JPS63241104A - Production of fine spherical metal powder - Google Patents

Production of fine spherical metal powder

Info

Publication number
JPS63241104A
JPS63241104A JP7339287A JP7339287A JPS63241104A JP S63241104 A JPS63241104 A JP S63241104A JP 7339287 A JP7339287 A JP 7339287A JP 7339287 A JP7339287 A JP 7339287A JP S63241104 A JPS63241104 A JP S63241104A
Authority
JP
Japan
Prior art keywords
liquid
powder
metal powder
molten metal
sprays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7339287A
Other languages
Japanese (ja)
Inventor
Tadashi Fukuda
匡 福田
Minoru Ichidate
一伊達 稔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP7339287A priority Critical patent/JPS63241104A/en
Publication of JPS63241104A publication Critical patent/JPS63241104A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To efficiently form fine and spherical metal powder by specifying the flow rate of liquid and the crossing angle of a pair of planar liquid sprays facing each other at the time of pulverizing a perpendicularly falling molten metal by the above-mentioned liquid sprays. CONSTITUTION:The molten metal 3 housed in a crucible 1 is dropped from a small hole 2 in the bottom of the crucible 1 perpendicularly into a tank 5. The high pressure and high velocity liquid is sprayed in the form of a flat plate from a pair of opposed nozzle tips 9 of a nozzle device 4 to pulverize the molten metal 3 at the crossed part thereof. The liquid flow rate per unit in the section perpendicular to the flow of the respective liquid sprays in the part where the liquid sprays cross with each other is set at <=55kg/sec.m (the lower limit is about 40kg/sec.m) and the crossing angle 10 of the liquid sprays is set at >=25 deg. (the upper limit is about 60 deg.). The finely pulverized and cooled metal powder is suspended into the liquid in the tank 5 and is separated and recovered by a solid-liquid separator 7. The fine particles having about <=250mu diameter and about <=70X average diameter are thereby obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、球状微細な金属粉末の製造方法、特に対向し
て噴射される一対の平板状液体スプレーによって溶融金
属を粉砕する球状微細な金属粉末の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing spherical fine metal powder, and in particular a method for producing spherical fine metal powder, in which molten metal is crushed by a pair of flat liquid sprays that are injected in opposition to each other. This invention relates to a method for producing powder.

(従来の技術) 従来、Ly、状で微細な金属粉末は、IIII’(熱間
静水圧成形) 、CIP(冷間静水圧成形)等カプセル
への粉末充填1桑作を含む粉末冶金分野において素材と
して、また射出成形、粉体溶射等の原料として近年その
需要が増えている0球状微細な金属粉末を生成する方法
としてはガスアトマイズ法、真空アトマイズ法、回転電
橋法などがあるが、コスト、生産性の点でそれぞれ問題
がある。
(Prior Art) Conventionally, fine metal powders in the form of Ly are used in the field of powder metallurgy, including powder filling into capsules, such as III' (hot isostatic pressing) and CIP (cold isostatic pressing). There are gas atomization methods, vacuum atomization methods, and rotating electric bridge methods as methods for producing spherical fine metal powder, which has been in increasing demand in recent years as a material and as a raw material for injection molding, powder spraying, etc., but the cost is high. , each has its own problems in terms of productivity.

ガスアトマイズ法は溶融金属流に高速の不活性ガスを噴
射してその溶融金属流を粉砕、冷却して粉末を得るが、
噴射媒である高圧の不活性ガスが高価であり、粉末価格
も高い。真空ガスアトマイズ法は、真空にした高い塔内
へ溶融金属を噴出させるが、大きな真空容器が必要で設
備費が高額になる0回転電極法は高速回転する金属円柱
の端部をプラズマあるいはアークなどで溶融させ、遠心
力で飛散させて粉末を得るが、生産性が低く、粉末も高
価である。
In the gas atomization method, a high-speed inert gas is injected into a molten metal stream to crush and cool the molten metal stream to obtain powder.
The high-pressure inert gas used as the propellant is expensive, and the price of the powder is also high. In the vacuum gas atomization method, molten metal is ejected into a high vacuum tower, but in the zero-rotation electrode method, which requires a large vacuum container and requires high equipment costs, the end of a metal cylinder rotating at high speed is heated with plasma or arc. Powder is obtained by melting and scattering using centrifugal force, but productivity is low and the powder is expensive.

アトマイズ法において噴射媒として水、油などの液体を
用いる方法は広〈実施されており、粉末価格も上記3方
法に比べて相当低額であるが、生成する粉末の形状は不
規則であり、球状粉末は得られていなかった。
The atomization method using liquids such as water and oil as a propellant is widely practiced and the powder price is considerably lower than the above three methods, but the shape of the powder produced is irregular and spherical. No powder was obtained.

特公昭43−6389号には、円環状ノズルを使った例
についてであるが、噴霧媒である水の速度を調節するこ
とにより生成粉末粒子が球状になったり、不規則形状に
なったりすることが開示されている。
Japanese Patent Publication No. 43-6389 describes an example using an annular nozzle, but it is possible to make the powder particles spherical or irregular by adjusting the speed of water, which is the atomizing medium. is disclosed.

つまり、水の流速を低くしてゆっくり冷却すれば液体ア
トマイズでも球状粒子が得られるのである。
In other words, spherical particles can be obtained even with liquid atomization if the water flow rate is low and the water is cooled slowly.

直径30μ閣で見掛は密度3.25g/cd、直径10
0μmで同密度3.0 g/cdのものが得られている
。しかしながら、このような条件では微粉の歩留が非常
に低(、工業上は問題であった。
The diameter is 30μ, the apparent density is 3.25g/cd, and the diameter is 10
One with the same density of 3.0 g/cd was obtained at 0 μm. However, under these conditions, the yield of fine powder was extremely low (which was an industrial problem).

(発明が解決しようとする問題点) 本発明の目的は、液体を噴霧媒とするアトマイズ法によ
り、球状でかつ微細な金属粉末を効率的に生成する方法
を提供することである。
(Problems to be Solved by the Invention) An object of the present invention is to provide a method for efficiently producing spherical and fine metal powder by an atomization method using a liquid as an atomizing medium.

(問題点を解決するための手段) アトマイズ法によって生成した金属粉末について、溶融
金属流が粉砕されて固化するまでの冷却が緩慢であるほ
ど球状粉となる傾向を示すことば良く知られている。一
方、従来の液体アトマイズ法は冷却速度が大きく、生成
粉末は不規則形状を示すが、何らかの方法で冷却速度を
緩慢にすることにより球状金属粉末を得ることは可能で
ある。
(Means for Solving the Problems) It is well known that metal powder produced by the atomization method tends to become spherical powder as the molten metal flow is pulverized and cooled more slowly until it solidifies. On the other hand, in the conventional liquid atomization method, the cooling rate is high and the resulting powder exhibits an irregular shape, but it is possible to obtain spherical metal powder by slowing down the cooling rate in some way.

しかしながら、大形粒子はともかくとして微細粒子にあ
っては高速で噴霧媒を溶融金属流に当てなければ微細化
せず、しかし、そのように高速で噴霧媒を吹付けると容
易に急冷されてしまい球状化は困難である0粒子が細か
くなればそれだけ急冷効果は顕著になり、球状化は困難
となる。
However, apart from large particles, fine particles cannot be made fine unless the spray medium is applied to the molten metal stream at high speed; however, when the spray medium is sprayed at such high speeds, they are easily quenched. Spheroidization is difficult. The finer the particles, the more pronounced the quenching effect becomes, and the more difficult it becomes to spheroidize.

したがって、かかる観点から、本発明者らは、アトマイ
ズ法において生成粉末の微細化を図るとともに冷却速度
を一層緩慢にする手段について種々検討を重ねたところ
、対向する平板ノズルを使って、溶融金属流を粉砕する
と、噴霧媒のミスト中で金属粉末が徐冷されるので球状
粉末を得ることが可能となることを知り、本発明を完成
した。
Therefore, from this point of view, the present inventors have repeatedly investigated various means for making the powder produced finer in the atomization method and for slowing down the cooling rate. The present invention was completed based on the knowledge that when pulverized metal powder is slowly cooled in a spray medium mist, it is possible to obtain a spherical powder.

ここに、本発明の要旨とするところは、垂直に流下する
溶融金属を、対向して噴射される一対の平板状液体スプ
レーによって粉砕し、冷却して金属粉末を製造する方法
において、前記液体スプレーが交差する部分で各液体ス
プレーの流れに垂直な断面での単位幅当たりの液体流量
が55 kg/sec・−以下であり、かつこれらの液
体スプレーの交差角が25″以上であることを特徴とす
る、球状微細な金属粉末の製造方法である。
Here, the gist of the present invention is to provide a method for producing metal powder by pulverizing vertically flowing molten metal by a pair of flat liquid sprays that are injected in opposition and cooling the liquid spray. The liquid flow rate per unit width in the cross section perpendicular to the flow of each liquid spray at the intersection thereof is 55 kg/sec.- or less, and the intersection angle of these liquid sprays is 25'' or more. This is a method for producing fine spherical metal powder.

本発明によれば、このように溶融金属流を粉砕した後、
徐冷する方法は、その好適態様にあっては、対向して設
置された一対の液体噴射口から斜め下方へ液体スプレー
を噴射する。スプレーのパターンは平板状であれば帯状
であってもあるいは扇状であってもよい0両スプレーの
交差、衝突する領域に向って溶融金属流は流下され、そ
こにおいてこの溶融金属流は粉砕されるが、この衝突域
の直前において、各スプレーの流れ方向と垂直な断面を
通過する、単位幅当たりの流体流量を55kg/5ec
−以下とし、かつまた液体スプレーの交差角度を25″
以上となるようにすることによって、衝突域の下流部分
すなわち下方で、噴射された液体スプレーは、両スプレ
ーの交差角度内でほぼ全領域にわたってミスト状に拡が
り、粉砕後この中を通過する金属粉末は徐冷され、球形
となるのである。
According to the invention, after pulverizing the molten metal stream in this way,
In a preferred embodiment of the slow cooling method, a liquid spray is injected obliquely downward from a pair of liquid injection ports installed opposite to each other. The spray pattern can be flat, band-shaped, or fan-shaped.The molten metal stream flows down toward the area where the two sprays intersect and collide, where it is crushed. However, just before this collision zone, the fluid flow rate per unit width passing through the cross section perpendicular to the flow direction of each spray is 55 kg/5 ec.
- less than or equal to 25″ and also the intersection angle of the liquid spray is 25″
By doing so, the injected liquid spray spreads in the form of a mist over almost the entire area within the intersection angle of both sprays in the downstream part of the collision area, that is, below, and the metal powder passes through this after being crushed. is slowly cooled and becomes spherical.

しかも、上述のような平板状スプレーを衝突させること
によって得られる粉末はかなり微細となっており、従来
の例えば環伏ノズルを使った場合に比較してその平均粒
径は1/3となっている。
Moreover, the powder obtained by colliding the flat spray as described above is quite fine, and the average particle size is 1/3 that of conventional methods using, for example, an annular nozzle. There is.

なお、上述のような本発明における単位幅当たりの流体
流量は一般の液体アトマイズ法のそれと比較するとかな
り低いのであって、それにもかかわらず、本発明によれ
ば直径約250μm以下あるいは平均直径で約70μ−
以下の微細粒子が得られ、しかもそれらの徐冷も行い得
るのであって、予想外の効果というべきものがみられる
Incidentally, the fluid flow rate per unit width in the present invention as described above is considerably lower than that in the general liquid atomization method. 70μ-
The following fine particles can be obtained, and they can also be slowly cooled, resulting in an unexpected effect.

(作用) 次に、本発明を添付図面を参照しながら、さらに詳細に
説明する。
(Operation) Next, the present invention will be described in more detail with reference to the accompanying drawings.

第1図は、本発明にかかる液体アトマイズ法による金属
粉末製造装置の概略図である。
FIG. 1 is a schematic diagram of a metal powder manufacturing apparatus using a liquid atomization method according to the present invention.

図中、ルツボl内に溶融金属3を収納し、ルッボ1の底
部の小孔2から流出させる。ノズル装置4から高圧、高
速の液体を溶融金属の流れへ向けて噴射しこれを粉砕す
る。微細に粉砕されて冷却された金属粉末はタンク5内
の液体中に懸濁し、抜出口6から固液分離装置7へ送給
され、噴霧媒の液体から分離されて回収される。スプレ
ーの形状等は長さがm節自在のソケット8に着装された
ノズルチップを変えることにより容易に変更できる。
In the figure, molten metal 3 is housed in a crucible 1 and flows out from a small hole 2 at the bottom of the crucible 1. A high-pressure, high-speed liquid is injected from the nozzle device 4 toward the flow of molten metal to crush it. The finely pulverized and cooled metal powder is suspended in the liquid in the tank 5, sent from the outlet 6 to the solid-liquid separator 7, separated from the liquid of the spray medium, and recovered. The shape of the spray can be easily changed by changing the nozzle tip attached to the socket 8 whose length can be freely adjusted to m.

第2図は、2つのスプレーの衝突する様子を模式的に示
す概略図である。すでに述べたように、このときのスプ
レーの形態は帯状に広がったものであっても、扇状に広
がったものであってもよく、要するに平板状であればよ
い0両スプレーの交差角度10は、259以上、安定操
業の面からは、60゜以下が好ましい、また、液体vL
鼠は、単位幅光たり55kg/see・1以下であるが
、一般に粉末冶金の分野においては、かかる場合の液体
流量の下限は40kg/sec−mであることから、本
発明においては流量はかなり低いことになる。
FIG. 2 is a schematic diagram schematically showing how two sprays collide. As already mentioned, the shape of the spray at this time may be one that spreads out in a belt shape or one that spreads out in a fan shape.In short, it is sufficient that the shape is a flat plate.The intersection angle 10 of the two sprays is: 259 or more, preferably 60° or less from the viewpoint of stable operation, and liquid vL
In the case of a mouse, the flow rate per unit width of light is 55 kg/see・1 or less, but generally in the field of powder metallurgy, the lower limit of the liquid flow rate in such a case is 40 kg/sec-m, so in the present invention, the flow rate is considerably lower. It will be low.

このように少ない流量にもかかわらず、本発明によれば
、かなり微細な粒子が得られるが、その理由は次のよう
に考えられる。
In spite of such a small flow rate, according to the present invention, considerably fine particles can be obtained, and the reason is considered to be as follows.

すなわち、特公昭43−6389号に開示されている円
環状ノズルでは調整ガイドによって水の動圧が弱められ
るが、第2図に示すような形式では液体の動圧が大きい
まま溶鋼流に衝突させられ、これがそのまま溶融金属流
に衝突するからである。
In other words, in the annular nozzle disclosed in Japanese Patent Publication No. 43-6389, the dynamic pressure of the water is weakened by the adjustment guide, but in the type shown in Figure 2, the dynamic pressure of the liquid remains high and is allowed to collide with the molten steel flow. This is because the molten metal flow directly collides with the molten metal flow.

両スプレーは衝突後、ミストとなって分散してしまうた
め、上述のように微細粒子であっても急冷されることは
なく、球状化に必要なだけ十分な時間をかけて冷却され
ることになる。
After the two sprays collide, they become mist and disperse, so even the fine particles are not rapidly cooled as mentioned above, and are cooled for a sufficient amount of time to become spheroidal. Become.

次に、本発明を実施例によってさらに説明する。Next, the present invention will be further explained by examples.

実施例1 第1図および第2図に示す装置を使用して、本発明方法
による溶融金属流のアトマイズを実施した。溶融金属は
5US316L 、出鋼温度は1500°C1流16.
6kg/分であった。また、噴射液体は作動油、流量は
200j’/分、圧力は10MPaであった。
Example 1 Atomization of a molten metal stream according to the method of the invention was carried out using the apparatus shown in FIGS. 1 and 2. Molten metal is 5US316L, tapping temperature is 1500°C1 flow16.
It was 6 kg/min. The injection liquid was hydraulic oil, the flow rate was 200j'/min, and the pressure was 10 MPa.

このとき、液体スプレーの噴射パターンが上部から見て
平板状で扇形となる市販のノズルチップを用い、扇形の
中心角が15°、25°、40“、50°、そして65
°となるものをそれぞれ一対づつ使用して、液体スプレ
ーの流れ方向と垂直な断面を通過する、単位幅光たりの
液体流量を種々変更して、そのときの生成金属粉末の形
状、見掛は密度および粒子寸法を測定した。なお、両ス
プレーの交差角度は40″であった。
At this time, we used a commercially available nozzle tip in which the spray pattern of the liquid spray is flat and fan-shaped when viewed from above, and the center angles of the fan-shape are 15°, 25°, 40", 50°, and 65".
By using a pair of each type of powder, the flow rate of the liquid per unit width of light passing through a cross section perpendicular to the flow direction of the liquid spray was varied, and the shape and appearance of the metal powder produced at that time was determined. Density and particle size were measured. Note that the intersection angle of both sprays was 40''.

結果は第3図にグラフにまとめて示す。The results are summarized in a graph in Figure 3.

生成粉末の球形度は粉末の外観写真と見掛は密度(JI
S Z 2504)の測定値とを対照して判定したが、
見掛は密度が大きいほど球形に近くなり、5US316
Lの場合、見掛は密度が4.5g/am3より大きい場
合を球形と見做した。
The sphericity of the produced powder is determined by the appearance photograph of the powder and the apparent density (JI
It was determined by comparing the measured value of S Z 2504),
The higher the density, the closer the appearance is to a spherical shape, 5US316
In the case of L, when the apparent density was greater than 4.5 g/am3, it was considered to be spherical.

第3図に示す結果から、単位幅光たりの流量が55kg
/sec、mより小さい場合には球形粉末が生成するこ
とが分かる。
From the results shown in Figure 3, the flow rate per unit width of light is 55 kg.
It can be seen that spherical powder is produced when the ratio is smaller than /sec, m.

なお、参考のために、特公昭43−6389号に開示さ
れているような円環ノズルを用いた場合、第3図に参考
として示した通り、見掛は密度が3.2g/cmZの不
規則形状粉末が生成した。このときの流量は2.8kg
/secであった。
For reference, when using a circular nozzle as disclosed in Japanese Patent Publication No. 43-6389, the apparent density is 3.2 g/cmZ, as shown for reference in Figure 3. Regularly shaped powder was produced. The flow rate at this time is 2.8 kg
/sec.

これらのいずれの場合であっても平均粒子直径は70μ
−であった。
In any of these cases, the average particle diameter is 70μ
-It was.

本例における液体スプレーの交差角度と粉末の見掛は密
度との関係を第4図にグラフにまとめて示す、ここで、
ノズルチップ先端と溶融金属流とのスプレー流れに沿っ
た距離を一定に保つため、第1図に示すソケット8の長
さを11節した。また、上方から見たスプレーパターン
は扇形で、扇形の中心角度が25″のノズルチップを用
いた。
The relationship between the intersection angle of the liquid spray and the apparent density of the powder in this example is summarized in a graph in FIG. 4, where:
In order to maintain a constant distance along the spray flow between the tip of the nozzle tip and the molten metal flow, the length of the socket 8 shown in FIG. 1 was set to 11 nodes. The spray pattern seen from above was fan-shaped, and a nozzle tip with a center angle of 25'' was used.

第4図の結果からは、球状粉末を得るにはスプレー交差
角度が25″以上であることが必要であることが分かる
。これはスプレーの交差角が小さい場合、液体ミストの
空間密度が高くなり、粉末が急冷されるためと解釈され
る。
From the results shown in Figure 4, it can be seen that the spray intersection angle needs to be 25" or more to obtain spherical powder. This is because when the spray intersection angle is small, the spatial density of the liquid mist increases. , this is interpreted to be because the powder is rapidly cooled.

実施例2 本例では、溶融金属として耐食耐熱超合金であるインコ
ネル600 M似のNCF IB合金を用い、溶鋼温度
を1430℃とした他は、実施例1を繰り返して金属粉
末の製造を行った。
Example 2 In this example, metal powder was produced by repeating Example 1, except that an NCF IB alloy similar to Inconel 600 M, which is a corrosion-resistant and heat-resistant superalloy, was used as the molten metal, and the molten steel temperature was 1430 ° C. .

このとき液体スプレーの単位幅当たりの流量と生成粉末
の見掛は密度との関係を決定し、その結果を第5図にグ
ラフでまとめて示す。
At this time, the relationship between the flow rate per unit width of the liquid spray and the apparent density of the produced powder was determined, and the results are summarized in a graph in FIG.

第5図の場合、見掛は密度が4.8g/cmff以上を
球形とみなした。
In the case of FIG. 5, an apparent density of 4.8 g/cmff or more was considered to be spherical.

第5図に示す結果から明らかなように、球状粉末を生成
させるためにはスプレーの流量の適正値は55kg/s
ec−m以下となることが分かる。
As is clear from the results shown in Figure 5, the appropriate spray flow rate is 55 kg/s in order to generate spherical powder.
It can be seen that the value is less than ec-m.

(発明の効果) 以上詳述したように、本発明によれば微細かつ球状とい
う一般には相反する特性を有する粉末を単にアトマイズ
条件を調節するという比較的簡便な手段で実現できるの
であり、すでに述べたように球状で微細な粒子が強く求
められている今日的状況からは本発明の意義は大きなも
のといわねばならない。
(Effects of the Invention) As detailed above, according to the present invention, powder having generally contradictory characteristics such as fineness and spherical shape can be realized by a relatively simple means of simply adjusting the atomization conditions. It must be said that the present invention has great significance in view of the current situation where spherical and fine particles are strongly desired.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明にかかる方法を実施するための装置の
概略図; 第2図は、スプレーパターンの1例を示す概略図、およ
び 第3図ないし第5図は、本発明の実施例の結果をまとめ
て示すグラフである。
FIG. 1 is a schematic diagram of an apparatus for carrying out the method according to the invention; FIG. 2 is a schematic diagram showing an example of a spray pattern; and FIGS. 3 to 5 are embodiments of the invention. This is a graph summarizing the results.

Claims (1)

【特許請求の範囲】[Claims] 垂直に流下する溶融金属を、対向して噴射される一対の
平板状液体スプレーによって粉砕し、冷却して金属粉末
を製造する方法において、前記液体スプレーが交差する
部分で各液体スプレーの流れに垂直な断面での単位幅当
たりの液体流量が55kg/sec・m以下であり、か
つこれらの液体スプレーの交差角が25°以上であるこ
とを特徴とする、球状微細な金属粉末の製造方法。
In a method of manufacturing metal powder by pulverizing vertically flowing molten metal by a pair of flat liquid sprays that are injected in opposition to each other and cooling the metal powder, a molten metal that is vertically flowing down is crushed by a pair of flat liquid sprays that are injected in opposition to each other, and is cooled to produce metal powder. A method for producing fine spherical metal powder, characterized in that the liquid flow rate per unit width in a cross section is 55 kg/sec·m or less, and the intersection angle of these liquid sprays is 25° or more.
JP7339287A 1987-03-27 1987-03-27 Production of fine spherical metal powder Pending JPS63241104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7339287A JPS63241104A (en) 1987-03-27 1987-03-27 Production of fine spherical metal powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7339287A JPS63241104A (en) 1987-03-27 1987-03-27 Production of fine spherical metal powder

Publications (1)

Publication Number Publication Date
JPS63241104A true JPS63241104A (en) 1988-10-06

Family

ID=13516878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7339287A Pending JPS63241104A (en) 1987-03-27 1987-03-27 Production of fine spherical metal powder

Country Status (1)

Country Link
JP (1) JPS63241104A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1040890C (en) * 1991-07-03 1998-11-25 中国有色金属工业总公司昆明贵金属研究所 Dental amalgam alloy powder and the preparation thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1040890C (en) * 1991-07-03 1998-11-25 中国有色金属工业总公司昆明贵金属研究所 Dental amalgam alloy powder and the preparation thereof

Similar Documents

Publication Publication Date Title
US4619597A (en) Apparatus for melt atomization with a concave melt nozzle for gas deflection
US4631013A (en) Apparatus for atomization of unstable melt streams
US4801412A (en) Method for melt atomization with reduced flow gas
US5366204A (en) Integral induction heating of close coupled nozzle
Fritsching et al. Hybrid gas atomization for powder production
Goudar et al. Effect of atomization parameters on size and morphology of Al-17Si alloy powder produced by free fall atomizer
JPS5910961B2 (en) Youyukinzokuobiriyukasuruhouhou Oyobi Souchi
JP2002508441A (en) Method and apparatus for producing fine powder by melt atomization using gas
KR20210101086A (en) fluid spraying nozzle assembly
US4818279A (en) Method and device for the granulation of a molten material
US4502885A (en) Method for making metal powder
JP2703818B2 (en) Method for spraying a melt and apparatus using the method
CN111422874B (en) Method for producing spherical titanium carbide powder by one-step method
JPS63241104A (en) Production of fine spherical metal powder
EP0419479B1 (en) A method and equipment for microatomizing liquids, preferably melts
JPH0754019A (en) Production of powder by multistage fissure and quenching
JP2003212572A (en) Method of manufacturing spherical glass powder
JP3511082B2 (en) Manufacturing method of metal fine powder
JP2580616B2 (en) Method for producing spherical metal powder
CA1236711A (en) Method for making ultrafine metal powder
US4781741A (en) Process for producing spherical glass particles
US5190701A (en) Method and equipment for microatomizing liquids, preferably melts
JP2019214786A (en) Manufacturing method and manufacturing apparatus of metal powder
CA1040894A (en) Method of manufacture of metallic powder
JPH06172817A (en) Production of quenched metal powder