JPH0654534B2 - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPH0654534B2
JPH0654534B2 JP7373887A JP7373887A JPH0654534B2 JP H0654534 B2 JPH0654534 B2 JP H0654534B2 JP 7373887 A JP7373887 A JP 7373887A JP 7373887 A JP7373887 A JP 7373887A JP H0654534 B2 JPH0654534 B2 JP H0654534B2
Authority
JP
Japan
Prior art keywords
thin film
recording medium
magnetic
magnetic recording
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7373887A
Other languages
Japanese (ja)
Other versions
JPS63239615A (en
Inventor
正 安永
明郎 矢内
幸司 笹沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP7373887A priority Critical patent/JPH0654534B2/en
Publication of JPS63239615A publication Critical patent/JPS63239615A/en
Publication of JPH0654534B2 publication Critical patent/JPH0654534B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は磁気記録媒体に関し、より詳細には錆を生じず
かつ保存性に優れた金属薄膜型の磁気記録媒体に関する
ものである。
Description: TECHNICAL FIELD The present invention relates to a magnetic recording medium, and more particularly to a metal thin film type magnetic recording medium which does not cause rust and has excellent storage stability.

〔従来の技術〕[Conventional technology]

磁気記録媒体としては、従来より強磁性体粉末を有機バ
インダー中に分散させた磁性塗料を非磁性基体上に塗布
し乾燥させて得た塗布型のものが広く使用されてきてい
る。しかしながら、この塗布型磁気記録媒体は、強磁性
体粉末として主として金属酸化物粉末を用いているため
に飽和磁化が小さく、有機バインダーを含むために磁性
層中の強磁性体の濃度を上げられず、それにより高密度
記録には適しておらず、また製造工程が複雑であるなど
の欠点を有する。
As a magnetic recording medium, a coating type one obtained by coating a non-magnetic substrate with a magnetic coating material in which a ferromagnetic powder is dispersed in an organic binder and drying it has been widely used. However, since this coating type magnetic recording medium mainly uses a metal oxide powder as the ferromagnetic powder, it has a small saturation magnetization, and since it contains an organic binder, the concentration of the ferromagnetic material in the magnetic layer cannot be increased. However, it is not suitable for high-density recording and has a drawback that the manufacturing process is complicated.

近年高密度記録への要求が高まり、これに対応して金属
薄膜を非磁性基体上に形成した磁性記録媒体が開発さ
れ、これは真空蒸着、スパツタリング、イオンプレーテ
イング等のベーパーデポジシヨン法、あるいは電気メツ
キ、無電解メツキ等のメツキ法によつて金属薄膜を非磁
性基体上に形成するもので、磁性体としては金属に限ら
れないものであるが、金属が代表的であるので、以下こ
れを有する磁気記録媒体を金属薄膜型磁気記録媒体とい
う。また、この型式のものは有機バインダーを含有しな
いので非バインダー型磁気記録媒体とも呼ばれる。
In recent years, the demand for high-density recording has increased, and in response to this, a magnetic recording medium in which a metal thin film is formed on a non-magnetic substrate has been developed. This is a vapor deposition method such as vacuum deposition, sputtering, ion plating, or A metal thin film is formed on a non-magnetic substrate by a plating method such as electric plating or electroless plating.The magnetic material is not limited to metal, but since metal is typical, The magnetic recording medium having the above is referred to as a metal thin film type magnetic recording medium. Further, since this type does not contain an organic binder, it is also called a non-binder type magnetic recording medium.

この金属薄膜型磁気記録媒体においては飽和磁化の大き
い強磁性金属をバインダーを含有しない状態で薄膜とし
て形成させることができるので、塗布型に比して高保磁
力化と薄膜化が行われ、かつ短波長域での減磁の影響が
小さく高密度記録が実現され、しかも製造工程が簡単化
されるため、注目を集めている。
In this metal thin film magnetic recording medium, a ferromagnetic metal having a large saturation magnetization can be formed as a thin film without containing a binder. It is attracting attention because it has little effect of demagnetization in the wavelength range, realizes high-density recording, and simplifies the manufacturing process.

しかし、金属薄膜型磁気記録媒体の金属薄膜は見かけは
均一で平滑な金属の面を有しているが、微細構造では粗
なもので金属微粒子が並んでいるような構造を有してい
るために、腐蝕され易く、このためこの型の磁気記録媒
体は塗布型磁気記録媒体と比較して耐候性及び耐蝕性が
劣つている。特にカセツトテープやビデオテープ等とし
て用いられる磁気記録媒体は記録、再生時に該媒体表面
が磁気ヘツドで擦られるため、金属薄膜上に極めてわず
かに腐蝕物が存在していても、摩擦によりそれが脱落し
てヘツドに目詰りが生じ、それによりヘツド及び磁気記
録媒体に傷がつく。
However, although the metal thin film of the metal thin film magnetic recording medium has a smooth and smooth metal surface in appearance, it has a rough fine structure and a structure in which fine metal particles are lined up. In addition, this type of magnetic recording medium is inferior in weather resistance and corrosion resistance as compared with the coating type magnetic recording medium. In particular, magnetic recording media used as cassette tapes, video tapes, etc., rub against the surface of the media during recording and reproduction, so even if there is a very slight amount of corroded material on the metal thin film, it will fall off due to friction. As a result, the head is clogged, which damages the head and the magnetic recording medium.

さらに、金属薄膜型磁気記録媒体は耐久性が劣るという
問題がある。この型の磁気記録媒体では金属薄膜が平滑
であるため摩擦が大きくハリツキを起り易いなどの問題
があり、VTRにおけるスチル耐久性等において塗布型
のものに比して劣つている。
Further, the metal thin film type magnetic recording medium has a problem of poor durability. This type of magnetic recording medium has a problem that since the metal thin film is smooth, it causes large friction and is likely to cause fracturing, and it is inferior to the coating type in the still durability of the VTR.

このような金属薄膜型磁気記録媒体の耐候性及び耐久性
を改良するために、イオンプレーテイングにより表面窒
化処理を施す方法(特開昭50−33806号)、スパ
ツタリングにより窒化ケイ素膜を設ける方法(特開昭5
3−30304号)、磁性膜を窒素ガス等の雰囲気中で
の放電にさらして非磁性表面層を形成する方法(特開昭
53−85403号)、磁性金属薄膜上に窒化された金
属薄膜を設ける方法(特開昭54−143111号)、
等が知られている。また、耐候性にすぐれた非バインダ
ー型磁気記録媒体としてヨーロッパ特許8328号、或
いは特開昭59−87809号に開示されているような
窒化鉄或いは鉄及び窒化鉄よりなる磁性薄膜がある。さ
らに、本出願人は先に非磁性基体上に酸化窒化鉄を主成
分とする磁性薄膜を設けてなる磁気記録媒体(特開昭6
1−54023号)を提案し、この磁性薄膜は次の組成
式 Fe1-X-Y (ただし、式中0.25≦X+Y≦0.60である) で表わされる組成を有するものであつた。
In order to improve the weather resistance and durability of such a metal thin film type magnetic recording medium, a method of performing surface nitriding treatment by ion plating (Japanese Patent Laid-Open No. 33806/1975) and a method of forming a silicon nitride film by sputtering ( JP-A-5
3-30304), a method of forming a non-magnetic surface layer by exposing a magnetic film to an electric discharge in an atmosphere such as nitrogen gas (JP-A-53-85403), and a metal thin film nitrided on a magnetic metal thin film. A method of providing (JP-A-54-143111),
Etc. are known. Further, as a non-binder type magnetic recording medium having excellent weather resistance, there is a magnetic thin film made of iron nitride or iron and iron nitride as disclosed in European Patent No. 8328 or JP-A-59-87809. Further, the applicant of the present invention previously disclosed a magnetic recording medium comprising a magnetic thin film containing iron oxynitride as a main component on a non-magnetic substrate (Japanese Patent Laid-Open No. Sho 6-62).
1-54023), the magnetic thin film has a composition represented by the following composition formula: Fe 1-XY N X O Y (where 0.25 ≦ X + Y ≦ 0.60). Atsuta

〔本発明が解決しようとする問題点〕[Problems to be Solved by the Present Invention]

しかしながら前述の方法によれば、耐錆性は大きく向上
するものの、保存性に問題がある。すなわち、保存経時
させた後の基体と薄膜間の密着が不充分であり、改良を
望まれていた。
However, according to the above-mentioned method, although the rust resistance is greatly improved, there is a problem in storage stability. That is, the adhesion between the substrate and the thin film after storage and storage is insufficient, and improvement has been desired.

したがつて本発明の目的は、保存性にすぐれる磁気記録
媒体を提供するにある。
Therefore, an object of the present invention is to provide a magnetic recording medium having excellent storability.

〔問題点を解決するための手段〕[Means for solving problems]

すなわち、本発明は、非磁性基体上に形成された鉄を主
材料とする強磁性金属薄膜を磁性層として設けてなる磁
気記録媒体において、金属薄膜中に少なくとも窒素原子
ならびに酸素原子が含まれており、かつ該強磁性範膜中
に含まれる酸素の鉄に対する原子数比率が薄膜表面近傍
から基体へ向つて漸増する、すなわち該強磁性薄膜の深
さ方向において、前記基体に近づくにつれて漸増してい
ることを特徴とする磁気記録媒体、に関する。
That is, the present invention provides a magnetic recording medium provided with a ferromagnetic metal thin film mainly composed of iron formed on a non-magnetic substrate as a magnetic layer, wherein the metal thin film contains at least nitrogen atoms and oxygen atoms. And the atomic number ratio of oxygen to iron contained in the ferromagnetic film gradually increases from the vicinity of the surface of the thin film toward the substrate, that is, in the depth direction of the ferromagnetic thin film, gradually increases toward the substrate. And a magnetic recording medium characterized by the fact that

本発明で云うところの鉄、窒素、酸素原子を含有する強
磁性薄膜は純鉄、窒化鉄、酸化鉄を主成分とする複雑な
混合体あるいは複合体になつているものである。例えば
窒化鉄に関して云えばε−Fe2-3N、γ−Fe4N、Fe
16等の結晶構造を取りうるものであり、成膜条件を
制御することによりその組成、比率等をある程度制御し
うるものである。本発明では、更に該強磁性薄膜の深さ
方向において、非磁性基体に近づくにつれ、薄膜中に含
まれる酸素原子の鉄原子に対する比率を漸増せしめる。
但し、薄膜のごく表面については自然酸化層の存在によ
り酸素含量は増大してあるため、この領域は除外され
る。この酸素の鉄に対する原子数比率は、オージエ電子
分光法(AES)により分析することができ、その深さ
方向の情報を得る際には、例えばアルゴンイオンで磁性
薄膜をエツチングしつつ分析する、という方法が広く知
られている。
The ferromagnetic thin film containing iron, nitrogen, and oxygen atoms referred to in the present invention is a complex mixture or composite containing pure iron, iron nitride, and iron oxide as main components. For example, with respect to iron nitride, ε-Fe 2-3 N, γ-Fe 4 N, Fe
It can have a crystal structure such as 16 N 2 , and its composition and ratio can be controlled to some extent by controlling the film forming conditions. In the present invention, in the depth direction of the ferromagnetic thin film, the ratio of oxygen atoms contained in the thin film to iron atoms is gradually increased toward the non-magnetic substrate.
However, in the very surface of the thin film, the oxygen content is increased due to the presence of the natural oxide layer, and thus this region is excluded. The atomic ratio of oxygen to iron can be analyzed by Auger electron spectroscopy (AES). When obtaining information in the depth direction, for example, the magnetic thin film is etched while being etched with argon ions. The method is widely known.

非磁性基体上に、本発明の強磁性金属薄膜を形成させる
方法について以下述べる。成膜方法は周知の斜め蒸着法
による。そして、成膜時に窒化あるいは酸化反応を起こ
させるために、イオンプレーテイング法との併用あるい
はイオンビーム照射との併用(いわゆるイオンビームア
シスト蒸着等)がなされる。第1図はその1例を示すも
のであり、非磁性基体2.を固定し、この上に鉄材料
4.を電子ビーム5.により溶解蒸発せしめて膜堆積せ
しめる際、同時にイオン銃6.を作動させ酸化窒化鉄膜
を形成する。イオン銃には窒素ならびに酸素原子を有す
7.(例えばNガス、NHガス、NOガス、O
ガス等の組合せ)を導入し、そのイオン、ラジカル、
原子等をイオン銃内で作りだして基体2.上に照射せし
める。あるいはまた、ガス導入口8.より雰囲気ガスを
導入して反応雰囲気を変えることもできる。
The method for forming the ferromagnetic metal thin film of the present invention on a non-magnetic substrate will be described below. The film forming method is the well-known oblique deposition method. Then, in order to cause a nitriding or oxidation reaction at the time of film formation, a combination with an ion plating method or a combination with ion beam irradiation (so-called ion beam assisted vapor deposition or the like) is performed. FIG. 1 shows an example of the nonmagnetic substrate 2. Fixed, and iron material on this 4. Electron beam 5. At the same time when the film is deposited by dissolving and evaporating by means of the ion gun 6. To form an iron oxynitride film. Ion gun has nitrogen and oxygen atoms 7. (For example, N 2 gas, NH 3 gas, NO X gas, O
2 gas, etc.) is introduced, and its ions, radicals,
1. Bases made by creating atoms in an ion gun. Irradiate on top. Alternatively, gas inlet 8. It is also possible to change the reaction atmosphere by introducing more atmosphere gas.

第1図の装置において、本発明の薄膜磁性層を得るには
鉄材料4.の蒸発速度を一定に保つた上で成膜中にイオ
ン銃6.に導入されるガス7.の組成を時間と共に変化
せしめれば良い。例えば成膜初期でN50%、O
0%のガスで次第にOガス混入量を減じていく、とい
う方法により作成しうる。あるいはまた、鉄材料4.の
蒸発速度は一定に保ち、かつイオン銃6.も一定に作動
させた状態でガス7.をNガスとした条件下におい
て、ガス導入口8.から導入されるOガス量を時間と
共に増大せしめる。第2図には、周知の巻き取り蒸着装
置内にイオン銃24.を組み込み、窒化酸化鉄膜の作成
を可能としたものが示されている。この装置によれば、
基体22.が冷却ドラム23.に沿つて搬送される途中
において鉄蒸気流ならびに窒素イオンあるいは窒素+酸
素イオン流の照射を受け、磁性膜が形成される。ここ
で、鉄材料27.の蒸発速度を一定に保ち、かつイオン
24.の作動もNガスを導入しつつ一定に保ち、ガ
ス導入口30.より適量の酸素ガスを導入することによ
り、本発明の強磁性金属薄膜を形成せしめることができ
る。
In the apparatus shown in FIG. 1, an iron material is used to obtain the thin film magnetic layer of the present invention. Ion gun during film formation while keeping the evaporation rate of 6 constant. Gas introduced into 7. The composition of can be changed with time. For example, N 2 50%, O 2 5
It can be prepared by a method of gradually reducing the amount of O 2 gas mixed with 0% gas. Alternatively, the iron material 4. Keep the evaporation rate constant and keep the ion gun 6. Gas in the state where it is also operated constantly 7. Under the condition that N 2 gas is used, the gas inlet 8. The amount of O 2 gas introduced from is increased with time. In FIG. 2, an ion gun 24. Is incorporated to enable the production of iron oxynitride film. According to this device,
Substrate 22. Cooling drum 23. A magnetic film is formed by being irradiated with the iron vapor flow and the nitrogen ion or nitrogen + oxygen ion flow while being transported along the. Here, the iron material 27 . Of the ion gun 24 . The operation of the gas introduction port 30. is maintained constant while introducing N 2 gas. The ferromagnetic metal thin film of the present invention can be formed by introducing a more appropriate amount of oxygen gas.

本発明での磁性層の厚さは、一般には0.02〜5.0
μm、好ましくは0.05〜2.0μmである。
The thickness of the magnetic layer in the present invention is generally 0.02 to 5.0.
μm, preferably 0.05 to 2.0 μm.

本発明で用いられる非磁性基体としては、ポリエチレン
テレフタレート、ポリイミド、ポリアミド、ポリ塩化ビ
ニール、三酢酸セルロース、ポリカーボネート等のプラ
スチツクが用いられる。
As the non-magnetic substrate used in the present invention, plastics such as polyethylene terephthalate, polyimide, polyamide, polyvinyl chloride, cellulose triacetate and polycarbonate are used.

本発明の磁気記録媒体における磁性層上に潤滑層を形成
してもよく、潤滑層としては炭素数12〜18個の脂肪
酸、前記脂肪酸の金属塩、シリコーンオイル、炭素数2
〜20個の一塩基脂肪酸と炭素数3〜12個の一価アル
コールからなる脂肪酸エステル等が使用される。添加量
としては磁性層上に0.5〜20mg/m存在させるの
が好ましい。
A lubricating layer may be formed on the magnetic layer in the magnetic recording medium of the present invention. As the lubricating layer, a fatty acid having 12 to 18 carbon atoms, a metal salt of the fatty acid, silicone oil, and 2 carbon atoms are used.
The fatty acid ester etc. which consist of -20 monobasic fatty acid and C3-C12 monohydric alcohol are used. The addition amount is preferably 0.5 to 20 mg / m 2 on the magnetic layer.

本発明の磁気記録媒体においては、必要により非磁性基
体の磁性層側と反対の面にパツク層を設けてもよい。
In the magnetic recording medium of the present invention, a packing layer may be provided on the surface of the non-magnetic substrate opposite to the magnetic layer side, if necessary.

また、金属薄膜の磁性層と非磁性基体との間に有機物あ
るいは無機物からなる層を設けてもよい。
Further, a layer made of an organic substance or an inorganic substance may be provided between the magnetic layer of the metal thin film and the non-magnetic substrate.

〔実施例〕〔Example〕

以下、実施例により本発明を詳細に説明するが、本発明
は下記実施例に限られるものではない。
Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited to the following Examples.

第1図に示した装置を用いて磁性薄膜を作成した。基体
2.としてはポリエチレンテレフタレートフイルム(1
3μm厚)を使用し、99.9%Feを電子ビーム5.
により溶解蒸発させた。ここで図中には明示されていな
いが膜厚モニター(水晶発振式)により蒸発速度をモニ
ターし5Å/S一定になるようにした。同時にカウフマ
ン型イオン銃6.にNガスを導入し作動せしめた。こ
の時加速電圧0.3kV、イオン電流値5mAとし、真
空度はこの状態で5×10−5Torrとなるようした。
更に、ガス導入口よりOガスを導入した。まず、ガ
ス導入口8.よりのO導入を成膜初期から成膜終了に
かけて真空度が3×10−4Torrから5×10−5To
rrとなるよう変化せしめて厚さが2000Åとなるよう
膜形成を行なつた。この時できた薄膜サンプルAをAE
S分析し、膜深さ方向の元素含有率分析を行なつたとこ
ろ、第3図に示すパターンが得られた。次にガス導入口
8.よりのO導入を成膜初期から成膜終了にかけて真
空度が1×10−4Torr一定であるようOを導入せ
しめ、他の条件は同一で膜形成を行なつた。サンプルB
とする。この薄膜AES分析結果を第4図に示す。こう
してできた薄膜試料を60℃90%RH雰囲気下に14
日間保存し、その後取りだして乾燥せしめ、しかる後に
スコツチテープテスト、およびスチル測定を行なつた。
スコツチテープテストは試料薄膜面上にセロハンテープ
を貼りつけ、ひきはがすことで膜のはく離の有無をみ
た。またスチール測定は試料を8mm×100mmの大きさ
に切り取り前後にリーダテープを接合した上で、富士フ
イルム製FLJIX−8改造の試験機にて23℃10%
RH雰囲気下で行なつた。
A magnetic thin film was prepared using the apparatus shown in FIG. Substrate 2. Polyethylene terephthalate film (1
3 μm thick) and 99.9% Fe by electron beam 5.
Dissolved and evaporated by. Although not explicitly shown in the figure, the evaporation rate was monitored by a film thickness monitor (quartz oscillation type) so as to be constant at 5Å / S. At the same time Kaufman type ion gun 6. N 2 gas was introduced into the reactor to activate it. At this time, the accelerating voltage was 0.3 kV and the ion current value was 5 mA, and the degree of vacuum was 5 × 10 −5 Torr in this state.
Further, O 2 gas was introduced from the gas introduction port 8 . First, gas inlet 8. The introduction of O 2 from the beginning to the end of the film formation has a degree of vacuum of 3 × 10 −4 Torr to 5 × 10 −5 Tor.
The thickness was changed to rr, and the film was formed to a thickness of 2000Å. The thin film sample A produced at this time was AE
When S analysis and element content analysis in the film depth direction were performed, the pattern shown in FIG. 3 was obtained. Next is the gas inlet
8. O 2 was introduced so that the degree of vacuum was 1 × 10 −4 Torr from the beginning of film formation to the end of film formation, and O 2 was introduced under the same other conditions. Sample B
And The results of this thin film AES analysis are shown in FIG. The thin film sample prepared in this way was placed in an atmosphere of 60 ° C and 90% RH for 14
It was stored for a day, then taken out and dried, and then the Scott tape test and the still measurement were performed.
In the Scottish tape test, cellophane tape was attached on the thin film surface of the sample, and peeled off to see if the film was peeled. For steel measurement, a sample is cut into a size of 8 mm x 100 mm, a leader tape is joined before and after cutting, and the temperature is 23% at 10% with a testing machine modified by FLJIX-8 manufactured by Fuji Film.
It was performed under an RH atmosphere.

即ち、本発明の磁気記録媒体は長期保存後も基体と磁性
薄膜間の密着が良く、保存性に優れることがわかる。
That is, it can be seen that the magnetic recording medium of the present invention has good adhesion between the substrate and the magnetic thin film even after long-term storage, and is excellent in storability.

〔発明の効果〕〔The invention's effect〕

本発明の磁気記録媒体は耐錆性に優れると同時に、長期
保存後の基体、磁性薄膜間密着性にも優れ、保存性が顕
著に向上している。
The magnetic recording medium of the present invention is excellent not only in rust resistance but also in the adhesion between the substrate and the magnetic thin film after long-term storage, and the storage stability is remarkably improved.

【図面の簡単な説明】[Brief description of drawings]

第1図ならびに第2図は、本発明の磁気記録媒体を作成
するための装置である。 2、22:非磁性基体、6、24:イオン銃 4、27:蒸着材料、5、28:電子ビーム 8、30:ガス導入口、23:冷却ドラム 第3図は本発明の磁気記録媒体(サンプルA)のAES
プロフアイルである。 第4図は比較例試作品(サンプルB)のAESプロフア
イルである。
1 and 2 show an apparatus for producing the magnetic recording medium of the present invention. 2, 22: Non-magnetic substrate, 6, 24: Ion gun 4, 27: Evaporation material, 5, 28: Electron beam 8, 30: Gas inlet, 23: Cooling drum FIG. 3 shows the magnetic recording medium of the present invention ( AES of sample A)
It is a profile. FIG. 4 is an AES profile of a comparative sample (sample B).

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】非磁性基体上に形成された鉄を主材料とす
る強磁性金属薄膜を磁性層として設けてなる磁気記録媒
体において、該強磁性薄膜中に少なくとも窒素原子なら
びに酸素原子が含まれ、かつ該強磁性薄膜中に含まれる
酸素の鉄に対する原子数比率が薄膜表面近傍から基体へ
向つて漸増していることを特徴とする磁気記録媒体。
1. A magnetic recording medium comprising, as a magnetic layer, a ferromagnetic metal thin film composed mainly of iron formed on a non-magnetic substrate, wherein the ferromagnetic thin film contains at least nitrogen atoms and oxygen atoms. A magnetic recording medium characterized in that the atomic ratio of oxygen to iron contained in the ferromagnetic thin film gradually increases from near the surface of the thin film toward the substrate.
JP7373887A 1987-03-27 1987-03-27 Magnetic recording medium Expired - Fee Related JPH0654534B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7373887A JPH0654534B2 (en) 1987-03-27 1987-03-27 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7373887A JPH0654534B2 (en) 1987-03-27 1987-03-27 Magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS63239615A JPS63239615A (en) 1988-10-05
JPH0654534B2 true JPH0654534B2 (en) 1994-07-20

Family

ID=13526878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7373887A Expired - Fee Related JPH0654534B2 (en) 1987-03-27 1987-03-27 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH0654534B2 (en)

Also Published As

Publication number Publication date
JPS63239615A (en) 1988-10-05

Similar Documents

Publication Publication Date Title
US4521481A (en) Magnetic recording medium
JPH061551B2 (en) Method of manufacturing magnetic recording medium
JPS63152017A (en) Magnetic recording medium
US4990361A (en) Method for producing magnetic recording medium
US4536443A (en) Magnetic recording medium
US4873154A (en) Magnetic recording medium containing Fe, Co, N and O
US4876113A (en) Method for producing magnetic recording media
JPH0654534B2 (en) Magnetic recording medium
JPH0219524B2 (en)
US4588636A (en) Magnetic recording medium
JPH0582652B2 (en)
JPS63237211A (en) Magnetic recording medium
JPH0654535B2 (en) Magnetic recording medium
JPH07122930B2 (en) Magnetic recording medium
US20040052935A1 (en) Magnetic thin film and production method therefor
JPH01220216A (en) Magnetic recording medium
JPS62185246A (en) Production of magnetic recording medium
JPH083902B2 (en) Method for manufacturing thin film magnetic recording medium
JPH0778866B2 (en) Magnetic recording medium
JPH06309665A (en) Production of magnetic recording medium
JPH01224913A (en) Magnetic recording medium
JPS6015818A (en) Magnetic recording medium
JPS621121A (en) Production of magnetic recording medium
JPH061541B2 (en) Magnetic recording medium
JPS6154040A (en) Manufacture of magnetic recording medium

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees