof
US2155682A (en) Method of making abrasive metal carbides
JPH06280004A (en) Electron beam evaporation source
JP3835491B2 (en) Wafer heating apparatus having electrostatic adsorption function
KR20120138112A (en) Apparatus for fabricating ingot
JPS636833A (en) Vapor growth apparatus
JP4831041B2 (en) Silicon carbide single crystal manufacturing equipment