JPS63240554A - Photosensitive body - Google Patents

Photosensitive body

Info

Publication number
JPS63240554A
JPS63240554A JP7475587A JP7475587A JPS63240554A JP S63240554 A JPS63240554 A JP S63240554A JP 7475587 A JP7475587 A JP 7475587A JP 7475587 A JP7475587 A JP 7475587A JP S63240554 A JPS63240554 A JP S63240554A
Authority
JP
Japan
Prior art keywords
photoreceptor
transparent
photoconductive layer
thickness
exposure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7475587A
Other languages
Japanese (ja)
Inventor
Eiji Shimura
英次 志村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP7475587A priority Critical patent/JPS63240554A/en
Publication of JPS63240554A publication Critical patent/JPS63240554A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/10Bases for charge-receiving or other layers
    • G03G5/104Bases for charge-receiving or other layers comprising inorganic material other than metals, e.g. salts, oxides, carbon
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08207Selenium-based

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To obtain a photosensitive body high in carrier mobility and usable for the simultaneous method by forming a transparent cylindrical base body and a photoconductive layer containing a-Se. CONSTITUTION:The photosensitive body 1 is formed by laminating on the transparent cylindrical base body 2 made of quartz glass having a thickness of 5mm and a diameter of 65mm, a transparent conductive layer 3 of 0.2mum thickness obtained by vapor depositing ITO, and on this layer the photoconductive layer 4 of 20mum thickness made of a-Se prepared by vapor deposition at a base body temperature of 60 deg.C and a evaporation source temperature of 270 deg.C, thus permitting the obtained photosensitive body to be usable for the simultaneous method and high in carrier mobility, and a large quantity of carriers to be transferred.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電子写真に用いられる感光体に関する。さら
に詳しくは、露光と現像を同時に行なって1ijji像
形成を行なう、いわゆる、同時法で用いられる感光体に
閃する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a photoreceptor used in electrophotography. More specifically, the photoreceptor is used in a so-called simultaneous method, in which exposure and development are performed simultaneously to form a 1 ij ji image.

〔従来の技術〕[Conventional technology]

近年、新しい電子写真技(fiを利用した同時法が各i
!1で検討され、例えば特[til昭58−15305
7に提案されている。この方法においては、透明4電性
支t!j体上に光導電層を形成した感光体を使用し、該
感光体の透明導電性支持体側より露光する。露光中に、
バイアス電圧を印加した導電性磁性トリ゛−の磁気ブラ
シで、感光体の表面を擦過する。この時、露光部と未露
光部との光導電体の抵抗が変化して、感光体表面に接触
している導電性磁性トリ゛−への注入電荷且の差が生じ
、その電荷fdの差が感光体表面への導電性磁性トナー
の静電(・1着力の差となって現像が可能となる。
In recent years, a new electrophotographic technique (simultaneous method using fi
! 1, for example, the special [til Showa 58-15305
7 has been proposed. In this method, a transparent tetraelectric support t! A photoreceptor having a photoconductive layer formed thereon is used, and the photoreceptor is exposed to light from the transparent conductive support side. During exposure,
The surface of the photoreceptor is rubbed with a magnetic brush made of a conductive magnetic tree to which a bias voltage is applied. At this time, the resistance of the photoconductor between the exposed area and the unexposed area changes, causing a difference in the charge injected into the conductive magnetic triplet that is in contact with the photoreceptor surface, and the difference in the charge fd. The difference in electrostatic adhesion force of the conductive magnetic toner to the surface of the photoconductor (.1) makes development possible.

この111時法では、感光体の透明導明電性支t′#体
側より露光を行なう必要性、及び装置の小型化のために
、透明導電性支持体として、有機物質から成るシームレ
スベルトを用い、ベルトの内部に露光ユニットを設置す
るのが最適であると考えられている。
In this 111-hour method, a seamless belt made of an organic material is used as a transparent conductive support because it is necessary to perform exposure from the transparent conductive support side of the photoreceptor and to downsize the apparatus. , it is considered optimal to install the exposure unit inside the belt.

このことから、光導電層としては、成形性に7:9み、
可に性が良好で、無公害性なa機先導電体が注口されて
いる。
From this, the moldability of the photoconductive layer is 7:9,
The spout is filled with the A-type lead electric material, which has good ductility and is non-polluting.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、同時法で用いられる感光体に要求される特性は
、通常のカールソンプロセスで用いられる感光体のそれ
とは根本的に異なることを、発明者らは鋭意検討の結果
兄いだした。それは、感光体内部で発生した電荷tU体
(以下、キャリアと紀ず)の感光体表面への移動時間(
以下フライトタイムと記す)が、露光時間よりも充分に
短かくなければいけないということである。カールソン
プロセスの場合、mW光の前に感光体は表面一様に帯電
させられ、そ、の後、露光されるのであるから、感光体
としては、いわゆる半減露光量(Es9、あるいはE 
L/2)が小さいものであれば充分であるのに対し、同
時法の場合は、常電プロセスが無く、かつ、感光体に電
圧が印加されている時間が、導電性磁性トナーと感光体
表面とが接触している時間に限られる。そこで、露光時
間中に発生したキャリアが効率良く表面へ移動しな(で
は、露光による感光体の抵抗変化が少なくなって、結果
として現像のコントラストが小さくなるというl!ll
山からである。
However, after extensive study, the inventors discovered that the characteristics required of the photoreceptor used in the simultaneous process are fundamentally different from those of the photoreceptor used in the normal Carlson process. It is the time required for the charge tU body (hereinafter referred to as carrier) generated inside the photoreceptor to move to the surface of the photoreceptor (
This means that the flight time (hereinafter referred to as flight time) must be sufficiently shorter than the exposure time. In the case of the Carlson process, the surface of the photoreceptor is uniformly charged before being exposed to mW light, and then exposed, so the photoreceptor has a so-called half-exposure amount (Es9, or E
While it is sufficient if L/2) is small, in the case of the simultaneous method, there is no normal current process and the time during which voltage is applied to the photoreceptor is the same as that between the conductive magnetic toner and the photoreceptor. limited to the time it is in contact with the surface. Therefore, the carriers generated during the exposure time do not move efficiently to the surface (the change in resistance of the photoreceptor due to exposure is reduced, and as a result, the contrast of development becomes smaller).
It's from the mountain.

前述のフライトタイムについての一つのIn (F、と
なる物性値をして、感光体の移動度があげられる。移動
度が早ければ、フライトタイムは短かくなると汀える。
The mobility of the photoreceptor can be raised by taking the above-mentioned physical property value of In (F) for the flight time. If the mobility is fast, the flight time becomes short and stops.

ゆえに、同時法に用いられる感光体に要求される特性の
一項目として、移ff1L:が早いということが掲げら
れる。
Therefore, one of the characteristics required of the photoreceptor used in the simultaneous method is that the transfer ff1L: is fast.

現在、実用化されている打機先Jμ電体の移動度は、お
おむね10−’cJ/V*sccであり、これよりフラ
イトタイムは、20m5ecと1露光時間よりもはるか
に長い時間となる。
The mobility of the Jμ electric body currently in practical use is approximately 10-'cJ/V*scc, which results in a flight time of 20m5ec, which is much longer than one exposure time.

また、シームレスベルトを使用する限り、可tA性の問
題に1吟、有機光導電体、あるいは樹脂分散CdS感光
体しか実用化できない。
Furthermore, as long as a seamless belt is used, only an organic photoconductor or a resin-dispersed CdS photoconductor can be put to practical use due to the problem of tA property.

そこで、本発明は・このような問題点を解決するもので
あって、その目的とするところは、無公害で、かつ、移
動度が早(、同時法に使用されうる感光体を提供するこ
とにある。
Therefore, the present invention is intended to solve these problems, and its purpose is to provide a photoreceptor that is non-polluting and has a high mobility (and can be used in a simultaneous method). It is in.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の感光体は、 ■ 感光体の基体が透明で、かつ円柱管である。 The photoreceptor of the present invention is ■ The base of the photoreceptor is transparent and a cylindrical tube.

■ 感光体の光導電層にd−3eを含イrする。(2) The photoconductive layer of the photoreceptor is impregnated with d-3e.

ことを特徴とする。It is characterized by

〔作用〕[Effect]

本発明の(I+4成によれば、露光は感光体基体の内側
より行なうことができ、さらに、移動度が早く、可撓性
の乏しいα−Seを光導電層として形成することが容易
である。
According to the (I+4 configuration) of the present invention, exposure can be performed from the inside of the photoreceptor substrate, and furthermore, it is easy to form α-Se, which has fast mobility and poor flexibility, as a photoconductive layer. .

〔実施例〕〔Example〕

第1図に、本発明の実施例における感光体の断面図を示
す。本発明の感光体1は透明用柱管基体2上に、透明導
電層3をイ丁し、その上にα−3eを含む光導電層4が
積層された構造をとる。
FIG. 1 shows a cross-sectional view of a photoreceptor in an embodiment of the present invention. The photoreceptor 1 of the present invention has a structure in which a transparent conductive layer 3 is disposed on a transparent columnar tube substrate 2, and a photoconductive layer 4 containing α-3e is laminated thereon.

第2図に、本発明における感光体を用いて同時法により
現像が成される様子を示す、透明円柱管J、(体2」二
に透明導電層3、光導電層4を積層してなる感光体1は
、矢印の方向5へ回転している。
FIG. 2 shows a transparent cylindrical tube J (body 2), which is formed by laminating a transparent conductive layer 3 and a photoconductive layer 4 on the second side, showing how development is performed by the simultaneous method using the photoreceptor according to the present invention. The photoreceptor 1 is rotating in the direction 5 of the arrow.

導電性磁性トリ“−6は、マグネットローラー7とスリ
ーブ8で構成される周知の磁気ブラシによって、感光体
1の表面へ搬送される。スリーブ8と透明導電層3との
「:1には、バイアス電圧10が印加されており、従っ
てトリ゛−ブラシによって感光体1に電圧が印加されて
いる。その状況において、感光体1の裏側より像露光が
行なわれる。露光部では、露光量に従ってキャリアが発
生し、キャリアは印加電圧とその移wJ度に従って、感
光体1表面へ移動する。しかし、未露光部ではキャリア
発生はない、結果として、露光部と導電性磁性トリ・−
6への注入電荷全に差が生じ、上ってトナーの感光体1
表面への静電付打力に差が生じることとなる。この上う
なa措によって画像形成が光なわれる。
The conductive magnetic bird ``-6'' is conveyed to the surface of the photoreceptor 1 by a well-known magnetic brush composed of a magnet roller 7 and a sleeve 8. A bias voltage 10 is applied, and therefore a voltage is applied to the photoreceptor 1 by the tri-brush.In this situation, image exposure is performed from the back side of the photoreceptor 1.In the exposure section, carriers are exposed according to the exposure amount. is generated, and the carriers move to the surface of the photoreceptor 1 according to the applied voltage and the degree of transfer wJ. However, no carriers are generated in the unexposed area, and as a result, the exposed area and the conductive magnetic tri-
A difference occurs in the total charge injected into the toner photoreceptor 1.
This results in a difference in the electrostatic force applied to the surface. Furthermore, image formation is facilitated by this a measure.

〔実施例1〕 感光体の透明用柱管基体として、肉1ソ5−■、内径6
5順の石英ガラス製円柱管を用い、その上に透明導電層
として1、ITOを0.2μm蒸むした。さらに、光J
4電層として、α−3cを20μm蒸着した。蒸む時の
1&仮温度を60℃、蒸発源温度270℃とした。成膜
スピードは約0.4μm/−であったO このようにして作製した感光体を感光体1とし、正孔の
移動度を、タイムオブフライト法で測定した結果を表1
に示す。なお、クイムオブフライト法では、波長450
mm1光景5μW / cJ 1パルス中(半値中)1
0nsecの光パルスを照射した。その際、電界を10
’V/(J印加した。
[Example 1] As a columnar tube base for transparent photoreceptor, the thickness is 1 mm, 5 mm, and the inner diameter is 6 mm.
A cylindrical tube made of quartz glass was used, and 0.2 μm of ITO was steamed thereon as a transparent conductive layer. Furthermore, light J
α-3c was deposited to a thickness of 20 μm as a tetraelectric layer. The temporary temperature during steaming was 60°C, and the evaporation source temperature was 270°C. The film-forming speed was approximately 0.4 μm/-. The photoreceptor produced in this manner was referred to as Photoreceptor 1, and the hole mobility was measured by the time-of-flight method. Table 1 shows the results.
Shown below. In addition, in the Quim of Flight method, the wavelength is 450
mm1 sight 5μW/cJ 1 pulse (half maximum) 1
A light pulse of 0 nsec was irradiated. At that time, increase the electric field to 10
'V/(J was applied.

また、実際に同時法による現像実験を行なった時の光学
濃度もあわせて表1に示す。
Table 1 also shows the optical densities obtained when a development experiment was actually conducted using the simultaneous method.

以下の各実施例でも、同様の評価を行なって表1にその
結果を示す。
Similar evaluations were performed in each of the following Examples, and the results are shown in Table 1.

〔実施例2〕 実施例1で用いたのと同様の透明用柱管基体、透明導電
層上に、光導電層として、α−3cTe層を20μm蒸
着した。蒸菅には、Tc含イr量6W【%の5cTe合
金を用い、基板温度70 ”C。
[Example 2] A 20 μm thick α-3cTe layer was deposited as a photoconductive layer on the same transparent columnar tube substrate and transparent conductive layer as used in Example 1. A 5cTe alloy with a Tc content of 6W% was used for the vaporization tube, and the substrate temperature was 70''C.

蒸発源4度350°Cとした。成膜スピードは約0.3
μm/m i nであった。
The evaporation source was set at 4 degrees and 350°C. Film formation speed is approximately 0.3
It was μm/min.

このようにして作製した感光体を感光体2とする。The photoreceptor produced in this manner will be referred to as photoreceptor 2.

〔実施例3〕 実施例1で用いたのと同様の透明用柱管基体、透明導電
層上に、光導電層として、α−3cTc′F12μm(
Tc6wt%含有)、a−3c層18μmを411層し
た。
[Example 3] A photoconductive layer of α-3cTc'F 12 μm (
411 a-3c layers each having a thickness of 18 μm were formed.

このようにして作製した感光体を感光体3とする。The photoreceptor produced in this manner will be referred to as photoreceptor 3.

〔実施例4〕 感光体の透明用柱管基体として、肉厚5−一、内径05
 msのポリカーボネート製円柱管を用いた他は、実施
例1と同様にして感光体を作製した。
[Example 4] As a columnar tube base for transparent photoreceptor, wall thickness 5-1, inner diameter 05
A photoreceptor was produced in the same manner as in Example 1, except that a cylindrical tube made of ms polycarbonate was used.

このようにして作製した感光体を感光体4とする。The photoreceptor produced in this manner will be referred to as photoreceptor 4.

〔実施例5〕 感光体の透明用柱管基体として、肉厚5゜1、内径05
−のポリメチルメタクリレート製円柱管を用いた他は、
実施例1と同様にして感光体を作製した。
[Example 5] As a columnar tube base for transparent photoreceptor, wall thickness 5°1, inner diameter 05
- In addition to using a cylindrical tube made of polymethyl methacrylate,
A photoreceptor was produced in the same manner as in Example 1.

このようにして作製した感光体を感光体5とする。The photoreceptor produced in this manner will be referred to as photoreceptor 5.

〔比較例〕[Comparative example]

実施例1で用いたのと同様の透明用柱管基体と透明JO
導電層用い、その上に、先導間層としてβ型銅フタロシ
アニン(大日精化)とポリカーボネート(NOVΔRE
X、三菱化成)とを1:2の重量比で分散混合したらの
を乾燥厚で0.2μmとなるように塗工し、さらにその
上に、ジフェニルヒドラゾン誘導体(CTC−23G、
阿南香料)とポリカーボネート(NEVARIシX1三
菱化成)とを1:1のfflft比で混合したものを乾
燥厚で20μmとなるように塗工した。
Transparent columnar tube base and transparent JO similar to those used in Example 1
A conductive layer is used, and on top of that, β-type copper phthalocyanine (Dainichiseika) and polycarbonate (NOVΔRE) are used as a conductive layer.
X, Mitsubishi Kasei) was dispersed and mixed at a weight ratio of 1:2 and coated to a dry thickness of 0.2 μm, and then diphenylhydrazone derivatives (CTC-23G, CTC-23G,
A mixture of Anan Perfume) and polycarbonate (NEVARI X1 Mitsubishi Kasei) at a fflft ratio of 1:1 was coated to a dry thickness of 20 μm.

このようにして作製した感光体を感光体6とする。The photoreceptor produced in this manner will be referred to as photoreceptor 6.

表    1 〔発明の効果〕 以上述べたきたように本発明によれば、同時法に使用さ
れる感光体において、 ■ 感光体の基体が透明で、かつ、円柱管である。
Table 1 [Effects of the Invention] As described above, according to the present invention, in the photoreceptor used in the simultaneous method, (1) the base of the photoreceptor is transparent and is a cylindrical tube.

■ 感光体の光ノ4電層が、α−3cを含イfする。(2) The photoconductive layer of the photoreceptor contains α-3c.

ことにより ■ 露光を感光体の1λ体側より行える。possibly ■ Exposure can be performed from the 1λ body side of the photoreceptor.

■ 可jA性に乏しいα−3OUを成膜でき、かつ、使
用できる。
(2) α-3OU, which has poor jA properties, can be formed into a film and can be used.

■ 移!!8171ftが早いので、露光時間がrn 
s c cオーダーであっても電荷移動が大量に行なわ
れる。
■ Move! ! Since 8171ft is fast, the exposure time is rn
Even at the scc order, a large amount of charge transfer occurs.

という感光体が実現でき、実際に同時法で現像を行なう
と、字かぶりのない高分解能の鮮明な印字が可能である
This photoreceptor can be realized, and when actually developed using the simultaneous method, it is possible to print clear, high-resolution characters without character fog.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例における感光体の断面図。第
2図は、本発明における感光体を用いて同時法により現
像が成される様子を示す図。 l・・・感光体 2・・・透明用柱管基体 11・・・光導電層 6・・・導電性磁性トナー 以  上 出願人 セイコーエプソン株式会社 代理人 弁理士 最 上  務 他1名6−−。 り
FIG. 1 is a sectional view of a photoreceptor in an embodiment of the present invention. FIG. 2 is a diagram showing how development is performed by a simultaneous method using the photoreceptor of the present invention. l... Photoreceptor 2... Transparent columnar tube base 11... Photoconductive layer 6... Conductive magnetic toner or more Applicant: Seiko Epson Co., Ltd. Agent Patent attorney Tsutomu Mogami and 1 other person 6- −. the law of nature

Claims (1)

【特許請求の範囲】[Claims] 露光と現像とを同時に行なう画像形成用に使用される感
光体において、該感光体の基体が透明で、かつ、円柱管
であり、該感光体の光導電層がアモルファスセレン(以
下α−Seと記す)を含有することを特徴とする感光体
In a photoreceptor used for image formation in which exposure and development are performed simultaneously, the substrate of the photoreceptor is transparent and is a cylindrical tube, and the photoconductive layer of the photoreceptor is made of amorphous selenium (hereinafter referred to as α-Se). A photoreceptor characterized by containing the following:
JP7475587A 1987-03-27 1987-03-27 Photosensitive body Pending JPS63240554A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7475587A JPS63240554A (en) 1987-03-27 1987-03-27 Photosensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7475587A JPS63240554A (en) 1987-03-27 1987-03-27 Photosensitive body

Publications (1)

Publication Number Publication Date
JPS63240554A true JPS63240554A (en) 1988-10-06

Family

ID=13556404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7475587A Pending JPS63240554A (en) 1987-03-27 1987-03-27 Photosensitive body

Country Status (1)

Country Link
JP (1) JPS63240554A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5338632A (en) * 1989-10-02 1994-08-16 Canon Kabushiki Kaisha Electrophotographic photosensitive member and electrophotographic device using the same
EP0616261A2 (en) * 1993-03-18 1994-09-21 Fujitsu Limited Photosenstive member, electrophotographic apparatus using the photosensitive member, and process for producing the photosensitive member

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5338632A (en) * 1989-10-02 1994-08-16 Canon Kabushiki Kaisha Electrophotographic photosensitive member and electrophotographic device using the same
US5500718A (en) * 1989-10-02 1996-03-19 Canon Kabushiki Kaisha Electrophotographic photosensitive member and electrophotographic device using the same
EP0616261A2 (en) * 1993-03-18 1994-09-21 Fujitsu Limited Photosenstive member, electrophotographic apparatus using the photosensitive member, and process for producing the photosensitive member
EP0616261A3 (en) * 1993-03-18 1994-11-02 Fujitsu Ltd Photosenstive member, electrophotographic apparatus using the photosensitive member, and process for producing the photosensitive member.

Similar Documents

Publication Publication Date Title
TW200949470A (en) Electrophotographic-photosensitive element and method for manufacturing the element, and electrophotographic device using the same
JPS63240554A (en) Photosensitive body
JPH02280169A (en) Functionally separated type organic electrophotographic sensitive body
JPS63240553A (en) Photosensitive body
JPH0643681A (en) Electrophotographic sesitive body and its production
JP4228334B2 (en) Electrophotographic photoreceptor
JP3004114B2 (en) Image forming method
JPH03141365A (en) Electrophotographic sensitive body
JPH07191529A (en) Image forming device
JP2666501B2 (en) Electrophotographic photoreceptor
JP2541283B2 (en) Electrophotographic photoreceptor
JPS63250653A (en) Electrophotographic sensitive body
JPS60138566A (en) Formation of toner image
JPH0756364A (en) Electrophotographic photoreceptor
JPS60198547A (en) Electrophotographic sensitive body
JP2002062673A (en) Electrophotographic photoreceptor
JP2001215742A (en) Electrophotographic photoreceptor
JP3140115B2 (en) Image forming method
JPS6045431B2 (en) electrophotographic method
Seino et al. Photo-induced and Dark Discharge Mechanisms of High Gamma Photoreceptors
JPS5630135A (en) Electrophotographic receptor
JPH09152726A (en) Photosensitive material, photoreceptor and image forming device using them
JPH01307759A (en) Electrophotographic sensitive body
JPS6261054A (en) Lamination type electrophotographic sensitive body
JPH0199058A (en) Electrophotographic sensitive body