JPS63239306A - Muffler made of heat resistant epoxy resin - Google Patents
Muffler made of heat resistant epoxy resinInfo
- Publication number
- JPS63239306A JPS63239306A JP5597187A JP5597187A JPS63239306A JP S63239306 A JPS63239306 A JP S63239306A JP 5597187 A JP5597187 A JP 5597187A JP 5597187 A JP5597187 A JP 5597187A JP S63239306 A JPS63239306 A JP S63239306A
- Authority
- JP
- Japan
- Prior art keywords
- epoxy resin
- muffler
- resistant epoxy
- heat
- curing agent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003822 epoxy resin Substances 0.000 title claims abstract description 41
- 229920000647 polyepoxide Polymers 0.000 title claims abstract description 41
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 22
- 239000000126 substance Substances 0.000 claims abstract description 16
- 238000002485 combustion reaction Methods 0.000 claims abstract description 7
- 238000010438 heat treatment Methods 0.000 claims abstract description 6
- 230000003584 silencer Effects 0.000 claims description 16
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 claims description 6
- 150000008065 acid anhydrides Chemical class 0.000 claims description 3
- 238000004880 explosion Methods 0.000 claims description 3
- 239000010445 mica Substances 0.000 claims description 3
- 229910052618 mica group Inorganic materials 0.000 claims description 3
- 229910052582 BN Inorganic materials 0.000 claims description 2
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 2
- -1 amine compounds Chemical class 0.000 claims description 2
- 229920005989 resin Polymers 0.000 claims description 2
- 239000011347 resin Substances 0.000 claims description 2
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 2
- 239000000454 talc Substances 0.000 claims description 2
- 229910052623 talc Inorganic materials 0.000 claims description 2
- 229910000831 Steel Inorganic materials 0.000 abstract description 7
- 239000010959 steel Substances 0.000 abstract description 7
- 229910001220 stainless steel Inorganic materials 0.000 abstract description 5
- 239000010935 stainless steel Substances 0.000 abstract description 5
- 239000011521 glass Substances 0.000 abstract description 4
- 238000000034 method Methods 0.000 abstract description 4
- 229920001971 elastomer Polymers 0.000 abstract description 3
- 238000000465 moulding Methods 0.000 abstract description 3
- 230000008569 process Effects 0.000 abstract description 2
- 230000015572 biosynthetic process Effects 0.000 abstract 2
- 238000013016 damping Methods 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 10
- ULKLGIFJWFIQFF-UHFFFAOYSA-N 5K8XI641G3 Chemical compound CCC1=NC=C(C)N1 ULKLGIFJWFIQFF-UHFFFAOYSA-N 0.000 description 6
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 230000007704 transition Effects 0.000 description 5
- 239000011358 absorbing material Substances 0.000 description 4
- 239000010425 asbestos Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000011491 glass wool Substances 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 238000005192 partition Methods 0.000 description 3
- 229910052895 riebeckite Inorganic materials 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000001743 silencing effect Effects 0.000 description 2
- LTVUCOSIZFEASK-MPXCPUAZSA-N (3ar,4s,7r,7as)-3a-methyl-3a,4,7,7a-tetrahydro-4,7-methano-2-benzofuran-1,3-dione Chemical compound C([C@H]1C=C2)[C@H]2[C@H]2[C@]1(C)C(=O)OC2=O LTVUCOSIZFEASK-MPXCPUAZSA-N 0.000 description 1
- WZCQRUWWHSTZEM-UHFFFAOYSA-N 1,3-phenylenediamine Chemical compound NC1=CC=CC(N)=C1 WZCQRUWWHSTZEM-UHFFFAOYSA-N 0.000 description 1
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 description 1
- 241000238557 Decapoda Species 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 239000004841 bisphenol A epoxy resin Substances 0.000 description 1
- 239000004842 bisphenol F epoxy resin Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical group OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229920003986 novolac Polymers 0.000 description 1
- 239000004843 novolac epoxy resin Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
Landscapes
- Exhaust Silencers (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は自動車等の内燃機関に装着されて、該内燃機関
の発生する排気ガスを通過さU・ながら排気音を減衰さ
せる排気消音器に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an exhaust muffler that is attached to an internal combustion engine of an automobile or the like and attenuates exhaust noise while passing exhaust gas generated by the engine. be.
従来の技術
一般に内燃機関から排出される高温高圧のガスをそのま
ま大気中に放出すると、急激に膨張して大きな騒音を発
するので、排気ガスの通路内に通常マフラーと呼称され
る消音器を介挿して排気ガスの圧力変化を平均化させ、
なめらかな気流として大気中に放出するようにしている
。上記の消音器は排気ガスの人力管と出力管を備えた略
円筒状又は角筒状のマフラー本体を備え、更には該マフ
ラー本体の内部を小室に仕切って、この小室に排気ガス
を順次通過させることによってガス圧を下げ、略均圧の
ガス流として外部へ放散することによってエンジン等の
爆発音を押さえることができろ。尚マフラー本体の内方
に吸音材を添着して防音効果を高める手段も用いられて
いる。Conventional Technology Generally speaking, if high-temperature, high-pressure gas discharged from an internal combustion engine is released directly into the atmosphere, it expands rapidly and makes a lot of noise, so a muffler, usually called a muffler, is inserted in the exhaust gas passage. to average the exhaust gas pressure changes,
It is released into the atmosphere as a smooth airflow. The above-mentioned muffler has a substantially cylindrical or rectangular muffler body equipped with a man-powered pipe and an output pipe for the exhaust gas, and further divides the inside of the muffler body into small chambers, through which the exhaust gas sequentially passes. By lowering the gas pressure and dissipating it to the outside as a nearly equal-pressure gas flow, it is possible to suppress the explosion noise of engines, etc. Additionally, a method of increasing the soundproofing effect by attaching a sound absorbing material to the inside of the muffler body is also used.
発明が解決しようとする問題点
しかしながらこのような従来の消音器にあっては前記マ
フラー本体がM仮又はステンレス等の金属材料を用いて
構成されており、これら金属材料自体には吸音効果が非
常に少ないため、消音器自体の吸音特性が所定の領域内
に制限されてしまうという問題点があった。即ち排気ガ
スの気流騒音は高速排気流がマフラー本体の壁面に衝突
して発生する消音器内騒音と、マフラー本体から大気中
へ放出される際の膨張に起因する噴流騒音とが考えられ
るが、上記消音器内騒音は排気流の金属への衝突と、特
定の周波数での共鳴現象により増幅されるものである。Problems to be Solved by the Invention However, in such conventional mufflers, the muffler body is constructed using metal materials such as M temporary or stainless steel, and these metal materials themselves have very poor sound absorbing effects. Therefore, there was a problem in that the sound absorption characteristics of the muffler itself were limited within a predetermined area. In other words, exhaust gas airflow noise can be thought of as noise inside the muffler, which is generated when the high-speed exhaust flow collides with the wall of the muffler body, and jet noise caused by expansion when it is released into the atmosphere from the muffler body. The above-mentioned noise inside the muffler is amplified by the collision of the exhaust flow with the metal and the resonance phenomenon at a specific frequency.
しかし鋼板又はステンレス等の金属は吸音効果が非常に
少ない上に共鳴音を低減する作用がないので、前記消音
器内騒音を下げることができない。However, metals such as steel plates or stainless steel have very little sound absorption effect and do not have the effect of reducing resonance sound, so it is not possible to reduce the noise inside the muffler.
一層マフラー本体の内方へ吸音材としてグラスウール又
は石綿を添着すれば、該吸音材の作用によって前記共鳴
音を吸収することかできるが、これらグラスウール、石
綿等は空中に放散、されて大気を汚し、作業者の健康を
害するなどの公害源となる虞れがあるため使用上の問題
点がある。尚前記鋼板及びステンレス等の金属は何れも
重量が大であるため、マフラー本体の重量も大となって
しまう難点も存している。If glass wool or asbestos is attached inside the muffler body as a sound absorbing material, the resonance sound can be absorbed by the action of the sound absorbing material, but these glass wool, asbestos, etc. are emitted into the air and pollute the atmosphere. However, there is a problem in its use because it may become a source of pollution, such as harming the health of workers. Incidentally, since the steel plates and metals such as stainless steel are both heavy, there is also the drawback that the weight of the muffler body is also large.
そ、二で本発明はこのような従来の消音器が有している
問題点を解消して、特に前記消音器内騒音を低減するこ
とにより、消音効果をより一層向上させた消音器の提供
を目的とするものである。Second, the present invention solves the problems that conventional silencers have, and provides a silencer that further improves the silencing effect by particularly reducing the noise inside the silencer. The purpose is to
問題点を解決するための手段
内燃機関から発生する排気ガスをマフラー本体の入力管
から出力管へ順次通過させて、内燃機関の爆発にともな
う排気騒音を消音させるようにした消音器にお1Jる前
記マフラー本体を、エポキシ樹脂に硬化剤及び無機物質
の一種又は二種以上が添加されて、所定の加熱処理を施
して架橋を密にして得られる耐熱性エポキシ樹脂を用い
て成形加工しである。Means for Solving the Problem: The exhaust gas generated from the internal combustion engine is passed sequentially from the input pipe to the output pipe of the muffler body, and a silencer is used to muffle the exhaust noise caused by the explosion of the internal combustion engine. The muffler body is molded using a heat-resistant epoxy resin obtained by adding one or more of a curing agent and an inorganic substance to an epoxy resin and subjecting it to a predetermined heat treatment to form a dense crosslink. .
作用
マフラー本体を構成する耐熱性エポキシ樹脂は、一定の
高温状態でガラス領域から粘弾性領域を経てゴム領域へ
と変化し、その際に弾性率が変化して特定周波数の騒音
を吸収する作用がもたらされる。上記粘弾性領域への変
位点は自在に変更することができて、その結果任意の周
波数帯にある排気エネルギーを低減して騒音を吸収する
ことが可能となる。Function The heat-resistant epoxy resin that makes up the muffler body changes from a glass region to a viscoelastic region to a rubber region at a certain high temperature, and at that time, the elastic modulus changes and it has the effect of absorbing noise at a specific frequency. brought about. The point of displacement to the viscoelastic region can be changed freely, and as a result, it becomes possible to reduce exhaust energy in any frequency band and absorb noise.
実施例
以下図面を参照して本発明に係る耐熱性エポキシ樹脂を
用いた消音器の各種実施例を説明する。Examples Various examples of a silencer using a heat-resistant epoxy resin according to the present invention will be described below with reference to the drawings.
第1図は本発明の基本的実施例であり、図中1は円筒状
又は角筒状を有するマフラー本体であって、該マフラー
本体lの両端部に排気ガスの入力管2及び出力管3が連
結された鏡板4.5が連結されている。上記のマフラー
本体l及び鏡板4゜5は、従来の鋼板又はステンレスに
代えて耐熱性エポキシ樹脂を用いて加工成形されている
。FIG. 1 shows a basic embodiment of the present invention. In the figure, reference numeral 1 indicates a muffler body having a cylindrical or square tube shape, and an input pipe 2 and an output pipe 3 for exhaust gas are provided at both ends of the muffler body l. A mirror plate 4.5 is connected to the end plate 4.5. The muffler main body 1 and end plate 4.5 are molded using heat-resistant epoxy resin instead of conventional steel plate or stainless steel.
第2図は本発明の第2実施例であり、前記鏡板5に連結
した出力管3の先端をマフラー本体1の内方にまで延長
して、耐熱性エポキシ樹脂で成る衝突板6を固定しであ
る。従って排気ガスは矢印に示した如く衝突板6に衝突
した後迂回して出力管3の孔3aから大気中へ抜ける。FIG. 2 shows a second embodiment of the present invention, in which the tip of the output pipe 3 connected to the end plate 5 is extended to the inside of the muffler body 1, and a collision plate 6 made of heat-resistant epoxy resin is fixed. It is. Therefore, after colliding with the collision plate 6 as shown by the arrow, the exhaust gas takes a detour and escapes into the atmosphere through the hole 3a of the output pipe 3.
第3図は本発明の第3実施例であり、マフラー本体l内
に隔壁7を設けて該マフラー本体内を小室8.小室9に
分割形成し、鏡板4に連結した入力管2を小室9に延長
するとともに鏡板5に連結した出力管3を小室8に延長
しである。更に隔壁7に小室8.9を結ぶ連通管lOを
設けである。本実施例の場合、マフラー本体l、鏡板4
,5のみならず、入力管2.出力管3及び連通管lOを
すべて耐熱性エポキシ樹脂を用いて構成したことが特徴
となっている。FIG. 3 shows a third embodiment of the present invention, in which a partition wall 7 is provided in the muffler main body l, and a small chamber 8. The input pipe 2 connected to the end plate 4 is extended to the small chamber 9, and the output pipe 3 connected to the end plate 5 is extended to the small room 8. Further, the partition wall 7 is provided with a communication pipe 1O connecting the small chambers 8.9. In the case of this embodiment, the muffler body l, the mirror plate 4
, 5 as well as the input tube 2. A feature is that the output tube 3 and the communication tube 10 are all constructed using heat-resistant epoxy resin.
本発明で採用した耐熱性エポキシ樹脂の製法に、関して
以下に説明する。The method for producing the heat-resistant epoxy resin employed in the present invention will be described below.
本発明において基材として用いられるエポキシ樹脂とは
、1分子中に少なくとも2個のエポキシ基を有する化合
物であり、代表例としてはビスフェノールA型エポキシ
樹脂、ビスフェノールF型エポキシ樹脂、ノボラック型
エポキシ樹脂等が挙げられる。The epoxy resin used as a base material in the present invention is a compound having at least two epoxy groups in one molecule, and typical examples include bisphenol A epoxy resin, bisphenol F epoxy resin, novolac epoxy resin, etc. can be mentioned.
上記の基材中に硬化剤としてMIIA (無水メチルナ
ジック酸)等の酸無水物、トリエチレンテトラミン、メ
タフェニレンジアミン、エボメート等の脂肪族、芳香族
、脂環族のアミン系化合物及びその誘導体、2−エチル
−4−メチルイミダゾール等のイミダゾールを添加した
後、必要に応じて硬化促進剤を添加し、更にマイカ、酸
化硅素、窒化ボロン、タルクから選択された無機物質の
一種又は二種以上を添加した後、鋳型に流し込み、真空
炉で脱泡した後、加熱処理する。加熱処理温度は、硬化
剤の種類によって異なるので一概には決められないが、
例えば硬化剤が酸無水物の場合には、約120℃で2時
間加熱処理し、更に養生のために約200℃で4〜8時
間保持する。又硬化剤が脂肪族アミンである場合には約
30〜50℃で2〜3時間加熱処理し、養生のために約
100℃の温度で1〜4時間保持し、冷却することによ
って本発明で採用した耐熱性エポキシ樹脂が得られる。In the above base material, as a curing agent, an acid anhydride such as MIIA (methylnadic anhydride), an aliphatic, aromatic, or alicyclic amine compound such as triethylenetetramine, metaphenylenediamine, evomate, and its derivatives, After adding imidazole such as 2-ethyl-4-methylimidazole, a curing accelerator is added if necessary, and one or more inorganic substances selected from mica, silicon oxide, boron nitride, and talc are added. After the addition, it is poured into a mold, defoamed in a vacuum furnace, and then heat-treated. The heat treatment temperature varies depending on the type of curing agent, so it cannot be determined unconditionally.
For example, when the curing agent is an acid anhydride, the material is heated at about 120° C. for 2 hours, and then kept at about 200° C. for 4 to 8 hours for curing. In addition, when the curing agent is an aliphatic amine, it can be heated at about 30 to 50°C for 2 to 3 hours, maintained at a temperature of about 100°C for curing for 1 to 4 hours, and cooled. The adopted heat-resistant epoxy resin is obtained.
前記した無機物質は表1に記した如く硬化物の弾性率を
向上させて成形後の樹脂の変形を防止する効果がある。As shown in Table 1, the above-mentioned inorganic substances have the effect of improving the elastic modulus of the cured product and preventing deformation of the resin after molding.
無機物質の添加量は、無機物質の種類及び粒度等によっ
て異なるので一概には決められないが、一般にはエポキ
シ樹脂100重量部に対して多くとも600重量部であ
ることが好ましい。Although the amount of the inorganic substance added cannot be determined unconditionally since it varies depending on the type and particle size of the inorganic substance, it is generally preferable to add at most 600 parts by weight per 100 parts by weight of the epoxy resin.
また、硬化剤の添加量は、硬化剤の種類及びエポキシ樹
脂の種類によって適宜に選択される。Further, the amount of the curing agent added is appropriately selected depending on the type of curing agent and the type of epoxy resin.
基材としてビスフェノールF型エポキシ化合物(商品名
エピコート−80,7、シェル化学KK製)、硬化剤と
してMNAを構成成分とした消音器の作用を以下に説明
する。前記の耐熱性エポキシ樹脂は第4図に示した如く
、温度の上昇にともなって動的粘弾性が変化するもので
あって、図示例では150℃までガラス領域にあるが、
150℃を越えると粘弾性領域に転移し、180℃以上
でゴム領域に移行する。上記の如く弾性率の変化によっ
て騒音を構成している特定周波数の音のエネルギー損失
をもたらし、消音効果が発生する。尚前記ガラス領域か
ら粘弾性領域への転移点は、エポキシ樹脂の種類と硬化
剤の組合わせを適当に選択したり、また用いる硬化剤の
分量を変えることによって変化させることができる。更
にエポキシ樹脂と硬化剤の組成物に反応性稀釈剤や可撓
性付与剤などの第3成分を加えて転移点を変えることも
差支えない。The action of a silencer using a bisphenol F type epoxy compound (trade name Epicote-80,7, manufactured by Shell Kagaku KK) as a base material and MNA as a curing agent will be described below. As shown in FIG. 4, the heat-resistant epoxy resin changes its dynamic viscoelasticity as the temperature rises, and in the illustrated example it is in the glass region up to 150°C.
When the temperature exceeds 150°C, it transitions to a viscoelastic region, and when it exceeds 180°C, it transitions to a rubber region. As described above, the change in the elastic modulus causes energy loss of the sound of a specific frequency that constitutes the noise, and a silencing effect occurs. The transition point from the glass region to the viscoelastic region can be changed by appropriately selecting the combination of the type of epoxy resin and the curing agent, or by changing the amount of the curing agent used. Furthermore, the transition point may be changed by adding a third component such as a reactive diluent or a flexibility imparting agent to the composition of the epoxy resin and curing agent.
表1にビスフェノールF型エポキシ樹脂(エピコー)
−807,シェル化学KK製)に硬化剤としてMNAと
2E4MZ (2−エチル−4−メチルイミダゾール)
を用いて無機物質の添加有無による材料特性を測定した
結果を示す。Table 1 shows bisphenol F type epoxy resin (Epicor)
-807, manufactured by Shell Kagaku KK) with MNA and 2E4MZ (2-ethyl-4-methylimidazole) as a curing agent.
The results of measuring material properties with and without the addition of inorganic substances using the method are shown below.
表 1
即ち無機物質の添加量が多いと、比重9弾性係数、及び
圧縮強さの何れもが大きい値を示すことが明らかである
。尚2E4MZの効能は、硬化剤として寄与するだけで
なく、硬化物の耐熱性の向上にも寄与している。Table 1 That is, it is clear that when the amount of the inorganic substance added is large, both the specific gravity 9 elastic modulus and the compressive strength show large values. The effect of 2E4MZ is not only as a curing agent, but also in improving the heat resistance of the cured product.
表2に2E4MZの添加量を変えて、熱変形温度を測定
した結果を示す。Table 2 shows the results of measuring the heat distortion temperature while varying the amount of 2E4MZ added.
表 2
(注)硬化条件 120℃、211+180℃、6H第
5図はビスフェノールF型エポキシ樹脂(エピコー)−
807,シェル化学KK製)、ビスフェノールA型エポ
キシ樹脂(エピコート−828,シェル化学KK製)、
ノボラック型エポキシ樹脂(エピコート−154,シェ
ル化学KK製)等の各種エポキシ樹脂の1種又は2種以
上の混合物に硬化剤としてエボメートLX−IN及びM
NAを添加し、無機物質としてマイカを添加した場合の
、エネルギー損失係数の温度に対する変化グラフを示す
。即ちエポキシ樹脂と硬化剤の組合わせを変えることに
よってエネルギー損失係数の温度依存性が異なることが
明らかである。尚第5図において、(1)はエピコート
−807/ !ボメートLX−IN= 100/ 35
゜(2)はエビ:] −) −807/MNA/2E4
MZ=100/90/ 2 。Table 2 (Note) Curing conditions 120℃, 211+180℃, 6H Figure 5 shows bisphenol F type epoxy resin (Epicor) -
807, manufactured by Shell Chemical KK), bisphenol A type epoxy resin (Epicote-828, manufactured by Shell Chemical KK),
Evomate LX-IN and M are added as a curing agent to one or a mixture of two or more of various epoxy resins such as novolac type epoxy resin (Epicote-154, manufactured by Shell Kagaku KK).
A graph of changes in energy loss coefficient with respect to temperature when NA is added and mica is added as an inorganic substance is shown. That is, it is clear that the temperature dependence of the energy loss coefficient changes by changing the combination of epoxy resin and curing agent. In Fig. 5, (1) is Epicoat-807/! Bomate LX-IN = 100/35
゜(2) is shrimp:] -) -807/MNA/2E4
MZ=100/90/2.
(3) 4;t、 x ヒ:I−) −828/MNA
/2E4MZ=lGO/80/2 。(3) 4;t, x H:I-) -828/MNA
/2E4MZ=lGO/80/2.
(4) ハエヒ:J −ト−154/MNA/2E4M
Z=lOO/10G/2である。(4) Fly Hi: J-To-154/MNA/2E4M
Z=lOO/10G/2.
上記の如くして得られた耐熱性エポキシ樹脂を用いて消
音器を作成し、空冷単筒4サイクルガソリンエンジン(
250RQ×67φx 5631m)に付設して騒音計
を用いて消音器出口の騒音を測定した結果を表3に示す
。消音器はエピコート−807を使用し、硬化剤として
エポメートLX−1llをLQQ:35の割合で添加し
て作成したものを用いた。尚表3中でNotは本発明に
係る消音器、NO2は従来の綱板を用いた消音器の測定
例を示している。A silencer was created using the heat-resistant epoxy resin obtained as described above, and an air-cooled single-cylinder 4-stroke gasoline engine (
Table 3 shows the results of measuring the noise at the silencer outlet using a sound level meter attached to the 250RQ x 67φ x 5631m. The muffler was made of Epicoat-807 and was prepared by adding Epomate LX-111 as a hardening agent at a ratio of LQQ:35. In Table 3, Not indicates a measurement example of a silencer according to the present invention, and NO2 indicates a measurement example of a silencer using a conventional steel plate.
表 3
表3から明らかな如く、エンジン回転数の大小に拘わら
ず、Notの消音器の騒音が従来のものに比して低減し
てい゛ることが明らかである。父上記エンジンを定格3
.8PS、 4000rpmで長期間運転してから消音
器を検査した所、排気系の何らの異常も認められなかっ
た。又比重が1.40 (鋼板では7.8)であるため
、極めて軽量な消音器が得られた。Table 3 As is clear from Table 3, it is clear that the noise of the Not silencer is reduced compared to the conventional one, regardless of the engine speed. Father rated the engine above 3
.. When the silencer was inspected after operating at 8 PS and 4000 rpm for a long period of time, no abnormality was found in the exhaust system. Furthermore, since the specific gravity is 1.40 (7.8 for steel plate), an extremely lightweight silencer was obtained.
第6図、第7図はエンジンの排気管出口におけろ周波数
を、該排気管出口に取り付けたピックアップを介して収
録し、周波数分析をした結果を示している。図中(A)
は鋼板製マフラー、(B)は本発明に係る耐熱性エポキ
シ樹脂を用いたマフラーの例であって、第6図は低負荷
低回転(2000rpmX2.20ps)の場合、第7
図は高負荷高回転(4000rpmX 4.25ps)
の場合を示している。第6図に示した例では、(A)と
(B)とが各周波数においてほとんど差がなく、振幅(
dB)はマフラーの形状に左右される。しかしながら第
7図に示した如く、高負荷高回転の場合には両者の間に
かなりの差が認められ、(B)の方が各周波数において
低レベルになっている。このことは、耐熱性マフラーで
、エンジンの排気ガスの温度が高温になると、マフラー
の温度が上昇し、第4図に示す粘弾性領域に入り動的粘
弾性が変化して、エネルギ損失係数が変化して振動を吸
収するので低負荷の場合と同じマフラーを使用しても、
排気管の振動による空気の密度の変化が生じ、騒音を低
下させることを示している。6 and 7 show the results of frequency analysis performed by recording the frequency at the exhaust pipe outlet of the engine via a pickup attached to the exhaust pipe outlet. In the diagram (A)
(B) is an example of a muffler using a heat-resistant epoxy resin according to the present invention, and FIG. 6 shows an example of a muffler made of a steel plate, and FIG.
The figure shows high load and high rotation (4000 rpm x 4.25 ps)
The case is shown below. In the example shown in Figure 6, there is almost no difference between (A) and (B) at each frequency, and the amplitude (
dB) depends on the shape of the muffler. However, as shown in FIG. 7, in the case of high load and high rotation, there is a considerable difference between the two, and (B) has a lower level at each frequency. This means that with a heat-resistant muffler, when the temperature of the engine exhaust gas becomes high, the temperature of the muffler rises, enters the viscoelastic region shown in Figure 4, changes the dynamic viscoelasticity, and increases the energy loss coefficient. Even if you use the same muffler as in the case of low load, as it changes and absorbs vibration,
This shows that the vibration of the exhaust pipe causes a change in air density, which reduces noise.
尚本発明に採用した耐熱性エポキシ樹脂は他の各種モー
タ用消音器、船舶用エンジンの消音器。The heat-resistant epoxy resin employed in the present invention can be used in other types of motor silencers and marine engine silencers.
ガスタービンプラントの消音器として用いることができ
る外、軽量である利点を生かして航空機にも利用して有
効である。In addition to being able to be used as a muffler in gas turbine plants, it is also effective in aircraft applications due to its light weight.
発明の効果
以上詳細に説明した如く、本発明に係る耐熱性エポキシ
樹脂を用いた消音器は、該消音器を構成するマフラー本
体をエポキシ樹脂に硬化剤及び無機物質の一種又は二種
以上が添加されて、所定の加熱処理を施して得られる耐
熱性エポキシ樹脂を用いて成形加工したので以下に記す
作用効果が得られる。即ちマフラー本体が、それ自体吸
音作用を有する耐熱性エポキシ樹脂を用いて製作されて
いるので、騒音の吸収が効率的に行われるものである。Effects of the Invention As explained in detail above, the muffler using the heat-resistant epoxy resin according to the present invention has a muffler body constituting the muffler formed by adding a curing agent and one or more inorganic substances to the epoxy resin. Since the molding process was performed using a heat-resistant epoxy resin obtained by applying a predetermined heat treatment, the following effects can be obtained. That is, since the muffler body is manufactured using a heat-resistant epoxy resin that itself has a sound-absorbing effect, noise can be efficiently absorbed.
特に高速排気流がマフラー本体の壁面に衝突して発生す
る消音器内の気流騒音を吸収することが可能となる。又
本発明の場合、グラスウール又は石綿等の吸音材を使用
する必要がないので、使用中に空気中に放散される塵埃
もなく、公害を発生しない利点がある。更に消音器自体
が極めて軽量化されるので、自動車等に搭載する際に有
利であり、且つコストの低減化にも寄与する利点がある
。In particular, it is possible to absorb the airflow noise inside the muffler that is generated when the high-speed exhaust flow collides with the wall surface of the muffler body. Further, in the case of the present invention, since there is no need to use sound absorbing materials such as glass wool or asbestos, there is no dust dissipated into the air during use, and there is an advantage that no pollution is caused. Furthermore, since the muffler itself is extremely lightweight, it is advantageous when mounted on a car or the like, and also has the advantage of contributing to cost reduction.
第1図は本発明に係る耐熱性エポキシ樹脂を用いた消音
器の基本的実施例を示す要部断面図、第2図は本発明の
第2実施例を示す要部断面図、第3図は本発明の第3実
施例を示す要部断面図、第4図は耐熱性エポキシ樹脂の
動的粘弾性の移行状態を示すグラフ、第5図は同エネル
ギー損失係数の変化を示すグラフ、第6図、第7図はマ
フラー出口における振動の振幅と周波数との関係を示す
グラフである。
l・・・マフラー本体、2・・・入力管、3・・・出力
管、4.5・・・鏡板、6・・・衝突板、7・・・隔壁
、8.9・・・小室。
第1図
第2図
第3図
第4図
□1戚FIG. 1 is a cross-sectional view of a main part showing a basic embodiment of a silencer using a heat-resistant epoxy resin according to the present invention, FIG. 2 is a cross-sectional view of a main part showing a second embodiment of the present invention, and FIG. 4 is a graph showing the transition state of dynamic viscoelasticity of the heat-resistant epoxy resin. FIG. 5 is a graph showing the change in the energy loss coefficient. 6 and 7 are graphs showing the relationship between vibration amplitude and frequency at the muffler outlet. l...Muffler body, 2...Input tube, 3...Output tube, 4.5...End plate, 6...Collision plate, 7...Partition wall, 8.9...Small chamber. Figure 1 Figure 2 Figure 3 Figure 4 □1 Relatives
Claims (3)
入力管から出力管へ順次通過させて、内燃機関の爆発に
ともなう排気騒音を消音させるようにした消音器におい
て、前記マフラー本体を、エポキシ樹脂に硬化剤及び無
機物質の一種又は二種以上が添加されて、所定の加熱処
理を施して架橋を密にして得られる耐熱性エポキシ樹脂
を用いて成形加工したことを特徴とする、耐熱性エポキ
シ樹脂を用いた消音器。(1) In a muffler that allows exhaust gas generated from an internal combustion engine to pass sequentially from an input pipe to an output pipe of a muffler main body to muffle exhaust noise caused by an explosion of the internal combustion engine, the muffler main body is made of epoxy resin. A heat-resistant epoxy resin, which is obtained by adding one or more types of curing agent and inorganic substance to a heat-resistant epoxy resin and subjecting it to a predetermined heat treatment to form a dense crosslink. Silencer using resin.
の誘導体、イミダゾールのうちの1種又は2種以上であ
る特許請求の範囲第1項記載の耐熱性エポキシ樹脂を用
いた消音器。(2) A silencer using a heat-resistant epoxy resin according to claim 1, wherein the curing agent is one or more of acid anhydrides, amine compounds and their derivatives, and imidazole.
、タルクから選択された物質である特許請求の範囲第1
項記載の耐熱性エポキシ樹脂を用いた消音器。(3) The inorganic substance is a substance selected from mica, silicon oxide, boron nitride, and talc.
A silencer using the heat-resistant epoxy resin described in Section 1.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/125,579 US5052513A (en) | 1986-11-26 | 1987-11-25 | Noise reductive resin muffler for exhaust system in combustion engine |
EP87117510A EP0269116A3 (en) | 1986-11-26 | 1987-11-26 | Noise reductive resin muffler for exhaust system in combustion engine |
KR870013379A KR880006440A (en) | 1986-11-26 | 1987-11-26 | Resin Noise Muffler of Exhaust System in Internal Combustion Engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28157786 | 1986-11-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63239306A true JPS63239306A (en) | 1988-10-05 |
Family
ID=17641107
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5597187A Pending JPS63239306A (en) | 1986-11-26 | 1987-03-11 | Muffler made of heat resistant epoxy resin |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63239306A (en) |
-
1987
- 1987-03-11 JP JP5597187A patent/JPS63239306A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5052513A (en) | Noise reductive resin muffler for exhaust system in combustion engine | |
US4220219A (en) | Lightweight muffler and method for muffling noise | |
US5376341A (en) | Catalytic converter for motorcycles | |
JPH01134021A (en) | Muffler provided with cooler | |
JPH0663448B2 (en) | Silencer | |
Priede | Origins of automotive vehicle noise | |
WO2010103813A1 (en) | Multilayered tube | |
JPS6037437A (en) | Vibration damper damping vibration of revolving mass | |
JPS63239306A (en) | Muffler made of heat resistant epoxy resin | |
JPH0231210B2 (en) | ||
Munjal et al. | Passive silencers | |
WO1990001109A1 (en) | Silencer for combustion exhaust gas | |
CN106523071B (en) | Exhaust silencer with automatic following under two working conditions for internal combustion engine | |
JPH0192507A (en) | Muffler using heat-resistance resin | |
JPS58117350A (en) | Air cleaner for internal combustion engine | |
TW202102768A (en) | Improved structure of muffling unit which can reduce the pressure of the high-pressure exhaust gas in the exhaust pipe without destroying the internal structure of the exhaust pipe | |
JPH01182516A (en) | Muffler using heat resistant resin | |
Renugadevi et al. | Modelling and analysis of damping effect in exhaust system using Ansys | |
JPH01211610A (en) | Muffler | |
JPH01247712A (en) | Exhaust muffler for automobile | |
JPH10110611A (en) | Silencer | |
CN206845319U (en) | A kind of air-cooled noise-reduced diesel generator | |
JPH0754996A (en) | Piston pin | |
EP2391806A1 (en) | Ejection exhaust system | |
CN218717126U (en) | High-pressure diesel generating set with good noise reduction effect |