JPS63241146A - Soft-magnetic alloy - Google Patents

Soft-magnetic alloy

Info

Publication number
JPS63241146A
JPS63241146A JP62074205A JP7420587A JPS63241146A JP S63241146 A JPS63241146 A JP S63241146A JP 62074205 A JP62074205 A JP 62074205A JP 7420587 A JP7420587 A JP 7420587A JP S63241146 A JPS63241146 A JP S63241146A
Authority
JP
Japan
Prior art keywords
alloy
soft
magnetic
magnetic alloy
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62074205A
Other languages
Japanese (ja)
Other versions
JPH07116561B2 (en
Inventor
Tsutomu Inui
乾 勉
Takashi Kidoi
城土井 崇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Proterial Ltd
Original Assignee
Hitachi Ltd
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Metals Ltd filed Critical Hitachi Ltd
Priority to JP62074205A priority Critical patent/JPH07116561B2/en
Publication of JPS63241146A publication Critical patent/JPS63241146A/en
Publication of JPH07116561B2 publication Critical patent/JPH07116561B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To improve magnetic properties, such as saturation magnetic flux density and Curie point, by specifying respective contents of Ni, Co, Cr, Mo, Cu, and V in the composition of a soft-magnetic alloy. CONSTITUTION:The soft-magnetic alloy has a composition consisting of, by weight ratio, 15-55% Ni, 10-45% Co, 0.01-10% of one or more kinds among <=3% Cr, <=5% Mo, <=10% Cu, and <=5% V, and the balance Fe and a deoxidizer with inevitable impurities. By the above component regulation, saturation magnetic flux density Bs at 500 deg.C and the Curie point are regulated to >=9d[KG] and 570-750 deg.C, respectively. Since this soft-magnetic alloy has small coercive force, it has the advantage of increasing reaction characteristics at the time of disconnection. This alloy is suitably used as a member, such as magnetic core for electromagnet attracting and holding a control rod in a nuclear reactor emergency shutdown system.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、緊急時の原子炉停止装置において、磁力によ
って中性子吸収材を内包した制御棒を吸引・保持せしめ
る電磁石の磁心等高温において磁化の強さの変化を利用
する部材に適した軟磁性合金に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is used in an emergency nuclear reactor shutdown system to prevent magnetization at high temperatures, such as in the magnetic core of an electromagnet that uses magnetic force to attract and hold a control rod containing a neutron absorbing material. The present invention relates to a soft magnetic alloy suitable for members that utilize changes in strength.

〔従来の技術〕[Conventional technology]

緊!時の原子炉停止装置に関し、近年米国を中心に自己
作動型のmhvが検討されてきている。
Urgent! Regarding nuclear reactor shutdown equipment, self-operating MHVs have recently been under consideration mainly in the United States.

この機構については、材料のもつ熱膨張、融点、磁性、
熱起電力等物理的特性を利用した考案がなされており磁
力を利用し・た方式の一例として特開昭56−3068
3号公報に開示された方式が挙げられる。
Regarding this mechanism, the thermal expansion, melting point, magnetism,
A method using physical properties such as thermoelectromotive force has been devised, and an example of a method using magnetic force is disclosed in Japanese Patent Application Laid-Open No. 56-3068.
An example is the method disclosed in Publication No. 3.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

原子炉が定常運転している時のNa温度510〜530
℃において強磁性を示し、緊急時例えば570〜650
℃で磁化が大巾に低下する合金としてはオーステナイト
系Ni −Fc合會が考えられ、Ni量は 50〜80
%である (R,M、Bozorth 、  ” Fe
rrosagnetism″(Norstrand C
o、1951 ) )。
Na temperature 510-530 when the reactor is in steady operation
It exhibits ferromagnetism at a temperature of 570 to 650 °C in an emergency.
An austenitic Ni-Fc alloy can be considered as an alloy whose magnetization significantly decreases at ℃, and the Ni content is 50 to 80.
% (R, M, Bozorth, ”Fe
rrosagnetism" (Norstrand C
o, 1951)).

一方、電磁石による吸引力は磁束密度の2乗に比例する
ため、500℃近傍での磁束密度が大きいほど装置を小
型化できる。
On the other hand, since the attractive force of the electromagnet is proportional to the square of the magnetic flux density, the larger the magnetic flux density near 500° C., the more compact the device can be.

オーステナイ)MFc−Ni合金の飽和磁化はNi量の
増加に伴ない減少し、キュリー点はN1=55〜80%
で550℃以上を示す、そしてキュリー点が高く、飽和
磁化も大きい合金として6ONi−Fcがあげられるが
、500℃での飽和磁束密度は7,5 (KG )であ
る。
Austenite) The saturation magnetization of MFc-Ni alloy decreases as the Ni content increases, and the Curie point is N1 = 55 to 80%.
6ONi-Fc is an alloy that exhibits a temperature of 550° C. or higher, a high Curie point, and a large saturation magnetization, and its saturation magnetic flux density at 500° C. is 7.5 (KG).

−万一本発明合金はNi−Fe合金を改良したものでS
OOででBs≧9(KG)の磁束密度が得られ、装置の
小型、軽量化に適した材料を提供するものである。
- In the unlikely event that the alloy of the present invention is an improved Ni-Fe alloy, S
A magnetic flux density of Bs≧9 (KG) can be obtained in OO, and the material is suitable for making devices smaller and lighter.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、重量比でNi15〜55%、C。 The present invention contains 15 to 55% Ni and C in terms of weight ratio.

10−45%、およびCr 3%以下、Mo 5%以下
、CulO%以下、■5%以下の1種または2N1以上
を0,01〜10%と残部FeBよび脱酸剤(Mn 、
Si 、A12%以下)と不可避的に混入する不純物や
〃ス成分よりなり、500℃でBs≧9[KG)、キュ
リー点が570〜750℃である軟磁性合金である。
10-45%, and Cr 3% or less, Mo 5% or less, CulO% or less, ■ 5% or more or 2N1 or more in 0.01-10% and the balance FeB and deoxidizer (Mn,
It is a soft magnetic alloy consisting of impurities and carbon components that are unavoidably mixed in (Si, A (12% or less)), Bs≧9 [KG] at 500°C, and a Curie point of 570 to 750°C.

本発明において、Ni 、Coは材料の飽和磁化とキュ
リー、αを決める主要元素である。
In the present invention, Ni and Co are the main elements that determine the saturation magnetization, Curie, and α of the material.

Fe−Co−Ni系において、Coはキュリー息を上昇
させ、Niは飽和磁化を減少させるが、金属組織的にオ
ーステナイトを安定化させ、長期間の使用に対して磁性
的にあまり変化しないことを保障する。
In the Fe-Co-Ni system, Co increases the Curie breath and Ni decreases the saturation magnetization, but it stabilizes the austenite metallographically and does not change much magnetically over long-term use. Guarantee.

N1を15〜55%に限定したのは、15%未満ではオ
ーステナイト組識が不安定になること、また55%を超
えると飽和磁化が低下してしまうことに上る。
The reason why N1 is limited to 15 to 55% is that if it is less than 15%, the austenite structure becomes unstable, and if it exceeds 55%, the saturation magnetization will decrease.

Coは10%未満では飽和磁化の上昇に効果が少なく、
45%を超えるとキュリー点が高く、磁化により物を保
持する力が大きくなり、y6常時保持物を切り離す効果
がなくなってしまうため、10〜45%に限定した。
If Co is less than 10%, it has little effect on increasing saturation magnetization.
If it exceeds 45%, the Curie point will be high, and the force that holds the object due to magnetization will become large, and the effect of separating the y6 constantly held object will be lost, so it was limited to 10 to 45%.

Cr 3%以下、Mo5%以下、CulO%以下、■5
%以下の11!!lまたは2種以上をQ、Q1〜10%
としたのは、0.01%未満ではFe−Co−Ni合金
の軟磁性(保磁力)を改菩する効果が少なく、また10
%を越えると飽和磁化が小さくなり500℃でB!+≧
9(KG)が得られなくなりでしまうためである。
Cr 3% or less, Mo 5% or less, CulO% or less, ■5
11 below %! ! Q1 or 2 or more types, Q1~10%
This is because if it is less than 0.01%, it will have little effect on improving the soft magnetism (coercive force) of the Fe-Co-Ni alloy, and if it is less than 10
%, the saturation magnetization decreases and B at 500°C! +≧
This is because 9 (KG) cannot be obtained.

また脱酸剤として、Mn、Si%Atを2%以下含有し
ても、磁気特性上大きな変化はみとめられなかった。
Further, even when 2% or less of Mn and Si%At were contained as deoxidizers, no significant change in magnetic properties was observed.

〔実施例〕〔Example〕

以下、本発明を実施例により説明する。 The present invention will be explained below using examples.

第1表に示す組成の合金を高周波真空誘導溶解炉にて溶
解したのち、7に、のインゴットを作製した。続いて1
100℃に加熱して10s+m角に鍛造した。鍛造材か
ら 2φXStwLの磁性試験片を採取したのち、1o
oo℃XIH水素雰囲気中で焼鈍し、振動試料型磁力計
により、Ha =5 (KOc )におけろ磁化の強さ
の温度変化を測定した。
After melting the alloy having the composition shown in Table 1 in a high frequency vacuum induction melting furnace, an ingot of No. 7 was prepared. followed by 1
It was heated to 100°C and forged into a 10s+m square. After taking a magnetic test piece of 2φXStwL from the forged material,
The samples were annealed in a hydrogen atmosphere at OO°C, and temperature changes in the magnetization intensity at Ha = 5 (KOc) were measured using a vibrating sample magnetometer.

第1表の結果から明らかなように、本発明合金は、従来
検討されていたFe−Ni合金に比べて500℃におけ
る飽和磁化が大さく、装置の小型化に適した材料といえ
、また軟磁性を示す保磁力もほぼ同等の小さい値を有し
、電磁石設計上起磁力を小さくすることがでさ、小型化
が可能である。
As is clear from the results in Table 1, the alloy of the present invention has a larger saturation magnetization at 500°C than the previously studied Fe-Ni alloy, and can be said to be a material suitable for miniaturizing devices. The coercive force, which indicates magnetism, has an almost equally small value, and by reducing the magnetomotive force in electromagnet design, it is possible to downsize.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、Ni、!=CoおよびCr。 As explained above, Ni! =Co and Cr.

M、o 、 Cu 1Vの1種および2種以上、残部F
eを特許an求の範囲内含有する合金は、F e −N
 i合金より飽和磁化が大きく、キュリー点が高い。
One or more types of M, o, Cu 1V, remainder F
The alloy containing e within the range required by the patent is Fe -N
It has a higher saturation magnetization and a higher Curie point than the i alloy.

従って、装置の小型化および低起磁力下で設計可能でか
つ保磁力が小さいため、切断時の反応特性が速くなる利
点をもち、工業上顕著な効果を有するものである。
Therefore, since the device can be made smaller and designed under a low magnetomotive force, and the coercive force is small, it has the advantage of faster reaction characteristics during cutting, and has a significant industrial effect.

Claims (1)

【特許請求の範囲】 重量比でNi15〜55%、Co10〜45%、および
Cr3%以下、Mo5%以下、Cu10%以下、V5%
以下の1種または2種以上を0.01〜10%と残部F
eおよび脱酸剤と不可避的に混入する不純物よりなり、
500℃での飽和磁束密度Bsが9〔KG〕以上でキュ
リー点が570〜750℃であることを特徴とする軟磁
性合金。
[Claims] By weight: Ni 15-55%, Co 10-45%, Cr 3% or less, Mo 5% or less, Cu 10% or less, V 5%
0.01-10% of one or more of the following and the balance F
It consists of impurities that inevitably mix with e and deoxidizing agent,
A soft magnetic alloy having a saturation magnetic flux density Bs of 9 [KG] or more at 500°C and a Curie point of 570 to 750°C.
JP62074205A 1987-03-30 1987-03-30 Soft magnetic alloy Expired - Lifetime JPH07116561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62074205A JPH07116561B2 (en) 1987-03-30 1987-03-30 Soft magnetic alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62074205A JPH07116561B2 (en) 1987-03-30 1987-03-30 Soft magnetic alloy

Publications (2)

Publication Number Publication Date
JPS63241146A true JPS63241146A (en) 1988-10-06
JPH07116561B2 JPH07116561B2 (en) 1995-12-13

Family

ID=13540450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62074205A Expired - Lifetime JPH07116561B2 (en) 1987-03-30 1987-03-30 Soft magnetic alloy

Country Status (1)

Country Link
JP (1) JPH07116561B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106676365B (en) * 2016-12-29 2019-04-16 大连理工大学 A kind of high-ductility is without constriction high-entropy alloy and preparation method thereof

Also Published As

Publication number Publication date
JPH07116561B2 (en) 1995-12-13

Similar Documents

Publication Publication Date Title
GB1525959A (en) Magnetic devices including amorphous alloys
EP0060660A1 (en) Amorphous alloy for use as a core
EP3242961A1 (en) Nanocrystalline magnetic alloy and method of heat-treatment thereof
JP2011102438A (en) Iron-based amorphous alloy having linear bh loop
US5338376A (en) Iron-nickel based high permeability amorphous alloy
Makino et al. Magnetic properties of zero-magnetostrictive nanocrystalline Fe–Zr–Nb–B soft magnetic alloys with high magnetic induction
Hilzinger et al. Magnetic properties of amorphous alloys with low magnetostriction
JPS63241146A (en) Soft-magnetic alloy
JPS63171850A (en) Ni-co-fe soft magnetic alloy
Nesbitt et al. Effect of Oxygen on the Magnetic and Long‐Range Ordering Properties of Ni3Fe
Makino et al. Low core losses of nanocrystalline Fe–Zr–Nb–B soft magnetic alloys with high magnetic flux density
JP2004519554A (en) Metallic glass alloys for electronic article surveillance
US3264100A (en) Magnetic materials with high permeability
JPS59100254A (en) High saturation magnetization and low magnetostriction iron-boron solid solution alloy
Zhou et al. Effect of Ga, Si and Nb additions on the phases and magnetic properties of melt-spun Nd-Fe-B alloys
CN1110825C (en) High saturation magnetic flux density and low remanence magnetism double-ferrromagnetism phase soft-magnetic alloy
JPH07116562B2 (en) Electromagnet member
Jurczyk et al. Magnetic properties of the R2Fe12− xMnxCo2B systems (R≡ Pr, Nd, Gd)
KR980009496A (en) Corrosion Resistance Soft Magnetic Iron-Nickel-Chrome Alloys
JPH055162A (en) Soft magnetic alloy high in magnetic permeability
JPS61147846A (en) High permeability &#39;pb permalloy(r)&#39;
Nakayama et al. Linear magnetostriction and elastic properties of Fe-Pd alloy systems
JP3313386B2 (en) Giant magnetostrictive alloy and magneto-mechanical mutation conversion device
Fukamichi Magnetically Insensitive Ternary Invar Alloys of Cr, Fe and 4d Transition Metals
JPS5681068A (en) Hysteresis electromotor