JPH01182516A - Muffler using heat resistant resin - Google Patents
Muffler using heat resistant resinInfo
- Publication number
- JPH01182516A JPH01182516A JP619888A JP619888A JPH01182516A JP H01182516 A JPH01182516 A JP H01182516A JP 619888 A JP619888 A JP 619888A JP 619888 A JP619888 A JP 619888A JP H01182516 A JPH01182516 A JP H01182516A
- Authority
- JP
- Japan
- Prior art keywords
- muffler
- resin
- muffler body
- heat
- resistant resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229920006015 heat resistant resin Polymers 0.000 title claims abstract description 40
- 230000007423 decrease Effects 0.000 claims abstract description 10
- 229920005989 resin Polymers 0.000 claims description 41
- 239000011347 resin Substances 0.000 claims description 41
- 239000000126 substance Substances 0.000 claims description 24
- 239000003822 epoxy resin Substances 0.000 claims description 21
- 229920000647 polyepoxide Polymers 0.000 claims description 21
- 229910010272 inorganic material Inorganic materials 0.000 claims description 13
- 239000011147 inorganic material Substances 0.000 claims description 13
- 238000002485 combustion reaction Methods 0.000 claims description 11
- 230000003584 silencer Effects 0.000 claims description 11
- 229920001568 phenolic resin Polymers 0.000 claims description 8
- 239000005011 phenolic resin Substances 0.000 claims description 8
- 229920001187 thermosetting polymer Polymers 0.000 claims description 8
- 239000004641 Diallyl-phthalate Substances 0.000 claims description 4
- QUDWYFHPNIMBFC-UHFFFAOYSA-N bis(prop-2-enyl) benzene-1,2-dicarboxylate Chemical compound C=CCOC(=O)C1=CC=CC=C1C(=O)OCC=C QUDWYFHPNIMBFC-UHFFFAOYSA-N 0.000 claims description 4
- 238000004880 explosion Methods 0.000 claims description 4
- 229920006337 unsaturated polyester resin Polymers 0.000 claims description 3
- 229920000877 Melamine resin Polymers 0.000 claims description 2
- 239000004734 Polyphenylene sulfide Substances 0.000 claims description 2
- 229920002492 poly(sulfone) Polymers 0.000 claims description 2
- 229920006122 polyamide resin Polymers 0.000 claims description 2
- 229920001225 polyester resin Polymers 0.000 claims description 2
- 239000004645 polyester resin Substances 0.000 claims description 2
- 229920001955 polyphenylene ether Polymers 0.000 claims description 2
- 229920000069 polyphenylene sulfide Polymers 0.000 claims description 2
- 229920002050 silicone resin Polymers 0.000 claims description 2
- 229920001169 thermoplastic Polymers 0.000 claims description 2
- 229920005992 thermoplastic resin Polymers 0.000 claims description 2
- 239000004416 thermosoftening plastic Substances 0.000 claims description 2
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 claims 1
- 239000000203 mixture Substances 0.000 description 23
- 230000000694 effects Effects 0.000 description 10
- 229910000975 Carbon steel Inorganic materials 0.000 description 8
- ZDNFTNPFYCKVTB-UHFFFAOYSA-N bis(prop-2-enyl) benzene-1,4-dicarboxylate Chemical compound C=CCOC(=O)C1=CC=C(C(=O)OCC=C)C=C1 ZDNFTNPFYCKVTB-UHFFFAOYSA-N 0.000 description 8
- 239000010962 carbon steel Substances 0.000 description 8
- 238000001723 curing Methods 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- 239000004744 fabric Substances 0.000 description 7
- 239000011521 glass Substances 0.000 description 7
- 239000010935 stainless steel Substances 0.000 description 7
- 229910001220 stainless steel Inorganic materials 0.000 description 7
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- 239000012779 reinforcing material Substances 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 5
- 239000003054 catalyst Substances 0.000 description 5
- 230000007797 corrosion Effects 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- LTPBRCUWZOMYOC-UHFFFAOYSA-N Beryllium oxide Chemical compound O=[Be] LTPBRCUWZOMYOC-UHFFFAOYSA-N 0.000 description 4
- 239000011358 absorbing material Substances 0.000 description 4
- 239000010425 asbestos Substances 0.000 description 4
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000003344 environmental pollutant Substances 0.000 description 4
- 239000011491 glass wool Substances 0.000 description 4
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 231100000719 pollutant Toxicity 0.000 description 4
- 229910052895 riebeckite Inorganic materials 0.000 description 4
- 239000004593 Epoxy Substances 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- FZHAPNGMFPVSLP-UHFFFAOYSA-N silanamine Chemical compound [SiH3]N FZHAPNGMFPVSLP-UHFFFAOYSA-N 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- KNDQHSIWLOJIGP-UMRXKNAASA-N (3ar,4s,7r,7as)-rel-3a,4,7,7a-tetrahydro-4,7-methanoisobenzofuran-1,3-dione Chemical compound O=C1OC(=O)[C@@H]2[C@H]1[C@]1([H])C=C[C@@]2([H])C1 KNDQHSIWLOJIGP-UMRXKNAASA-N 0.000 description 2
- -1 Diaryl phthalate Chemical compound 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 150000008065 acid anhydrides Chemical class 0.000 description 2
- 239000003518 caustics Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 229910052878 cordierite Inorganic materials 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 230000009477 glass transition Effects 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 230000001743 silencing effect Effects 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- ROLAGNYPWIVYTG-UHFFFAOYSA-N 1,2-bis(4-methoxyphenyl)ethanamine;hydrochloride Chemical compound Cl.C1=CC(OC)=CC=C1CC(N)C1=CC=C(OC)C=C1 ROLAGNYPWIVYTG-UHFFFAOYSA-N 0.000 description 1
- AHDSRXYHVZECER-UHFFFAOYSA-N 2,4,6-tris[(dimethylamino)methyl]phenol Chemical compound CN(C)CC1=CC(CN(C)C)=C(O)C(CN(C)C)=C1 AHDSRXYHVZECER-UHFFFAOYSA-N 0.000 description 1
- 229910000505 Al2TiO5 Inorganic materials 0.000 description 1
- 229910052580 B4C Inorganic materials 0.000 description 1
- 229930185605 Bisphenol Natural products 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- 239000004113 Sepiolite Substances 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 1
- 239000004841 bisphenol A epoxy resin Substances 0.000 description 1
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 description 1
- KOPBYBDAPCDYFK-UHFFFAOYSA-N caesium oxide Chemical compound [O-2].[Cs+].[Cs+] KOPBYBDAPCDYFK-UHFFFAOYSA-N 0.000 description 1
- 229910001942 caesium oxide Inorganic materials 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- QGBSISYHAICWAH-UHFFFAOYSA-N dicyandiamide Chemical compound NC(N)=NC#N QGBSISYHAICWAH-UHFFFAOYSA-N 0.000 description 1
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical compound C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 1
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 1
- YGANSGVIUGARFR-UHFFFAOYSA-N dipotassium dioxosilane oxo(oxoalumanyloxy)alumane oxygen(2-) Chemical compound [O--].[K+].[K+].O=[Si]=O.O=[Al]O[Al]=O YGANSGVIUGARFR-UHFFFAOYSA-N 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 229910052839 forsterite Inorganic materials 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000013007 heat curing Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 239000003779 heat-resistant material Substances 0.000 description 1
- PYGSKMBEVAICCR-UHFFFAOYSA-N hexa-1,5-diene Chemical group C=CCCC=C PYGSKMBEVAICCR-UHFFFAOYSA-N 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000004850 liquid epoxy resins (LERs) Substances 0.000 description 1
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229910052863 mullite Inorganic materials 0.000 description 1
- 229910052627 muscovite Inorganic materials 0.000 description 1
- 229920003986 novolac Polymers 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- AABBHSMFGKYLKE-SNAWJCMRSA-N propan-2-yl (e)-but-2-enoate Chemical compound C\C=C\C(=O)OC(C)C AABBHSMFGKYLKE-SNAWJCMRSA-N 0.000 description 1
- 229910052903 pyrophyllite Inorganic materials 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 229920003987 resole Polymers 0.000 description 1
- 229910052624 sepiolite Inorganic materials 0.000 description 1
- 235000019355 sepiolite Nutrition 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 1
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 1
- UKRDPEFKFJNXQM-UHFFFAOYSA-N vinylsilane Chemical compound [SiH3]C=C UKRDPEFKFJNXQM-UHFFFAOYSA-N 0.000 description 1
- 229910052845 zircon Inorganic materials 0.000 description 1
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Exhaust Silencers (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は自動車、農業用機械、船舶及びその他の産業用
発動機等のガスタービンを含む内燃機関並びにジェット
エンジンに装着されて、該内燃機関等の発生する排気ガ
スを通過させながら排気音を減衰させる排気消音器に関
するものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is installed in internal combustion engines including gas turbines and jet engines of automobiles, agricultural machinery, ships, and other industrial engines. This invention relates to an exhaust muffler that attenuates exhaust sound while allowing generated exhaust gas to pass through.
従来の技術
一般に内燃機関から排出される高温高圧のガスをそのま
ま大気中に放出すると、排気ガスが急激に膨張して大き
な騒音を発するので、排気ガスの通路内に通常マフラー
と呼称される消音器を介挿して排気ガスの圧力変化を平
均化させ、なめらかな気流として大気中に放出するよう
にしている。Conventional Technology Generally speaking, when the high-temperature, high-pressure gas discharged from an internal combustion engine is released into the atmosphere as it is, the exhaust gas expands rapidly and makes a lot of noise, so a muffler, usually called a muffler, is installed in the exhaust gas passage. is inserted to average pressure changes in the exhaust gas and release it into the atmosphere as a smooth airflow.
上記の消音器は排気ガスの入力管が連結された鏡板と出
力管が連結された鏡板をそれぞれ両端部に備えた略円筒
状、楕円筒状又は角筒状のマフラー本体(胴体部分)を
備え、更には該マフラー本体の内部を小室に仕切って、
この小室に排気ガスを順次通過させることによってガス
圧を下げ、略均圧のガス流として外部へ放散することに
よって内燃機関等の爆発音を押さえることができる。尚
マフラー本体の内方に吸音材を添着して防音効果を高め
る手段も用いられている。The above muffler has a muffler body (body part) in the shape of a substantially cylindrical, elliptical, or rectangular tube, with a head plate connected to an exhaust gas input pipe and a head plate connected to an output pipe at both ends. Furthermore, the inside of the muffler body is divided into small chambers,
By sequentially passing the exhaust gas through these small chambers, the gas pressure is lowered and the gas is dissipated to the outside as a substantially equal pressure gas flow, thereby suppressing the explosion noise of an internal combustion engine or the like. Additionally, a method of increasing the soundproofing effect by attaching a sound absorbing material to the inside of the muffler body is also used.
又自動車用排気系には、公害物質としてのN08、HC
(ハイドロカーボン)、COが含有されているので、法
律に基づいてこれら公害物質の最大値が規制されている
。従って内燃機関等には前記公害物質を規制値以下に低
減させるため、場合によっては三元系触媒が内蔵されて
いるものもあるが、上記三元系触媒は発熱反応であるた
め、内燃機関から500〜700℃で放出される排気ガ
スが800〜850℃まで昇温しで前記マフラー本体の
内方を通過するため、三元系触媒と排気ガスが反応して
発生するイオン性ガスでマフラー本体の腐食が加速され
るので、該マフラー本体の耐熱性及び耐蝕性を高めるこ
とが肝要である。一般にはマフラー本体の材質として炭
素鋼又はステンレス鋼等の金属材料が使用されている。In addition, automobile exhaust systems contain N08 and HC as pollutants.
(hydrocarbons) and CO, the maximum levels of these pollutants are regulated based on law. Therefore, in some cases, internal combustion engines have a built-in three-way catalyst in order to reduce the pollutants below the regulatory value, but since the above-mentioned three-way catalyst is an exothermic reaction, Exhaust gas released at 500 to 700°C is heated to 800 to 850°C and passes through the muffler body, so the ionic gas generated by the reaction between the three-way catalyst and the exhaust gas is heated to 800 to 850°C. Therefore, it is important to improve the heat resistance and corrosion resistance of the muffler body. Generally, a metal material such as carbon steel or stainless steel is used as the material for the muffler body.
発明が解決しようとする問題点
tかしながらこのような従来の消音器にあっては前記マ
フラー本体が炭素鋼又はステンレス鋼等の金属材料を用
いて構成されており、これら金属材料自体には吸音効果
が非常に少ないため、消音器自体の吸音特性が所定の領
域内に制限されてしまうという問題点があった。即ち排
気ガスの気流騒音には高速排気流がマフラー本体の壁面
に衝突して発生する消音器内騒音と、マフラー本体から
大気中へ放出される際の排気ガスの膨張に起因する噴流
騒音とがあるが、上記消音器内騒音は排気流の金属への
衝突と、特定の周波数での共鳴現象により増幅されるも
のである。しかし炭素鋼又はステンレス鋼等の金属は吸
音効果が非常に少ない上に共鳴音を低減する作用がない
ので、前記消音器内騒音を下げることができない。更に
前記炭素鋼製マフラーは、排気ガス及び大気中に含まれ
る各種不純物又は塩分等により腐食しやすいという難点
がある。Problems to be Solved by the Invention However, in such conventional silencers, the muffler body is constructed using metal materials such as carbon steel or stainless steel, and these metal materials themselves have Since the sound absorption effect is very low, there is a problem in that the sound absorption characteristics of the muffler itself are limited within a predetermined area. In other words, the airflow noise of exhaust gas includes noise inside the muffler caused by high-speed exhaust flow colliding with the wall of the muffler body, and jet noise caused by the expansion of exhaust gas when it is released into the atmosphere from the muffler body. However, the above-mentioned noise inside the muffler is amplified by the collision of the exhaust flow with the metal and the resonance phenomenon at a specific frequency. However, metals such as carbon steel or stainless steel have very little sound absorption effect and do not have the effect of reducing resonance sound, so it is not possible to reduce the noise inside the muffler. Furthermore, the carbon steel muffler has the disadvantage that it is easily corroded by various impurities or salts contained in exhaust gas and the atmosphere.
一方アフラー本体の内方へ吸音材としてグラスウール又
は石綿を添着すれば、該吸音材の作用によって前記共鳴
音を吸収することができるが、これらグラスウール、石
綿等は空中に放散されて大気を汚し、作業者の健康を害
するなどの公害源となる虞れがあるため使用上の問題点
がある。尚前記炭素鋼及びステンレス鋼等の金属は何れ
も比重が大であるため、マフラー本体の重量も大となっ
てしまう難点も有している。On the other hand, if glass wool or asbestos is attached as a sound absorbing material to the inside of the Afflour body, the resonance sound can be absorbed by the action of the sound absorbing material, but these glass wool, asbestos, etc. are emitted into the air and pollute the atmosphere. There are problems in its use as it may become a source of pollution that may harm the health of workers. Incidentally, since the metals such as carbon steel and stainless steel all have a high specific gravity, they also have the disadvantage that the weight of the muffler body is also large.
そこで本発明はこのような従来の消音器が有している問
題点を解消して、特に前記消音器内騒音を低減すること
により、消音効果をより一層向上させた消音器の提供を
目的とするものである。SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a muffler that further improves the muffling effect by solving the problems that conventional mufflers have and particularly by reducing the noise inside the muffler. It is something to do.
問題点を解決するための手段
本発明は上記の目的を達成するために、内燃機関から発
生する排気ガスをマフラー本体に付随する入力管から出
力管へ順次通過させて、内燃機関の爆発にともなう排気
騒音を消音させるようにした消音器において、前記マフ
ラー本体が無機質の少なくとも1種と耐熱性樹脂より成
り、且つ前記無機質の濃度がマフラー本体の内壁面近傍
で最も高く、該内壁面から外壁面に向かうに従って順次
低くなるような濃度勾配を付与した構成にしである。Means for Solving the Problems In order to achieve the above-mentioned object, the present invention sequentially passes exhaust gas generated from an internal combustion engine from an input pipe attached to a muffler body to an output pipe, thereby preventing the explosion of the internal combustion engine. In the muffler for muffling exhaust noise, the muffler main body is made of at least one inorganic material and a heat-resistant resin, and the concentration of the inorganic material is highest near the inner wall surface of the muffler main body, and the muffler main body is made of at least one kind of inorganic material and a heat-resistant resin, and the concentration of the inorganic material is highest near the inner wall surface of the muffler main body, and the muffler main body is made of at least one kind of inorganic material and a heat-resistant resin. The structure has a concentration gradient that gradually decreases as the concentration increases.
作用
マフラー本体を構成する耐熱性樹脂は、該樹脂のガラス
転移温度(Tg)近辺まで加熱されると、ガラス領域か
ら粘弾性領域へと変化し、その際に弾性率が大幅に変化
して特定周波数の騒音を吸収する作用がもたらされる。Function When the heat-resistant resin that makes up the muffler body is heated to around the glass transition temperature (Tg) of the resin, it changes from a glass region to a viscoelastic region, and at that time, the elastic modulus changes significantly and This results in the effect of absorbing frequency noise.
上記粘弾性領域への変位点は、用いた耐熱性樹脂の種類
並びに耐熱性樹脂が熱硬化性樹脂の場合はその樹脂の硬
化条件を変えることにより、自在に変更することが可能
になる。その結果耐熱性樹脂を用いた消音器は任意の周
波数帯にある排気エネルギーを低減して騒音を吸収する
ことが可能となる。The point of displacement to the viscoelastic region can be freely changed by changing the type of heat-resistant resin used and, if the heat-resistant resin is a thermosetting resin, the curing conditions of the resin. As a result, a silencer using heat-resistant resin can reduce exhaust energy in any frequency band and absorb noise.
更に上記マフラー本体を構成する耐熱性樹脂中の無機質
の濃度が、マフラー本体の内壁面近傍で最も高く、該内
壁面から外壁面に向かうに従って順次低くなるような濃
度勾配を付与しであるので、排気ガスの温度が極めて高
温になった場合でもマフラー本体を高温から保護し、本
来の機能維持が長時間に亙って可能になる。Furthermore, since the concentration of inorganic substances in the heat-resistant resin constituting the muffler body is highest near the inner wall surface of the muffler body and gradually decreases from the inner wall surface toward the outer wall surface, Even when the exhaust gas temperature becomes extremely high, the muffler body is protected from high temperatures, allowing it to maintain its original function for a long time.
実施例
以下図面を参照して本発明に係る耐熱性樹脂を用いた消
音器の各種実施例を説明する。EXAMPLES Below, various examples of a silencer using a heat-resistant resin according to the present invention will be described with reference to the drawings.
第1図は本発明の第1実施例を示す消音器の要部断面図
であり、図中1は円筒状、楕円筒状又は角筒状のマフラ
ー本体(胴体部分)であって、該マフラー本体1の両端
部に排気ガスの入力管2及び出力管3が連結された鏡板
4.5が連結されている。上記のマフラー本体1及び鏡
板4.5は、従来の炭素鋼又はステンレス鋼に代えて、
耐熱性樹脂を主体としており、該マフラー本体1及び鏡
板4.5の内方略中心部に強化材6を加えて加工成形さ
れている。第1図においては、強化材6が略中心部に位
置しているが、必ずしも上記の位置に限定されるもので
はない。7はマフラー本体l及び鏡板4.5の内方に分
布された無機質であって、該無機質7の濃度は、マフラ
ー本体1の内壁面1aの近傍で最も高く、該内壁面1a
から外壁面1bに向かうに従って順次低くなるような濃
度勾配が付与されている。又鏡板4.5内の無機質7の
濃度分布もマフラー本体lの濃度分布と同様である。FIG. 1 is a cross-sectional view of a main part of a muffler showing a first embodiment of the present invention. In the figure, 1 is a cylindrical, elliptical or prismatic muffler main body (body part); A mirror plate 4.5 to which an exhaust gas input pipe 2 and an exhaust gas output pipe 3 are connected is connected to both ends of the main body 1. The muffler main body 1 and end plate 4.5 are made of conventional carbon steel or stainless steel.
The muffler body 1 is mainly made of heat-resistant resin, and is processed and molded by adding a reinforcing material 6 to the inner center of the muffler body 1 and end plate 4.5. In FIG. 1, the reinforcing material 6 is located approximately at the center, but the reinforcing material 6 is not necessarily limited to this position. 7 is an inorganic substance distributed inside the muffler body 1 and the mirror plate 4.5, and the concentration of the inorganic substance 7 is highest near the inner wall surface 1a of the muffler body 1;
A concentration gradient is provided such that the concentration gradually decreases toward the outer wall surface 1b. Further, the concentration distribution of the inorganic substance 7 within the mirror plate 4.5 is also similar to the concentration distribution of the muffler body l.
鏡板4.5がマフラー本体lと同種の耐熱性樹脂から成
る場合は、鏡板4.5をマフラー本体1と同時に一体成
形してもよいし、又は鏡板4.5とマフラー本体lとを
別々に作成し、後で連結してもよい。鏡板4,5がマフ
ラー本体1と異種の耐熱性樹脂で成る場合には、鏡板4
,5とマフラー本体1とを別々に作成し、後に連結させ
ればよい。又、入力管2及び出力管3が鏡板4.5と接
する面には、耐熱材例えばセラミックスペーパー9等を
用いるのが好ましい。When the head plate 4.5 is made of the same type of heat-resistant resin as the muffler body 1, the head plate 4.5 may be integrally molded at the same time as the muffler body 1, or the head plate 4.5 and the muffler body 1 may be separately molded. You can create them and concatenate them later. When the end plates 4 and 5 are made of a heat-resistant resin different from the muffler body 1, the end plate 4
, 5 and the muffler main body 1 may be created separately and then connected together. Further, it is preferable to use a heat-resistant material such as ceramic paper 9 on the surfaces of the input tube 2 and the output tube 3 in contact with the mirror plate 4.5.
第2図は本発明の第2実施例であり、前記鏡板5に連結
した出力管3の先端をマフラー本体1の内方にまで延長
して、該マフラー本体lと同様な耐熱性樹脂で成り、且
つ無機質7を含む衝突板8を固定しであるとともに、こ
の無機質7の濃度が排気ガスが直接接触する表面部8a
で最も高く、該表面部8aから出力管3側へ向かうに従
って順次低くなるようにしである。従って排気ガスは矢
印に示した如く衝突板8に衝突した後、迂回して出力管
3の孔3aから大気中へ抜ける。FIG. 2 shows a second embodiment of the present invention, in which the tip of the output tube 3 connected to the end plate 5 is extended to the inside of the muffler body 1, and is made of the same heat-resistant resin as the muffler body 1. , and fixes the collision plate 8 containing the inorganic substance 7, and the concentration of the inorganic substance 7 is at the surface portion 8a with which the exhaust gas directly contacts.
It is the highest at the surface portion 8a, and gradually decreases from the surface portion 8a toward the output tube 3 side. Therefore, after the exhaust gas collides with the collision plate 8 as shown by the arrow, it detours and escapes into the atmosphere through the hole 3a of the output pipe 3.
本発明で採用する耐熱性樹脂としては、内燃機関から排
出される排気ガスの温度によって適宜選択することが出
来る。例えばエポキシ樹脂、不飽和ポリエステル樹脂、
ジアリルフタレート樹脂。The heat-resistant resin employed in the present invention can be appropriately selected depending on the temperature of exhaust gas discharged from the internal combustion engine. For example, epoxy resin, unsaturated polyester resin,
Diaryl phthalate resin.
フェノール樹脂、シリコーン樹脂、メラミン樹脂及び熱
硬化型ポリカルボジイミド樹脂等の熱硬化性樹脂を利用
することができる。これらの熱硬化性樹脂の使用は1種
のみでなく、2種以上の熱硬化性樹脂を併用することも
可能である。又例えばポリアミド樹脂、ポリエステル樹
脂、ポリフェニレンサルファイド樹脂、熱可塑性フッ素
樹脂、ポリスルフォン樹脂及びポリフェニレンエーテル
樹脂の中から選択された少なくとも1種の熱可塑性樹脂
を利用することが出来る。Thermosetting resins such as phenolic resins, silicone resins, melamine resins, and thermosetting polycarbodiimide resins can be used. It is also possible to use not only one type of these thermosetting resins, but also a combination of two or more types of thermosetting resins. For example, at least one thermoplastic resin selected from polyamide resin, polyester resin, polyphenylene sulfide resin, thermoplastic fluororesin, polysulfone resin, and polyphenylene ether resin can be used.
使用する耐熱性樹脂がエポキシ樹脂である場合には、ビ
スフェノール系ジェポキシ化合物に硬化剤として酸無水
物、芳香族アミン、ジシアンジアミド等の内の少なくと
も1種が、又硬化促進剤としてイミダゾール又は第3級
アミン等を用いるのが良い。上記エポキシ樹脂の耐熱性
を更に向上させるためには、−分子中に3個以上のエポ
キシ基を有するエポキシ化合物、例えばフェノールノボ
ラヅク系エポキシ樹脂(エピコート−154、シェル化
学KK製)や、N、N、N、N″−テトラグリシジルア
ミン系樹脂等を併用しても、又は単独使用してもよく、
硬化剤としてフェノールノボラックを使用することも有
効である。エポキシ樹脂の耐熱性は、用いるエポキシ樹
脂の種類、硬化剤、硬化促進剤及びその配合量によって
異なるが、マフラー本体l内の排気ガスによる負荷温度
とエポキシ樹脂のガラス転移点(Tg点)とが一致する
ようにエポキシ樹脂を選択することが好ましい。When the heat-resistant resin used is an epoxy resin, at least one of acid anhydride, aromatic amine, dicyandiamide, etc. is added as a curing agent to the bisphenol-based jepoxy compound, and imidazole or tertiary as a curing accelerator. It is preferable to use amines or the like. In order to further improve the heat resistance of the above-mentioned epoxy resin, - an epoxy compound having three or more epoxy groups in the molecule, such as a phenol epoxy resin (Epicote-154, manufactured by Shell Kagaku KK), , N, N, N″-tetraglycidylamine resin etc. may be used in combination or alone.
It is also effective to use phenol novolak as a hardening agent. The heat resistance of epoxy resin varies depending on the type of epoxy resin used, curing agent, curing accelerator, and their blending amount, but the heat resistance of the epoxy resin depends on the load temperature due to exhaust gas in the muffler body l and the glass transition point (Tg point) of the epoxy resin. Preferably, the epoxy resin is selected to match.
本発明に使用される耐熱性樹脂が常温で固体であるジア
リルフタレート樹脂のような場合には、そのモノマー又
はオリゴマーと、触媒として用いる過酸化物とを有機溶
媒に溶解せしめた溶液に無機質を混入したものをガラス
クロスに含浸後、有機溶媒を蒸発させてプリプレグを作
成することにより使用することができる。本発明に用い
るジアリルフタレート樹脂としてはオルソフタル酸ジア
リル樹脂、イソフタル酸ジアリル樹脂、テレフタル酸ジ
アリル樹脂の3種類があるが、これらの樹脂を単独又は
混合したものを用いることが可能である。又ジアリルフ
タレート樹脂を不飽和ポリエステル樹脂等の他の樹脂と
混合したものを使用することも可能である。When the heat-resistant resin used in the present invention is a diallyl phthalate resin that is solid at room temperature, an inorganic substance is mixed into a solution in which the monomer or oligomer and the peroxide used as a catalyst are dissolved in an organic solvent. It can be used by impregnating glass cloth with the prepared material and then evaporating the organic solvent to create a prepreg. There are three types of diallyl phthalate resins used in the present invention: diallyl orthophthalate resin, diallyl isophthalate resin, and diallyl terephthalate resin, and these resins can be used alone or in combination. It is also possible to use a mixture of diallyl phthalate resin and other resins such as unsaturated polyester resin.
第1図及び第2図に示したマフラー本体lの入力管2内
の出口近辺の温度が300〜400℃以上の高温に達す
る場合には、マフラー本体lの材質として耐熱性が極め
て良好なシリコーン樹脂又は熱硬化型ポリカルボジイミ
ド樹脂等の使用も推奨される。If the temperature near the outlet in the input pipe 2 of the muffler body l shown in Figures 1 and 2 reaches a high temperature of 300 to 400°C or higher, silicone, which has extremely good heat resistance, can be used as the material for the muffler body l. It is also recommended to use resins or thermosetting polycarbodiimide resins.
上記耐熱性樹脂は、消音器の製作時のコストダウン、耐
熱性及び放熱性をはかるために耐熱性樹脂に対して無機
質を加えたものが用いられる。The above-mentioned heat-resistant resin is a heat-resistant resin to which an inorganic substance is added in order to reduce the cost of manufacturing the silencer and to improve heat resistance and heat dissipation.
上記無機質の代表例としては、アルミナ(A1203)
、ベリリア(BeO)、酸化セシウム(Ce07)、マ
グネシア(MgO)、シリカ(SiO,)、石英(S
t Ot) 、チタニア(Tio、)、ジルコニア(Z
r 02) 、ムライト(3A1.O,−28iO7
)、スピネル(M g O−A I to s)、コー
ジライト(2M g 0 ・2 A 1 t O3・5
S 1O7)、炭化ケイ素(SiC)、チタンカーバ
イド(T i C) 、炭化ホウ素(B、C)、タング
ステンカーバイド(WC)、黒鉛(C)、窒化ホウ素(
BN) 、窒化ケイ素(Si3N4)、チタン酸アルミ
(A I T i 03) 、マイカセラミックス(ム
スコバイト・セリサイト等)、セピオライト、パイロフ
ィライト、ステアタイト(MgO−8jO2)、フォル
ステライト(2M g O・5ift)、ジルコン(Z
r Ot ・S i Ot )、コーディエライト(
2M g 0・2A1.O,・5SiOt)等の如きセ
ラミックス類が推奨されるが、その他に通常強化材と呼
称されるガラスウール、ガラスファイバー、ガラスクロ
ス、石綿クロス及びカーボンファイバー等も使用するこ
とが出来る。本発明は上記無機質に必ずしも限定される
ものではない。これらの無機質は、単独で使用してもよ
く、又は併用してもよい。本発明においては消音器の強
度を向上させるため、無機質の内でセラミックス類と強
化材とを併用することが特に好ましい。A typical example of the above inorganic material is alumina (A1203)
, beryllia (BeO), cesium oxide (Ce07), magnesia (MgO), silica (SiO,), quartz (S
tOt), titania (Tio, ), zirconia (Z
r 02), mullite (3A1.O, -28iO7
), spinel (M g O-A I to s), cordierite (2M g 0 ・2 A 1 t O3 ・5
S 1O7), silicon carbide (SiC), titanium carbide (T i C), boron carbide (B, C), tungsten carbide (WC), graphite (C), boron nitride (
BN), silicon nitride (Si3N4), aluminum titanate (AIT i 03), mica ceramics (muscovite, sericite, etc.), sepiolite, pyrophyllite, steatite (MgO-8jO2), forsterite (2Mg O・5ift), zircon (Z
r Ot ・S i Ot ), cordierite (
2M g 0・2A1. Ceramics such as O, .5SiOt), etc. are recommended, but glass wool, glass fiber, glass cloth, asbestos cloth, carbon fiber, etc., which are usually called reinforcing materials, can also be used. The present invention is not necessarily limited to the above-mentioned inorganic materials. These minerals may be used alone or in combination. In the present invention, in order to improve the strength of the silencer, it is particularly preferable to use ceramics and reinforcing materials among the inorganic materials.
上記の如く本発明はマフラー本体lが無機質7の少なく
とも1種と耐熱性樹脂より成り、且つ前記無機質7の濃
度がマフラー本体lの内壁面1a近傍、即ち排気ガスが
直接接触する面の近傍で最も高く、該内壁面1aから外
壁面1bに向かうに従って順次低くなるような濃度勾配
を付与したことが特徴となっている。このような構成に
よれば、排気ガスの高熱に起因するマフラー本体1の酸
化劣化が該マフラー本体lの内壁面1a近傍のみに留め
られ、且つ内壁面1aと無機質7の濃度が低い外壁面l
b間の温度差が大きくなって、外壁面1b近傍での消音
作用が発生する。As described above, the present invention is characterized in that the muffler body 1 is made of at least one kind of inorganic substance 7 and a heat-resistant resin, and the concentration of the inorganic substance 7 is in the vicinity of the inner wall surface 1a of the muffler body 1, that is, in the vicinity of the surface in direct contact with the exhaust gas. It is characterized by providing a concentration gradient which is highest and gradually decreases from the inner wall surface 1a toward the outer wall surface 1b. According to such a configuration, oxidative deterioration of the muffler body 1 due to the high heat of exhaust gas is suppressed only in the vicinity of the inner wall surface 1a of the muffler body l, and the inner wall surface 1a and the outer wall surface l where the concentration of inorganic substance 7 is low.
The temperature difference between the outer wall surfaces 1b and 1b becomes larger, and a noise silencing effect occurs near the outer wall surface 1b.
マフラー本体1の内壁面1a近傍の無機質7の添加量は
、耐熱性樹脂の100重量部に対して100重量部以上
500重量部以下であることが好ましく、更にマフラー
本体lの外壁面1b近傍の無機質7の添加量は耐熱性樹
脂の100重量部に対して30重量部以上300重量部
以下であることが好ましい。The amount of the inorganic substance 7 added near the inner wall surface 1a of the muffler body 1 is preferably 100 parts by weight or more and 500 parts by weight or less based on 100 parts by weight of the heat-resistant resin, and furthermore, the amount of the inorganic substance 7 added near the outer wall surface 1b of the muffler body 1 is preferably 100 parts by weight or more and 500 parts by weight or less with respect to 100 parts by weight of the heat-resistant resin. The amount of inorganic substance 7 added is preferably 30 parts by weight or more and 300 parts by weight or less based on 100 parts by weight of the heat-resistant resin.
上記外壁面1b近傍の無機質7の添加量が300重量部
より多い場合は、内壁面1aと外壁面lb間の温度差が
小さく、特にエンジン排気ガスの温度が350℃以上の
高温である場合に前記内壁面1aと外壁面lb間に耐熱
性樹脂のTg点と一致する温度範囲が存在せず、十分な
消音効果が得られない。耐熱性樹脂は、炭素鋼又はステ
ンレス鋼よりも酸、塩及び各種腐蝕性物質に対する耐蝕
性が格段に優れているため、排気ガス中に含まれている
腐蝕性物質又は外気中に含まれている塩分等によるマフ
ラー本体lの腐蝕を防止することが可能である。When the amount of the inorganic substance 7 added near the outer wall surface 1b is more than 300 parts by weight, the temperature difference between the inner wall surface 1a and the outer wall surface 1b is small, especially when the temperature of the engine exhaust gas is as high as 350°C or higher. There is no temperature range between the inner wall surface 1a and the outer wall surface 1b that matches the Tg point of the heat-resistant resin, and a sufficient sound damping effect cannot be obtained. Heat-resistant resin has much better corrosion resistance than carbon steel or stainless steel against acids, salts, and various corrosive substances, so it is highly resistant to corrosive substances contained in exhaust gas or in the outside air. It is possible to prevent corrosion of the muffler body l due to salt and the like.
第1図、第2図に示したマフラー本体lの比重は無機質
7の添加量によって異なるものであるが、比重は概略1
.5〜3の範囲内にあり、炭素鋼又はステンレス鋼製マ
フラーに比してマフラー本体1の軽量化が可能になる。The specific gravity of the muffler body l shown in Figures 1 and 2 varies depending on the amount of inorganic material 7 added, but the specific gravity is approximately 1.
.. It is within the range of 5 to 3, and the weight of the muffler body 1 can be reduced compared to a muffler made of carbon steel or stainless steel.
即ちマフラー本体lの材質が耐熱性樹脂である場合には
、その厚みが1〜10■であることが好ましく、更には
0.5〜5ffxであることがより好ましい。前記厚み
が1Qxxを超える場合は消音器の軽量化をはかること
ができず、又1111未満では高温負荷時の消音器の物
理的強度が低下して外部からの衝撃等によってマフラー
本体1が破損したり変形してしまうことがあるという難
点がある外、マフラー本体1の内壁面1aと外壁面lb
間の温度差が小さくなって消音性能が低下してしまうこ
とになる。That is, when the material of the muffler body 1 is a heat-resistant resin, the thickness is preferably 1 to 10 cm, more preferably 0.5 to 5 ffx. If the thickness exceeds 1Qxx, it is not possible to reduce the weight of the muffler, and if it is less than 1111, the physical strength of the muffler during high-temperature loads decreases, and the muffler body 1 may be damaged by external impact. In addition to the disadvantage that the muffler body 1 may be deformed, the inner wall surface 1a and the outer wall surface 1b of the muffler body 1
The temperature difference between the two ends up becoming smaller, resulting in a reduction in sound-dampening performance.
以下にかかる耐熱性樹脂を用いた消音器の各種具体例を
その操作手順に従って説明する。Various specific examples of the silencer using the heat-resistant resin will be described below according to the operating procedures thereof.
[操作1]工ポキシ樹脂混合物の調整
ビスフェノールF型液状エポキシ樹脂(エビコ−トー’
807:シエル化学KK製)100重量部に対して酸無
水物系硬化材である無水ナジック酸(カヤノ\−ドMC
D :日本化薬KK製)90重量部と硬化促進剤として
2−エチル−4−イミダゾールの2重量部及び無機質と
してセリサイトを混合したエポキシ樹脂混合物を調整し
た。尚無機質の添加量は表1に示した如り70重量部、
100重量部、200重量部、300重量部とし、夫々
濃度の異なった混合物4種類を調整した。[Operation 1] Preparation of engineered poxy resin mixture Bisphenol F type liquid epoxy resin (Ebicoto'
807: Nadic anhydride (Kayano\do MC), which is an acid anhydride curing agent, to 100 parts by weight (manufactured by Ciel Kagaku KK)
D: manufactured by Nippon Kayaku KK), 2 parts by weight of 2-ethyl-4-imidazole as a curing accelerator, and sericite as an inorganic substance to prepare an epoxy resin mixture. The amount of inorganic substances added was 70 parts by weight as shown in Table 1.
Four types of mixtures with different concentrations were prepared, each containing 100 parts by weight, 200 parts by weight, and 300 parts by weight.
表1
(注1)ビスフェノールFのジグリシジルエーテル エ
ポキシ当量170〜190 シェル化学KK製(注2
)無水ナジック酸 日本化薬KW製[操作2]
エポキシ樹脂製プリプレグの作成表1に示した樹脂混合
物を、表面をアミノシランで処理した厚さ0.5xm、
縦300311.横630xxの大きさのガラスクロス
に塗布、含浸させた後、100℃で3時間加熱硬化させ
てセリサイトの濃度が異なるエポキシ樹脂製プレプレグ
4種類を作成した。Table 1 (Note 1) Diglycidyl ether of bisphenol F Epoxy equivalent 170-190 Manufactured by Shell Chemical KK (Note 2
) Nadic anhydride manufactured by Nippon Kayaku KW [Operation 2]
Preparation of epoxy resin prepreg The resin mixture shown in Table 1 was treated with aminosilane to a thickness of 0.5 x m.
Vertical 300311. After coating and impregnating a glass cloth with a width of 630xx, it was heated and cured at 100° C. for 3 hours to create four types of epoxy resin prepregs with different sericite concentrations.
[操作3]工ポキシ樹脂製マフラー本体の作成前記[操
作2]で作成した4種類のプリプレグを無機質濃度の高
いものから順に表面をシリコーンワックス離型材を塗布
したφ=300yx、 ff=30Oxxの鉄製パイプ
に巻き付け、その外側から1に97ctn”以上の圧力
でプレスしながら120℃で12時間、次いで150℃
で3時間加熱硬化させて、前記第1図に示したものとほ
ぼ同様なマフラー本体1(サンプル■)を作成した。[Operation 3] Creating a muffler body made of engineered poxy resin The four types of prepregs created in [Operation 2] above were coated with a silicone wax release agent on the surface in order from the one with the highest inorganic concentration. Wrap it around a pipe and press it from the outside with a pressure of 97 ctn" or more at 120°C for 12 hours, then at 150°C.
The muffler body 1 (sample 2) substantially similar to that shown in FIG. 1 was prepared by heating and curing for 3 hours.
[操作4]ジアリルテレフタレ一ト樹脂混合物の調整
メチルイソブチルケトンとトルエンの混合割合が重量比
で1=1の混合溶媒100重量部にジアリルテレフタレ
ートオリゴマー100重量部を溶解させ、この溶液を用
いて表2に示す無機質濃度が異なるジアリルテレフタレ
ート樹脂混合物3種類を調整した。[Operation 4] Preparation of diallyl terephthalate resin mixture Dissolve 100 parts by weight of diallyl terephthalate oligomer in 100 parts by weight of a mixed solvent in which the mixing ratio of methyl isobutyl ketone and toluene is 1=1 by weight, and use this solution. Three types of diallyl terephthalate resin mixtures having different inorganic concentrations shown in Table 2 were prepared.
表2
[操作5]ジアリルテレフタレート樹脂プリプレグの作
成
表2に示した混合物を、表面をビニルシランで処理した
厚さ0.5iz、縦30011、横630IIIjIツ
ガラスクロスに塗布、含浸させ、800℃で5分間加熱
し、セリサイトの濃度が異なるジアリルテレフタレート
樹脂プリプレグ3種類を作成した。Table 2 [Operation 5] Creation of diallyl terephthalate resin prepreg The mixture shown in Table 2 was applied and impregnated onto a 0.5 iz thick, 30011 x 630 III jI glass cloth whose surface had been treated with vinyl silane, and was heated at 800°C for 50 minutes. The mixture was heated for a minute to create three types of diallyl terephthalate resin prepregs with different concentrations of sericite.
[操作6]ジアリルテレフタレ一ト樹脂製マフラー本体
の作成
前記[操作3]と同様な操作により、100℃で1時間
1次いで130℃で1時間加熱硬化させて、ジアリルテ
レフタレート樹脂製マフラー本体(サンプル■)を作成
した。[Operation 6] Creation of a muffler body made of diallyl terephthalate resin By the same operation as in [Operation 3] above, heat curing was performed at 100°C for 1 hour and then at 130°C for 1 hour to form a muffler body made of diallyl terephthalate resin ( Sample ■) was created.
[操作7]フ工ノール樹脂混合物の調整レゾール型フェ
ス樹脂(BH3−330昭和高分子KK製)100重量
部に対し、シリカとセリサイトの混合割合が重量比でl
:1の混合物を表3に示す割合で混合し、無機質濃度が
異なるフェノール樹脂混合物5種類を調整した。[Operation 7] Adjustment of phenolic resin mixture For 100 parts by weight of resol type face resin (BH3-330 manufactured by Showa Kobunshi KK), the mixing ratio of silica and sericite is 1 by weight.
:1 mixture was mixed at the ratio shown in Table 3 to prepare five types of phenolic resin mixtures having different inorganic concentrations.
表3
[操作8]フエノール樹脂プリプレグの作成表3に示し
た混合物を、表面をアミノシランで処理した厚さ0.2
xm、縦3001m、横630xmのガラスクロスに塗
布、含浸させ、100℃で10分間加熱してシリカとセ
リサイトの混合物の濃度が異なるフェノール樹脂プリプ
レグ5種類を作成した。Table 3 [Operation 8] Creation of phenolic resin prepreg The mixture shown in Table 3 was treated with aminosilane to a thickness of 0.2
A glass cloth measuring 3001 m long and 630 m wide was coated and impregnated, and heated at 100° C. for 10 minutes to create 5 types of phenolic resin prepregs with different concentrations of silica and sericite mixtures.
[操作9]フ工ノール樹脂製マフラー本体の作成前記[
操作3]と同様な操作により、180℃で1時間加熱に
より、フェノール樹脂製マフラー本体(サンプル■)を
作成した。[Operation 9] Creating the muffler body made of phenolic resin [
A phenolic resin muffler body (sample ■) was prepared by heating at 180°C for 1 hour in the same manner as in Operation 3].
[操作10]エポキシ樹脂プレミツクスの作成ビスフェ
ノールA型エポキシ樹脂(エピコート828、シェル化
学KK製)の100重量部に対して、硬化材としてDD
M(4,4’〜ジγミノラフエニルメタン)を50重量
部。[Operation 10] Creation of epoxy resin premix Add DD as a hardening agent to 100 parts by weight of bisphenol A epoxy resin (Epicote 828, manufactured by Shell Chemical KK).
50 parts by weight of M (4,4′-diγminolaphenylmethane).
硬化促進材としてDMP−30を1重量部2強化材とし
て表面をアミノシランで処理したガラス短繊維150重
量部に対して無機質としてセリサイトを表4に示す割合
で加えてから、40℃の熱間ロールを用いて混合物が均
一になるまで良く練ったものを厚さ0.9xz、縦30
xx、横630mgのシート状のエポキシプリプレグを
作成した。1 part by weight of DMP-30 as a hardening accelerator and 2 parts by weight as a reinforcing material and 150 parts by weight of short glass fibers whose surface was treated with aminosilane were added with sericite as an inorganic material in the proportions shown in Table 4, and then heated at 40°C. Knead the mixture well using a roll until it becomes homogeneous, then roll it into a 0.9 x
xx, a sheet-like epoxy prepreg with a width of 630 mg was prepared.
表4
[操作11]工ポキシ樹脂製マフラー本体の作成前記[
操作3]と同様な操作により、80℃で2時間、120
℃で6時間9次いで150℃で3時間加熱してエポキシ
樹脂製マフラー本体(サンプル■)を作成した。Table 4 [Operation 11] Creation of engineered poxy resin muffler body [
120°C for 2 hours at 80°C by the same operation as Step 3].
The muffler body (sample 2) made of epoxy resin was prepared by heating at 150° C. for 6 hours and then at 150° C. for 3 hours.
[比較例1]
表1のNotに示された組成のエポキシ樹脂混合物を使
用し、前記[操作2]と同様な操作により作成したプリ
プレグ4枚を用いて、前記[操作3]の方法でエポキシ
樹脂製マフラー本体(サンプル■)を作成した。[Comparative Example 1] Using an epoxy resin mixture having the composition shown in Not in Table 1, and using four sheets of prepreg prepared in the same manner as in [Step 2] above, epoxy resin was prepared using the method in [Step 3] above. A resin muffler body (sample ■) was created.
[比較例2]
表1のNo4に示された組成のエポキシ樹脂混合物を使
用し、前記[操作2]と同様な操作により作成したプリ
プレグ4枚を用いて、前記[操作3]の方法でエポキシ
樹脂製マフラー本体(サンプル■)を作成した。[Comparative Example 2] Using an epoxy resin mixture having the composition shown in No. 4 in Table 1, and using four sheets of prepreg prepared in the same manner as in [Operation 2] above, epoxy resin was prepared using the method in [Operation 3] above. A resin muffler body (sample ■) was created.
[比較例3]
前記[操作1]において、セリサイトの配合量を100
0重量部とした以外は[操作1]と同様にしてエポキシ
樹脂混合物を得た。この混合物を用いて、前記[操作2
]と同様な方法によってプリプレグを作成したが、混合
物の粘度が高いため、ガラスクロスへの含浸性が悪く、
又本プリプレグ4枚を用いて成形したエポキシ樹脂製マ
フラー本体(サンプル■)は耐衝撃性が低くなり、成形
物を1mの高さから落下させることによって破損した。[Comparative Example 3] In the above [Operation 1], the blending amount of sericite was changed to 100
An epoxy resin mixture was obtained in the same manner as [Operation 1] except that the amount was 0 parts by weight. Using this mixture, perform the procedure described above in [Operation 2].
] A prepreg was made using a method similar to that used in [2], but the viscosity of the mixture was high, so it had poor impregnation into glass cloth.
In addition, the epoxy resin muffler body (sample ■) molded using four sheets of this prepreg had low impact resistance and was damaged when the molded product was dropped from a height of 1 m.
[操作12]上記各サンプルの耐久性テスト空冷式4気
筒ガソリンエンジン(本田G −200)の排気管出口
より200cmの所に前記各サンプルを装着し、高速高
負荷運転(4000rpm、1000時間)のテストを
実施した。その結果を表5に示す。[Operation 12] Durability test of each of the above samples Each sample was mounted 200 cm from the exhaust pipe outlet of an air-cooled 4-cylinder gasoline engine (Honda G-200) and subjected to high-speed, high-load operation (4000 rpm, 1000 hours). A test was conducted. The results are shown in Table 5.
表5
(注)○は市販の鋼板製マフラーより良好なことを示す
。Table 5 (Note) ○ indicates better performance than commercially available steel plate mufflers.
表5により、本発明にかが石消音器(サンプル■■■■
)が比較例の消音器(サンプル■■■)に比して消音性
能、外観及びマフラー本体の強度の何れの面からも優れ
ていることが判明した。According to Table 5, the stone silencer of the present invention (sample ■■■■
) was found to be superior to the comparative muffler (sample ■■■) in terms of muffler performance, appearance, and strength of the muffler body.
発明の効果
以上詳細に説明した如く、本発明に係る耐熱性樹脂を用
いた消音器は、内燃機関から発生する排気ガスをマフラ
ー本体に付随する人力管から出力管へ順次通過させて、
内燃機関の爆発にともなう排気騒音を消音させるように
した消音器において、前記マフラー本体が無機質の少な
くとも1種と耐熱性樹脂より成り、且つ前記無機質の濃
度がマフラー本体の内壁面近傍で最も高く、該内壁面か
ら外壁面に向かうに従って順次低くなるような濃度勾配
を付与した構成にしたので、以下に記す作用効果がもた
らされる。即ちマフラー本体が、それ自体吸音作用を有
する耐熱性樹脂と無機質の1種との混合物を用いて製作
されているので、騒音の吸収が効率的に行われるもので
ある。特に消音器の吸音特性が所定の領域内に制限され
てしまうことがなく、幅の広い吸音特性が得られる。更
に高速排気流がマフラー本体の壁面に衝突して発生する
消音器内の気流騒音を吸収することが可能となる。又耐
熱性樹脂の持つ耐蝕性により、マフラー本体の経時的腐
食が発生することがなく、且つマフラー本体自体の重量
を軽減することが可能となる。更にマフラー本体の内方
にグラスウール又は石綿等の吸音材を添着する必要がな
いので、使用中に空気中に放散される塵埃もなく、公害
を発生しない利点がある。Effects of the Invention As explained in detail above, the silencer using heat-resistant resin according to the present invention allows exhaust gas generated from an internal combustion engine to pass sequentially from the man-powered pipe attached to the muffler body to the output pipe,
In a muffler designed to muffle exhaust noise caused by an explosion of an internal combustion engine, the muffler body is made of at least one inorganic substance and a heat-resistant resin, and the concentration of the inorganic substance is highest near the inner wall surface of the muffler body, Since the structure is such that a concentration gradient is provided that gradually decreases from the inner wall surface toward the outer wall surface, the following effects are brought about. That is, since the muffler body is manufactured using a mixture of a heat-resistant resin and an inorganic material, which itself has a sound-absorbing effect, noise can be efficiently absorbed. In particular, the sound absorption characteristics of the muffler are not limited to a predetermined region, and a wide range of sound absorption characteristics can be obtained. Furthermore, it becomes possible to absorb airflow noise within the muffler that is generated when the high-speed exhaust flow collides with the wall surface of the muffler body. Furthermore, due to the corrosion resistance of the heat-resistant resin, corrosion of the muffler body over time does not occur, and the weight of the muffler body itself can be reduced. Furthermore, since there is no need to attach a sound absorbing material such as glass wool or asbestos to the inside of the muffler body, there is no dust dissipated into the air during use, and there is an advantage that no pollution is generated.
又本発明の場合、前記無機質の濃度がマフラー本体の内
壁面近傍で最も高く、該内壁面から外壁面に向かうに従
って順次低くなるような濃度勾配を付与したので、排気
ガスの高熱に起因するマフラー本体の酸化劣化が該マフ
ラー本体の内壁面近傍のみに留められ、且つ内壁面と無
機質の濃度が低い外壁面間の温度差が大きくなって、外
壁面近傍での消音作用が発生する。更に排気ガスの温度
が極めて高温になった場合でも該マフラー本体の耐熱性
をより一層高めることができて、マフラー本体を高温か
ら保護し、消音器の持つ本来の機能を長時間に亙って維
持することが可能になるとともにエンジンにNOx、H
C(ハイドロカーボン)、CO等の公害物質を低減させ
るための三元系触媒を付設した場合の発熱反応に起因す
る排気ガスの高温化に対しても十分に対処することが出
来る。In addition, in the case of the present invention, a concentration gradient is provided such that the concentration of the inorganic substance is highest near the inner wall surface of the muffler body and gradually decreases from the inner wall surface toward the outer wall surface. The oxidative deterioration of the muffler main body is limited only to the vicinity of the inner wall surface of the muffler main body, and the temperature difference between the inner wall surface and the outer wall surface where the concentration of inorganic substances is low becomes large, so that a noise silencing effect occurs near the outer wall surface. Furthermore, even when the exhaust gas temperature becomes extremely high, the heat resistance of the muffler body can be further increased, protecting the muffler body from high temperatures and maintaining the original function of the muffler for a long time. It becomes possible to maintain the engine and reduce NOx and H.
It is also possible to sufficiently cope with the increase in temperature of exhaust gas caused by exothermic reactions when a three-way catalyst is attached to reduce pollutants such as C (hydrocarbon) and CO.
更に消音器自体が極めて軽量化されるので、自動車等に
搭載する際に有利であり、且つマフラーの内部構造を簡
略化することが可能となり、コストの低減化及び燃料費
低減にも寄与することが出来る。Furthermore, since the muffler itself is extremely lightweight, it is advantageous when installed in automobiles, etc., and the internal structure of the muffler can be simplified, contributing to cost and fuel cost reductions. I can do it.
第1図は本発明に係る耐熱性樹脂を用いた消音器の第1
実施例を示す要部断面図、第2図は本発明の第2実施例
を示す要部断面図である。
■・・・マフラー本体、■a・・・内壁面、Ib・・・
外壁面、2・・・入力管、3・・・出力管、4.5・・
・鏡板、6・・・強化材、7・・・無機質、8・・・衝
突板、
第1図
第2図
6衝突版 °lFigure 1 shows a first example of a silencer using heat-resistant resin according to the present invention.
FIG. 2 is a sectional view of a main part showing a second embodiment of the present invention. ■...Muffler body, ■a...Inner wall surface, Ib...
Outer wall surface, 2...Input tube, 3...Output tube, 4.5...
・Mirror plate, 6... Reinforcement material, 7... Inorganic material, 8... Collision plate, Figure 1 Figure 2 Figure 6 Collision plate °l
Claims (3)
付随する入力管から出力管へ順次通過させて、内燃機関
の爆発にともなう排気騒音を消音させるようにした消音
器において、 前記マフラー本体が無機質の少なくとも1種と耐熱性樹
脂より成り、且つ前記無機質の濃度がマフラー本体の内
壁面近傍で最も高く、該内壁面から外壁面に向かうに従
って順次低くなるような濃度勾配を付与したことを特徴
とする耐熱性樹脂を用いた消音器。(1) A muffler that muffles exhaust noise caused by an explosion of the internal combustion engine by passing exhaust gas generated from an internal combustion engine sequentially from an input pipe attached to a muffler body to an output pipe, wherein the muffler body is made of inorganic material. and a heat-resistant resin, and characterized in that the concentration of the inorganic substance is highest in the vicinity of the inner wall surface of the muffler body, and is provided with a concentration gradient such that it gradually decreases from the inner wall surface toward the outer wall surface. A silencer made of heat-resistant resin.
脂、シリコーン樹脂、不飽和ポリエステル樹脂、ジアリ
ルフタレート樹脂、メラミン樹脂及び熱硬化型ポリカル
ボジイミド樹脂から選択された少なくとも1種の熱硬化
性樹脂であることを特徴とする特許請求の範囲第(1)
項記載の耐熱性樹脂を用いた消音器。(2) The heat-resistant resin is at least one thermosetting resin selected from epoxy resins, phenolic resins, silicone resins, unsaturated polyester resins, diallyl phthalate resins, melamine resins, and thermosetting polycarbodiimide resins. Claim No. (1) characterized in that
A silencer using the heat-resistant resin described in Section 1.
ル樹脂、ポリフェニレンサルファイド樹脂、熱可塑性フ
ッ素樹脂、ポリスルフォン樹脂及びポリフェニレンエー
テル樹脂の中から選択された少なくとも1種の熱可塑性
樹脂であることを特徴とする特許請求の範囲第(1)項
記載の耐熱性樹脂を用いた消音器。(3) The heat-resistant resin is at least one thermoplastic resin selected from polyamide resin, polyester resin, polyphenylene sulfide resin, thermoplastic fluororesin, polysulfone resin, and polyphenylene ether resin. A silencer using a heat-resistant resin according to claim (1).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP619888A JPH01182516A (en) | 1988-01-14 | 1988-01-14 | Muffler using heat resistant resin |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP619888A JPH01182516A (en) | 1988-01-14 | 1988-01-14 | Muffler using heat resistant resin |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01182516A true JPH01182516A (en) | 1989-07-20 |
Family
ID=11631840
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP619888A Pending JPH01182516A (en) | 1988-01-14 | 1988-01-14 | Muffler using heat resistant resin |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01182516A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0446064A2 (en) * | 1990-03-08 | 1991-09-11 | Honda Giken Kogyo Kabushiki Kaisha | Glass fiber material containing component of exhaust system. |
EP1172535A2 (en) * | 2000-07-15 | 2002-01-16 | J. Eberspächer GmbH & Co. | Engine exhaust system |
JP2006138542A (en) * | 2004-11-12 | 2006-06-01 | Noritz Corp | Exhaust tube and combustion device |
JP2013519037A (en) * | 2010-02-02 | 2013-05-23 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | Muffler with integrated catalytic converter and polymer muffler body |
-
1988
- 1988-01-14 JP JP619888A patent/JPH01182516A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0446064A2 (en) * | 1990-03-08 | 1991-09-11 | Honda Giken Kogyo Kabushiki Kaisha | Glass fiber material containing component of exhaust system. |
EP1172535A2 (en) * | 2000-07-15 | 2002-01-16 | J. Eberspächer GmbH & Co. | Engine exhaust system |
EP1172535A3 (en) * | 2000-07-15 | 2003-07-16 | J. Eberspächer GmbH & Co. KG | Engine exhaust system |
JP2006138542A (en) * | 2004-11-12 | 2006-06-01 | Noritz Corp | Exhaust tube and combustion device |
JP2013519037A (en) * | 2010-02-02 | 2013-05-23 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | Muffler with integrated catalytic converter and polymer muffler body |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5052513A (en) | Noise reductive resin muffler for exhaust system in combustion engine | |
US5376341A (en) | Catalytic converter for motorcycles | |
JP5816552B2 (en) | Mounting mat provided with flexible edge protecting agent and exhaust gas treatment apparatus incorporating the mounting mat | |
US8017085B2 (en) | Substrate mounting system | |
WO1989004915A2 (en) | Automotive exhaust system with resin muffler associated with exhaust gas cooling system | |
JP4526187B2 (en) | Amorphous non-expandable inorganic fiber mat for low temperature exhaust gas treatment equipment | |
JP5238813B2 (en) | Exhaust gas treatment equipment | |
EP1348841B1 (en) | Holding material for catalytic converter and method for producing the same | |
JP2011038529A (en) | Exhaust gas treatment device and method of manufacturing the same | |
JP2009504968A (en) | Exhaust pipe | |
US7306773B2 (en) | Holding material for catalytic converter | |
JPH01182516A (en) | Muffler using heat resistant resin | |
JPH0192507A (en) | Muffler using heat-resistance resin | |
JPH0573717B2 (en) | ||
JPH01247712A (en) | Exhaust muffler for automobile | |
JPS59521A (en) | Catalyst reactor for purifying exhaust gas of internal-combustion engine | |
JPH0754996A (en) | Piston pin | |
JP3302497B2 (en) | Three-dimensional soundproof and heat insulating plate | |
US6916449B2 (en) | Exhaust treatment device and process for forming the same | |
JP2003192465A (en) | High temperature resistant material | |
JPS63239306A (en) | Muffler made of heat resistant epoxy resin | |
JP3328716B2 (en) | Insulation holding material | |
JP2006022817A (en) | Sound absorbing material for silencer | |
JPH0231210B2 (en) | ||
JPH01211610A (en) | Muffler |