JPS63239615A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPS63239615A
JPS63239615A JP7373887A JP7373887A JPS63239615A JP S63239615 A JPS63239615 A JP S63239615A JP 7373887 A JP7373887 A JP 7373887A JP 7373887 A JP7373887 A JP 7373887A JP S63239615 A JPS63239615 A JP S63239615A
Authority
JP
Japan
Prior art keywords
film
substrate
magnetic
thin film
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7373887A
Other languages
Japanese (ja)
Other versions
JPH0654534B2 (en
Inventor
Tadashi Yasunaga
正 安永
Akio Yanai
矢内 明郎
Koji Sasazawa
笹沢 幸司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP7373887A priority Critical patent/JPH0654534B2/en
Publication of JPS63239615A publication Critical patent/JPS63239615A/en
Publication of JPH0654534B2 publication Critical patent/JPH0654534B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a magnetic recording medium having an excellent preservable property by incorporating at least nitrogen atoms and oxygen atoms into a thin ferromagnetic film and increasing the atomic number ratio of the oxygen incorporated in the thin ferromagnetic film with respect to iron gradually from near the surface of the thin film toward a substrate. CONSTITUTION:The thin ferromagnetic metallic film which is formed on the nonmagnetic substrate and consists essentially of iron is provided as the magnetic layer. At least the nitrogen atoms and oxygen atoms are incorporated into the thin metallic film and the atomic number ratio of the oxygen incorporated in the thin ferromagnetic film is increased gradually from near the surface of the thin film toward the substrate. For example, an ion gun 6 is operated to form an iron oxynitride film at the time of fixing the nonmagnetic substrate 2, melting and evaporating the iron material 4 and depositing the film thereof on said substrate. Rust resistance is thereby improved and the adhesiveness between the substrate and the thin magnetic film after the long term preservation is simultaneously improved. The preservable property is markedly improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は磁気記録媒体に関し、より詳細には錆を生じず
かつ保存性に優れた金属薄膜型の磁気記録媒体に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetic recording medium, and more particularly to a metal thin film type magnetic recording medium that does not cause rust and has excellent storage stability.

〔従来の技術〕[Conventional technology]

磁気記録媒体としては、従来より強磁性体粉末を有機バ
インダー中に分散させた磁性塗料を非磁性基体上に塗布
し乾燥させて得た塗布型のものが広く使用されてきてい
る。しかしながら、この塗布型磁気記録媒体は、強磁性
体粉末として主として金属酸化物粉末を用いている九め
に飽和磁化が小さく、有機バインダーを含むために磁性
層中の強磁性体の濃度を上げられず、それによυ高密度
記録には適しておらず、また製造工程が複雑であるなど
の欠点を有する。
As magnetic recording media, coating-type media have been widely used, which are obtained by coating a non-magnetic substrate with a magnetic paint in which ferromagnetic powder is dispersed in an organic binder and drying the coating. However, this coated magnetic recording medium mainly uses metal oxide powder as the ferromagnetic powder, has a low saturation magnetization, and contains an organic binder, which makes it difficult to increase the concentration of ferromagnetic material in the magnetic layer. However, it is not suitable for high-density recording, and the manufacturing process is complicated.

近年高密度記録への要求が高まシ、これに対応して金属
薄膜を非磁性基体上に形成し良磁性記録媒体が開発され
、これは真空蒸着、スパッタリング、イオンブレーティ
ング等のに−・ぐ−デポジション法、あるいは電気メッ
キ、無電解メッキ等のメッキ法によって金属薄膜を非磁
性基体上に形成するもので、磁性体としては金属に限ら
れないものであるが、金属が代表的であるので、以下こ
れを有する磁気記録媒体を金−薄膜型磁気記録媒体とい
う。また、この型式のものは有機バインダーを含有しな
いので非バインダー型磁気記録媒体とも呼ばれる。
In recent years, the demand for high-density recording has increased, and in response to this demand, good magnetic recording media have been developed by forming metal thin films on non-magnetic substrates. A thin metal film is formed on a non-magnetic substrate by a magnetic deposition method, or a plating method such as electroplating or electroless plating.The magnetic material is not limited to metals, but metals are typical. Therefore, a magnetic recording medium having this is hereinafter referred to as a gold-thin film type magnetic recording medium. Furthermore, since this type of magnetic recording medium does not contain an organic binder, it is also called a non-binder type magnetic recording medium.

この金属薄膜型磁気記録媒体においては飽和磁化の大き
い強磁性金属をバインダーを含有しない状態で薄膜とし
て形成させることができるので、塗布型に比して高保磁
力化と薄膜化が行われ、かつ短波長域での減磁の影響が
小さく高密度記録が実現され、しか4製造工穆が簡単化
されるため、注目を集めている。
In this metal thin film type magnetic recording medium, a ferromagnetic metal with high saturation magnetization can be formed as a thin film without containing a binder, so it has a higher coercive force and a thinner film than the coated type, and can be shortened. It is attracting attention because it has less effect of demagnetization in the wavelength range, enables high-density recording, and simplifies the manufacturing process.

しかし、金属薄膜型磁気記録媒体の金属薄膜は見かけは
均一で平滑な金属の面を有しているが、微細構造では粗
な本ので金属微粒子が並んでいるような構造を有してい
るために、腐蝕され易く、このためこの型の磁気記録媒
体は塗布型磁気記録媒体と比較して耐候性及び耐蝕性が
劣っている。
However, although the metal thin film of a metal thin film type magnetic recording medium has an apparently uniform and smooth metal surface, its fine structure is rough and has a structure in which fine metal particles are lined up. In addition, it is easily corroded, and as a result, this type of magnetic recording medium has inferior weather resistance and corrosion resistance compared to coated magnetic recording media.

特にカセットテープやビデオテープ等として用いられる
磁気記録媒体は記録、再生時に該媒体表面が磁気ヘッド
で擦られるため、金属薄膜上に極めてわずかに腐蝕物が
存在していても、摩擦によりそれが脱落してヘッドに目
詰りが生じ、それによシヘッド及び磁気記録媒体に傷が
つぐ。
In particular, the surface of magnetic recording media used as cassette tapes, video tapes, etc. is rubbed by a magnetic head during recording and playback, so even if there is a very small amount of corrosive material on the thin metal film, it will fall off due to friction. This causes the head to become clogged, which causes damage to the head and the magnetic recording medium.

さらに、金属薄膜型磁気記録媒体は耐久性が劣るという
問題がある。この型の磁気記録媒体では金属薄膜が平滑
であるtめ摩擦が太き(ハリツキを起シ易いなどの問題
があり、VTRにおけるスチル耐久性等において塗布型
のものに比して劣っている。
Furthermore, metal thin film magnetic recording media have a problem of poor durability. In this type of magnetic recording medium, the metal thin film is smooth, so there are problems such as high friction (easiness to cause stickiness), and it is inferior to the coated type in terms of still durability in VTRs, etc.

このような金属薄膜型磁気記録媒体の耐候性及び耐久性
を改良するために、イオンブレーティングにより表面窒
化処理を施す方法(特開昭ro−jJrO4号)、スパ
ッタリングにより窒化ケイ素膜を設ける方法(特開昭!
3−、!OJOグ号)、磁性膜を窒素ガス等の雰囲気中
での放電にさらして非磁性表面層を形成する方法【特開
昭J−J−r!≠03号)、磁性金属薄膜上に窒化され
た金属薄膜を設ける方法(特開昭!≠−1≠31//号
)、等が知られている。また、耐候性にすぐれた非バイ
ンダー型磁気記録媒体としてヨーロッパ特許jJJr号
、或いは特開昭jターr’yroり号に開示されている
ような窒化鉄或いは鉄及び窒化鉄よシなる磁性薄膜があ
る。さらに、本出願人は先に非磁性基体上に酸化窒化鉄
を主成分とする磁性薄膜を設けてなる磁気記録媒体(特
開昭t/−!≠0.23号)を提案し、この磁性薄膜は
次の組成式2式% C九だし、式中0.4!≦χ+Y≦o、toである) で表わされる組成を有するものであった。
In order to improve the weather resistance and durability of such metal thin film type magnetic recording media, there are two methods: surface nitriding treatment by ion blasting (Japanese Patent Application Laid-open No. 2003-100002) and sputtering to form a silicon nitride film ( Tokukai Akira!
3-,! A method of forming a non-magnetic surface layer by exposing a magnetic film to discharge in an atmosphere such as nitrogen gas [JP-A-Sho J-J-r! ≠No. 03), a method of providing a nitrided metal thin film on a magnetic metal thin film (Japanese Unexamined Patent Publication No. Sho!≠-1≠31//), and the like are known. In addition, iron nitride or a magnetic thin film made of iron and iron nitride as disclosed in European Patent No. JJJr or Japanese Patent Application Laid-Open No. be. Furthermore, the present applicant has previously proposed a magnetic recording medium (Japanese Unexamined Patent Application Publication No. 2003-110013) in which a magnetic thin film containing iron oxynitride as a main component is provided on a non-magnetic substrate. The thin film has the following compositional formula 2 formula % C9, 0.4 in the formula! ≦χ+Y≦o, to).

〔本発明が解決しようとする問題点〕[Problems to be solved by the present invention]

しかしながら前述の方法によれば、耐錆性は大きく向上
するものの、保存性に問題がある。すなわち、保存経時
させた後の基体と薄膜間の密着が不充分であり、改良を
望まれていた。
However, according to the above-mentioned method, although the rust resistance is greatly improved, there is a problem in storage stability. That is, the adhesion between the substrate and the thin film after storage is insufficient, and improvements have been desired.

したがって本発明の目的は、保存性にすぐれる磁気記録
媒体を提供するKある。
Therefore, an object of the present invention is to provide a magnetic recording medium with excellent storage stability.

〔問題点を解決するための手段〕[Means for solving problems]

すなわち、本発明は、非磁性基体上に形成された鉄を主
材料とする強磁性金属薄膜を磁性層として設けてなる磁
気記録媒体において、金属薄膜中に少なくとも窒素原子
ならびに酸素原子が含まれており、かつ該強磁性範膜中
に含まれる酸素の鉄に対する原子数比率が薄膜表面近傍
から基体へ向って漸増する、すなわち該強磁性薄膜の深
さ方向において、前記基体に近づくにつれて漸増してい
ることを特徴とする磁気記録媒体、に関する。
That is, the present invention provides a magnetic recording medium comprising a ferromagnetic metal thin film mainly made of iron formed on a nonmagnetic substrate as a magnetic layer, in which the metal thin film contains at least nitrogen atoms and oxygen atoms. and the atomic ratio of oxygen to iron contained in the ferromagnetic thin film gradually increases from near the thin film surface toward the substrate, that is, in the depth direction of the ferromagnetic thin film, gradually increases as it approaches the substrate. The present invention relates to a magnetic recording medium characterized by comprising:

本発明で云うところの鉄、窒素、酸素原子を含有する強
磁性薄膜は純鉄、窒化鉄、酸化鉄を主成分とする複雑な
混合体あるいは複合体になっているものである。例えば
窒化鉄に関して云えばg−Fe2−3N%r−Fe4N
s Fe16N2等の結晶構造を取りつるもので1、成
膜条件を制御することによりその組成、比率等をある糧
度制御しつるものである。本発明では、更に該強磁性薄
膜の深さ方向において、非磁性基体に近づくにつれ、薄
膜中に含まれる酸素原子の鉄原子に対する比率を漸増せ
しめる。但し、薄膜のごく表面については自然酸化層の
存在によシ酸素含量は増大しであるため、この領域は除
外される。この酸素の鉄に対する原子数比率は、オージ
ェ電子分光法(AES)によシ分析するととができ、そ
の深さ方向の情報を得る際には、例えばアルゴンイオン
で磁性薄膜管エツチングしつつ分析する、と−う方法が
広く知られている。
The ferromagnetic thin film containing iron, nitrogen, and oxygen atoms referred to in the present invention is a complex mixture or composite whose main components are pure iron, iron nitride, and iron oxide. For example, regarding iron nitride, g-Fe2-3N%r-Fe4N
It controls the crystal structure of Fe16N2, etc. 1, and its composition, ratio, etc. can be controlled to a certain degree by controlling the film forming conditions. In the present invention, the ratio of oxygen atoms to iron atoms contained in the ferromagnetic thin film is gradually increased as it approaches the non-magnetic substrate in the depth direction of the ferromagnetic thin film. However, since the oxygen content of the very surface of the thin film increases due to the presence of a natural oxidation layer, this region is excluded. The atomic ratio of oxygen to iron can be analyzed by Auger electron spectroscopy (AES), and to obtain information in the depth direction, for example, the analysis is performed while etching a magnetic thin film tube with argon ions. , is widely known.

非磁性基体上に、本発明の強磁性金属薄膜を形成させる
方法について以下述べる。成膜方法は周知の斜め蒸着法
による。そして、成膜時に窒化あるいは酸化反応を起こ
させるために、イオンプレーティング法との併用あるい
はイオンビーム照射との併用(いわゆるイオンビームア
シスト蒸着等)がなされる。第1図はその/例金示すも
のであり、非磁性基体2.を固定し、この上に鉄材料ψ
、全電子ビーム!、により溶解蒸発せしめて膜堆積せし
める際、同時にイオン銃!:を作動させ酸化窒化鉄膜を
形成する。イオン銃には窒素ならびに酸素原子を含有す
る7、(例えばN2ガス、NH3ガス、NOXガx、0
2ガス等の組合せ)全導入し、そのイオン、ラジカル、
原子等をイオン銃内で作りだして基体コ、上に照射せし
める。あるいはまた、ガス導入口t、よシ雰囲気ガスを
導入して反応雰囲気を変えることもできる。
A method for forming the ferromagnetic metal thin film of the present invention on a nonmagnetic substrate will be described below. The film formation method is a well-known oblique vapor deposition method. In order to cause a nitriding or oxidizing reaction during film formation, a combination of ion plating or ion beam irradiation (so-called ion beam assisted vapor deposition, etc.) is used. FIG. 1 shows an example of the non-magnetic substrate 2. is fixed, and the iron material ψ is placed on top of this.
, all electron beam! , when melting and evaporating and depositing a film, an ion gun at the same time! : to form an iron oxynitride film. The ion gun contains nitrogen and oxygen atoms (for example, N2 gas, NH3 gas, NOX gas, 0
(combination of two gases, etc.) are introduced, and their ions, radicals,
Atoms are created in an ion gun and irradiated onto the substrate. Alternatively, the reaction atmosphere can be changed by introducing an atmospheric gas through the gas inlet t.

第1図の装置において、本発明の薄膜磁性層を得るには
鉄材料≠、の蒸発速度を一定に保った上で成膜中にイオ
ン銃t、に導入されるガス二の組成を時間と共に変化せ
しめれば良い。例えば成膜初期でN2 !0係、02 
!0憾のガスで次第に02ガス混入量を減じていく、と
いう方法により作成しつる。あるいはまた、鉄材料乾の
蒸発速度は一定に保ち、かつイオン銃t、も一定に作動
させた状態でガス7、をN2ガスとした条件下において
、ガス導入口?、から導入される02ガス量を時間と共
に増大せしめる。第2図には、周知の巻き取り蒸着装置
内にイオン銃λlLt、を組み込み、窃化酸化鉄膜の作
成を可能としたものが示されて込る。この装置によれば
、基体22.が冷却ドラム23.に沿って搬送される途
中において鉄族気流ならびに窒素イオンあるいは窒素+
酸素イオン流の照射管受け、磁性膜が形成される。ここ
で、鉄材料だ、の蒸発速度を一定に保ち、かつイオン銃
鉦、の作動もN2ガスを導入しつつ一定に保ち、ガス導
入口P。
In the apparatus shown in FIG. 1, in order to obtain the thin magnetic layer of the present invention, the evaporation rate of the iron material ≠ is kept constant, and the composition of the gas 2 introduced into the ion gun t during film formation is changed over time. It would be good if we could change it. For example, at the beginning of film formation, N2! Section 0, 02
! It is created using a method of gradually reducing the amount of 02 gas mixed in with 0 gas. Alternatively, under the condition that the evaporation rate of the iron material is kept constant, the ion gun t is also operated at a constant rate, and the gas 7 is N2 gas, the gas inlet? , the amount of 02 gas introduced from , is increased over time. FIG. 2 shows a device in which an ion gun λlLt is incorporated into a well-known winding vapor deposition apparatus, thereby making it possible to create a stripped iron oxide film. According to this device, the base body 22. is the cooling drum 23. While being transported along the iron group gas flow and nitrogen ions or nitrogen +
When the irradiation tube receives the oxygen ion flow, a magnetic film is formed. Here, the evaporation rate of the iron material is kept constant, and the operation of the ion gun is also kept constant while introducing N2 gas.

より適量の酸素ガスを導入することによシ、本発明の強
磁性金属薄膜を形成せしめることができる。
By introducing a more appropriate amount of oxygen gas, the ferromagnetic metal thin film of the present invention can be formed.

本発明での磁性層の厚さは、一般にはQ、Oコル、1.
0μm1好ましくは0.0j 〜2.0μmである。
The thickness of the magnetic layer in the present invention is generally Q, Ocor, 1.
0 μm1 preferably 0.0j to 2.0 μm.

本発明で用いられる非磁性基体と・しては、ポリエチレ
ンテレフタレート、ポリイミド、ポリアミド、ポリ塩化
ビニール、三酢酸セルロース、ポリカーボネート等のプ
ラスチックが用いられる。
As the nonmagnetic substrate used in the present invention, plastics such as polyethylene terephthalate, polyimide, polyamide, polyvinyl chloride, cellulose triacetate, and polycarbonate are used.

本発明の磁気記録媒体における磁性層上に潤滑層を形成
してもよく、潤滑層としては炭素数72〜/r個の脂肪
酸、前記脂肪酸の金属塩、シリコーンオイル、炭素数2
〜20個の一塩基脂肪酸と炭素数3〜lλ個の一価アル
コールからなる脂肪酸エステル等が使用される。添加量
としては磁性層上に0 、3−20rn97m2存在さ
せるのが好ましい。
A lubricating layer may be formed on the magnetic layer in the magnetic recording medium of the present invention, and the lubricating layer may include a fatty acid having 72 to /r carbon atoms, a metal salt of the fatty acid, a silicone oil, and a silicone oil having 2 carbon atoms.
A fatty acid ester consisting of ~20 monobasic fatty acids and a monohydric alcohol having 3 to 1λ carbon atoms is used. The amount of addition is preferably 0.3-20rn97m2 on the magnetic layer.

本発明の磁気記録媒体においては、必要により非磁性基
体の愚性層側と反対の面に、1ツク層を設けてもよい。
In the magnetic recording medium of the present invention, one layer may be provided on the surface of the nonmagnetic substrate opposite to the magnetic layer side, if necessary.

また、金属薄膜の磁性層と非磁性基体との間に有機物あ
るいは無機物からなる層を設けてもよい。
Furthermore, a layer made of an organic or inorganic material may be provided between the magnetic layer of the metal thin film and the nonmagnetic substrate.

〔実施例〕〔Example〕

以下、実施例により本発明の詳細な説明するが、本発明
は下記実施例に限られるものではない。
Hereinafter, the present invention will be explained in detail with reference to examples, but the present invention is not limited to the following examples.

第1図に示した装置を用いて磁性薄膜を作成した。基体
コ、とじてはポリエチレンテレフタレートフィルム(1
3μm厚)を使用し、タタ、り4Feを電子ビーA j
、によシ溶解蒸発させた。ここで図中には明示されてい
ないが膜厚モニター(水晶発振式)によシ蒸発速度をモ
ニターLjA/S一定になるようにした。同時にカウフ
マン型イオン銃t、にN2ガスを導入し作動せしめた。
A magnetic thin film was created using the apparatus shown in FIG. The base material is polyethylene terephthalate film (1
3 μm thick), and 4Fe was heated using an electronic beam
, dissolved and evaporated. Although not clearly shown in the figure, a film thickness monitor (crystal oscillation type) was used to keep the evaporation rate constant at the monitor LjA/S. At the same time, N2 gas was introduced into the Kaufmann type ion gun and activated.

この時加速電圧0.3kV、イオン電流値ZWtAとし
、真空度はこの状態で!×10   ’forrとなる
ようし友。更に、ガス導入口ヱよ#)02ガスを導入し
た。
At this time, the acceleration voltage is 0.3 kV, the ion current value is ZWtA, and the degree of vacuum is in this state! ×10'forr friend. Furthermore, #)02 gas was introduced through the gas inlet.

まず、ガス導入口!、よりの02導入金成膜初期から成
膜終了にかけて真空度がEXlo  ’Torrから!
x10   Torrとなるよう変化せしめて厚さが2
000にとなるよう膜形成を行なった、この時できた薄
膜サンプルAt−AES分析し、膜深さ方向の元素含有
率分析全行なったところ、第3図に示すパターンが得ら
れた。次にガス導入口j、よシの02導入を成膜初期か
ら成膜終了にかけて真空度が/X10  ’Torr一
定であるよう02を導入せしめ、他の条件は同一で膜形
成を行なつ九。サンプルBとする。この薄膜AES分析
結果を第参図に示す。こうしてできた薄膜試料をto 
’Cりo4RH雰囲気下にl≠日間保存し、その後取り
だして乾燥せしめ、しかる後にスコッチテープテスト、
およびスチル測定を行なつ次。
First, the gas inlet! , the degree of vacuum from the beginning of gold film formation to the end of gold film formation is from EXlo 'Torr!
x10 Torr and the thickness is 2
000. When the resulting thin film sample was analyzed by At-AES and the element content in the depth direction of the film was completely analyzed, the pattern shown in FIG. 3 was obtained. Next, 02 was introduced through the gas inlet j so that the degree of vacuum remained constant at /X10' Torr from the beginning of film formation to the end of film formation, and film formation was carried out under the same conditions. Let's call it sample B. The results of this thin film AES analysis are shown in Figure 1. The thin film sample made in this way was
'Stored under Co4RH atmosphere for l≠ days, then taken out and dried, then tested with scotch tape.
And then perform still measurements.

スコッチテープテストは試料薄膜面上に七ロノ・ンテー
プを貼りつけ、ひきはがすことで膜のはく離の有無をみ
た。またスチール測定は試料をr■×1100tの大き
さに切り取シ前後にリーダテープを接合した上で、富士
フィルム製FUJIX−r改造の試験機にて23°C/
(IRH雰囲気下で行なった。
In the Scotch tape test, a piece of tape was pasted on the surface of the sample thin film and peeled off to see if the film had peeled off. In addition, for steel measurement, cut the sample into a size of r x 1100t, join leader tape at the front and back, and use a modified Fujifilm FUJIX-r testing machine at 23°C/
(This was carried out under an IRH atmosphere.

即ち、本発明の磁気記録媒体は長期保存後も基体と磁性
薄膜間の密着が良く、保存性に優れることがわかる。
That is, it can be seen that the magnetic recording medium of the present invention maintains good adhesion between the substrate and the magnetic thin film even after long-term storage, and has excellent storage stability.

〔発明の効果〕〔Effect of the invention〕

本発明の磁気記録媒体は耐錆性に優れると同時に、長期
保存後の基体、磁性薄膜間密着性にも優れ、保存性が顕
著に向上している。
The magnetic recording medium of the present invention has not only excellent rust resistance but also excellent adhesion between the substrate and the magnetic thin film after long-term storage, and has significantly improved storage stability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ならびに第2図は、本発明の磁気記録媒体を作成
するための装置である。 −12コニ非磁性基体   4%24t=イオン銃μ、
コア:蒸着材料    !、コt=電子ビーム!、30
:ガス導入口   23:冷却ドラム第3図は本発明の
磁気記録媒体Cサンプル人)のAESプロファイルであ
る。 第1図は比較例試作品CサンプルB)のAESプロファ
イルである。 特許出願人 富士写真フィルム株式会社第1図 第3図 第4図
1 and 2 show an apparatus for producing the magnetic recording medium of the present invention. -12coni non-magnetic substrate 4%24t=ion gun μ,
Core: Deposition material! , Kot=electron beam! , 30
:Gas inlet 23:Cooling drum FIG. 3 shows the AES profile of the magnetic recording medium C sample of the present invention. FIG. 1 shows the AES profile of comparative example prototype C sample B). Patent applicant: Fuji Photo Film Co., Ltd. Figure 1 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 非磁性基体上に形成された鉄を主材料とする強磁性金属
薄膜を磁性層として設けてなる磁気記録媒体において、
該強磁性薄膜中に少なくとも窒素原子ならびに酸素原子
が含まれ、かつ該強磁性薄膜中に含まれる酸素の鉄に対
する原子数比率が薄膜表面近傍から基体へ向つて漸増し
ていることを特徴とする磁気記録媒体。
In a magnetic recording medium in which a ferromagnetic metal thin film mainly made of iron is formed on a non-magnetic substrate as a magnetic layer,
The ferromagnetic thin film contains at least nitrogen atoms and oxygen atoms, and the atomic ratio of oxygen to iron in the ferromagnetic thin film gradually increases from near the surface of the thin film toward the substrate. magnetic recording medium.
JP7373887A 1987-03-27 1987-03-27 Magnetic recording medium Expired - Fee Related JPH0654534B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7373887A JPH0654534B2 (en) 1987-03-27 1987-03-27 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7373887A JPH0654534B2 (en) 1987-03-27 1987-03-27 Magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS63239615A true JPS63239615A (en) 1988-10-05
JPH0654534B2 JPH0654534B2 (en) 1994-07-20

Family

ID=13526878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7373887A Expired - Fee Related JPH0654534B2 (en) 1987-03-27 1987-03-27 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH0654534B2 (en)

Also Published As

Publication number Publication date
JPH0654534B2 (en) 1994-07-20

Similar Documents

Publication Publication Date Title
US4521481A (en) Magnetic recording medium
US4673610A (en) Magnetic recording medium having iron nitride recording layer
JPS63152017A (en) Magnetic recording medium
US4876113A (en) Method for producing magnetic recording media
JPS63191314A (en) Magnetic recording medium
JPS63239615A (en) Magnetic recording medium
JPH0582652B2 (en)
JPH0462163B2 (en)
JPS6154020A (en) Magnetic recording medium
JPS63237211A (en) Magnetic recording medium
JPH09320031A (en) Magnetic recording medium
JPH0451888B2 (en)
JPS6154040A (en) Manufacture of magnetic recording medium
JPS59178626A (en) Manufacture of magnetic recording medium
JPH01220216A (en) Magnetic recording medium
JPH061541B2 (en) Magnetic recording medium
JPS63241718A (en) Magnetic recording medium
JPS63241719A (en) Magnetic recording medium
JPS6154021A (en) Magnetic recording medium
JPS62285220A (en) Magnetic recording medium
JPH04238109A (en) Magnetic recording medium
JPH01224913A (en) Magnetic recording medium
JPS63152018A (en) Magnetic recording medium
JPS58108030A (en) Metallic thin film type magnetic recording medium
JPH0778866B2 (en) Magnetic recording medium

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees