JPH0573717B2 - - Google Patents

Info

Publication number
JPH0573717B2
JPH0573717B2 JP2195975A JP19597590A JPH0573717B2 JP H0573717 B2 JPH0573717 B2 JP H0573717B2 JP 2195975 A JP2195975 A JP 2195975A JP 19597590 A JP19597590 A JP 19597590A JP H0573717 B2 JPH0573717 B2 JP H0573717B2
Authority
JP
Japan
Prior art keywords
weight
expansion
heat
organic binder
hydrogen phosphate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2195975A
Other languages
Japanese (ja)
Other versions
JPH0483773A (en
Inventor
Satoru Hashimoto
Susumu Yasuko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pillar Packing Co Ltd
Original Assignee
Nippon Pillar Packing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pillar Packing Co Ltd filed Critical Nippon Pillar Packing Co Ltd
Priority to JP2195975A priority Critical patent/JPH0483773A/en
Publication of JPH0483773A publication Critical patent/JPH0483773A/en
Publication of JPH0573717B2 publication Critical patent/JPH0573717B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2839Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration
    • F01N3/2853Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration using mats or gaskets between catalyst body and housing
    • F01N3/2857Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration using mats or gaskets between catalyst body and housing the mats or gaskets being at least partially made of intumescent material, e.g. unexpanded vermiculite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/06Ceramic, e.g. monoliths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2350/00Arrangements for fitting catalyst support or particle filter element in the housing
    • F01N2350/02Fitting ceramic monoliths in a metallic housing
    • F01N2350/04Fitting ceramic monoliths in a metallic housing with means compensating thermal expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2470/00Structure or shape of gas passages, pipes or tubes
    • F01N2470/10Tubes having non-circular cross section
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、特に自動車のエンジンから排出され
る一酸化炭素、炭化水素ならびに窒素酸化物等の
有害成分を酸化或いは還元して、排気浄化を行な
う低公害エンジンにおいて、触媒コンバータを構
成するセラミツクハニカム性モノリス触媒の保持
材として好適な耐熱膨張性部材に関するものであ
る。 [従来の技術] 自動車のエンジンから排出される一酸化炭素、
炭化水素ならびに窒素酸化物等の有害成分を、酸
化或いは還元して排気浄化を行ない、低公害エン
ジンを得るための触媒として、高温特性にすぐれ
ているセラミツクハニカム製モノリス触媒が好適
であることは知られている。 ところで、セラミツクは靱性に劣る脆い性質を
有しているから、特に自動車の走行時に発生する
振動等の機械的な衝撃が負荷されることによつて
損傷しないように、クツシヨン性を有する保持材
を巻回して金属製のケーシングに装着されてい
る。 セラミツクハニカム製モノリス触媒はエンジン
の運転によつて高温の排出ガスにさらされるか
ら、前記保持材としては当然すぐれた耐熱性、つ
まり高温強度の低下しない条件が要求される。し
かも、エンジンが連続運転されて排出ガスが漸次
高温化するのに伴なつて、各温度領域に相当して
保持材が熱膨張しても、セラミツクハニカム製モ
ノリス触媒に対する保持力とクツシヨン性が低下
しない条件が要求される。 このような条件を満足させることができるモノ
リス触媒の保持材として、従来、例えば特公昭61
−35143号公報に開示されているように、未処理
未膨張バーミキユライトをリン酸2水素アンモニ
ウムの水溶液によつて処理した処理未膨張バーミ
キユライト40重量%から65重量%、無機繊維材料
25重量%から50重量%、無機結合材から選ばれた
結合材5重量%から15重量%からなる耐熱膨張性
シートが知られている。 また、例えば、特公昭62−38397号公報に開示
さているように、無機結合材に代えて、天然ゴム
ラテツクス、スチレン−ブタジエンラテツクス、
ブタジエン−アクリロニトリルラテツクス、アク
リル酸エステル及びメタクリル酸エステルの重合
体又は共重合体のラテツクスなどの有機結合体を
使用した耐熱膨張性シート材も知られている。 [説明が解決しようとする課題] しかし、前述の無機結合材を使用してなる耐熱
膨張性シートでは本発明者による実験結果に基づ
く、後記表2および第3図のグラフで明らかなよ
うに、低温領域に相当する200℃〜300℃付近(詳
しくは200℃〜325℃)でクリープ現象による比較
的大きい負膨張を生じ、しかも、中温領域に相当
する350℃〜400℃の熱膨張量がきわめて小さいた
めに、がたつきを生じることになり、セラミツク
ハニカム製モノリス触媒の保持力が著しく低下
し、また、高温領域に相当する600℃以上では、
熱膨張量が抑えられ、高温領域におけるセラミツ
クハニカム製モノリス触媒の保持力を著しく低下
させることが判明した。つまり、従来の耐熱膨張
性シートでは低温領域と高温領域のそれぞれにお
いて高い保持力を望むことができず、がたつきが
生じることになる さらに、無機結合材のみによつて結合すること
で保形されているため、高温かつ高速で流下する
排ガスにさらされる部分が漸次欠落して行く現象
を生じて、経時的にモノリス触媒の保持機能が消
失する。即ち、耐ガスアタツク性がきわめて悪い
などの問題点を有している。 また、前述の未処理未膨張バーミキユライトを
リン酸2水素ナトリウムで処理することも知られ
ているが、この耐熱膨張性シートでは、低温領域
の負膨張は抑えられるものの、中温領域および高
温領域における熱膨張が小さいために、十分な保
持力を期待することができない(表2および第3
図参照)。 また、上述のような有機結合材を使用してなる
耐熱膨張性シート材では、本発明者による実験結
果に基づく後記の表5からも明らかなように、常
温域での引張り強度が低いとともに、柔軟性に欠
けるために、屈曲した場合に長い範囲に亘つて亀
裂が入り易く、巻回など屈曲状態で用いられるこ
との多いこの種の耐熱膨張性部材としては好まし
くない。 本発明はこのような実情に鑑みてなされたもの
で、低温領域から高温領域にかけて、十分に大き
い保持力を確保することができるとともに、耐ガ
スアタツク性を高め、しかも引張り強度および柔
軟性の向上を図ることができる耐熱膨張性部材を
提供することを目的とする。 [課題を解決するための手段] 本発明の耐熱膨張性部材は、上記目的を達成す
るために、セピオライト鉱物と、リン酸水素アン
モニウムナトリウムの溶液によつて処理された未
膨張バーミキユライトと、セラミツク繊維と、有
機結合材とを所定の比率に配合してなる耐熱膨張
性部材で、前記有機結合材として、エチレン酢酸
ビニルアクリル酸アステル共重合体を使用したも
のである。 また、前記各構成材料の配合比率として、セピ
オライト鉱物3〜5重量%、リン酸水素アンモニ
ウムナトリウムの溶液によつて処理された未膨張
バーミキユライト49〜59重量%、セラミツク繊維
25〜30重量%、エチレン酢酸ビニルアクリル酸エ
ステル共重合体使用の有機接合材10〜15重量%に
設定したものである。 さらに、前記各構成材料の配合比率として、セ
ピオライト鉱物3〜5重量%、リン酸水素アンモ
ニウムナトリウムの溶液によつて処理された未膨
張バーミキユライト23〜33重量%、セラミツク繊
維50〜60重量%、エチレン酢酸ビニルアクリル酸
エステル共重合体使用の有機結合材10〜15重量%
に設定したものである。 [作用] 本発明によれば、セピオライト鉱物、リン酸水
素アンモニウムナトリウムの溶液によつて処理さ
れた未膨張バーミキユライト、セラミツク繊維、
エチレン酢酸ビニルアクリル酸エステル共重合体
使用の有機結合材をそれぞれ所定の比率値に配合
することにより、低温領域における負膨張の低
域、高温領域における耐熱強度の向上、振動等の
機械的衝撃を緩和するクツシヨン性および常温に
おける保形性がそれぞれ適度にバランス良く付与
されるのみならず、低温領域から高温領域にかけ
ての広い温度領域において十分に大きい保持力を
確保することができるとともに、耐ガスアタツク
性を高めることができる。特に、有機結合材とし
て、伸び、接着性、耐候性が優れているエチレン
酢酸ビニルアクリル酸エステル共重合体を使用し
たことによつて、常温時の引張り強度および柔軟
性を向上させて、屈曲にともなう亀裂の発生が抑
制される。 また、未処理未膨張バーミキユライトをリン酸
水素アンモニウムナトリウムの溶液で処理したこ
とによつてバーミキユライト中のNa+とイオン
交換し易いもの、NH4+とイオン交換し易いも
のが、この両イオンを含む溶液によつて効果的に
イオン交換され、バーミキユライトの膨張量と膨
張力を増大させる。 [実施例] 以下、この発明の実施例を図面に基づいて説明
する。 第1図は触媒コンバータの一例を示す概略断面
図であり、同図において、1はセラミツクハニカ
ム製モノリス触媒で、その外周に耐熱膨張性シー
ト2を巻回して2つ割りの金属製ケーシング3に
挿着されており、該金属製ケーシング3の外周が
金属製バンド4によつて締付けられている。 前記耐熱膨張性シート2は、セピオライト鉱物
3〜5重量%、好ましくは4重量%と、未膨張バ
ーミキユライト49〜59重量%、好ましくは54重量
%と、セラミツク繊維25〜35重量%、好ましくは
30重量%と、有機結合材としてエチレン酢酸ビニ
ルアクリル酸エステル共重合体10〜15重合%、好
ましくは12重量%の配合比率をもつて抄造法によ
つて製造されている。 そして、2つ割りの金属ケーシング3と金属製
バンド4は、それぞれSUS304によつて形成され
ている。 耐熱膨張性シート2を構成するセピオライト鉱
物は、その結晶化度によつて2種類あり、結晶度
の高い繊維状のものはα型セピオライト、低結晶
化度ないし非結晶で粉体状のものはβ型セピオラ
イトと呼ばれている。β型セピオライトは粉体状
の形態であるから,セラミツク繊維や未膨張バー
ミキユライトなどとのからみ合い性に劣るため、
α型セピオライトを使用している。但し、α型と
β型を併用してもよい。また、セピオライト鉱物
は、水で練つて乾燥すると固化する。さらに、
400〜800℃で軽い焼結性が得られ、特にα型セピ
オライトはセラミツク繊維やバーミキユライトに
よくからみ合い、しかも、こすつたり締付けたり
してもガラス繊維やセラミツク繊維のように折損
することがない。そのために、セピオライト鉱物
を添加した耐熱膨張性シート2は、面圧負荷時の
300℃付近における負膨張を防止して、セラミツ
クハニカム製モノリス触媒1の保持力を向上させ
る。 処理未膨張バーミキユライトは、未処理未膨張
バーミキユライトをリン酸水素アンモニウムナト
リウムの水溶液で処理している。このように、未
処理未膨張バーミキユライトを前記水溶液に浸漬
することによつて、未処理バーミキユライト中の
Na+とイオン交換し易いもの、NH4+とイオン
交換し易いものが、この両イオンを含む水溶液に
よつて効果的にイオン交換され、バーミキユライ
トの膨張量、膨張力が増大される。 セラミツク繊維は耐熱強度を向上させるととも
に、300℃付近の負膨張を防止する役目を果し、
特に有機結合材が完全に消失する高温領域におけ
るつつなぎの機能を発揮して保形性をよくする。 有機結合材としては、エチレン酢酸ビニルアク
リル酸エステル共重合体(例えば、住友化学株式
会社製のスミカフレツクス900)を使用し、10重
量%未満では常温での強度および柔軟性が不足す
るので、10〜15重量%の範囲にする必要がある。 南アフリカ産未膨張バーミキユライト1000gを
表1に示す水溶液中に常温で120Hr浸漬した後、
流水にて洗浄して105℃×2Hrの乾燥をおこない、
所定の加熱処理で30分の加熱処理をおこなつた後
バーミキユライトの比容積をメスシリンダーにて
測定した。 測定の結果を表2および第3図に示す。
[Industrial Application Field] The present invention is particularly applicable to low-pollution engines that purify exhaust gas by oxidizing or reducing harmful components such as carbon monoxide, hydrocarbons, and nitrogen oxides emitted from automobile engines. The present invention relates to a heat expansion resistant member suitable as a holding material for a ceramic honeycomb monolithic catalyst constituting a converter. [Prior art] Carbon monoxide emitted from automobile engines,
It is well known that ceramic honeycomb monolith catalysts, which have excellent high-temperature properties, are suitable as catalysts for purifying exhaust gas by oxidizing or reducing harmful components such as hydrocarbons and nitrogen oxides, and for obtaining low-pollution engines. It is being By the way, since ceramics are brittle and have poor toughness, a retaining material with cushioning properties is used to prevent them from being damaged by mechanical shocks such as vibrations that occur when a car is running. It is rolled and attached to a metal casing. Since the ceramic honeycomb monolith catalyst is exposed to high-temperature exhaust gas during engine operation, the holding material is naturally required to have excellent heat resistance, that is, conditions that do not reduce high-temperature strength. Moreover, as the engine is operated continuously and the exhaust gas gradually becomes hotter, even if the holding material expands correspondingly to each temperature range, the holding power and cushioning properties for the ceramic honeycomb monolith catalyst decrease. Conditions that do not apply are required. Conventionally, as a holding material for monolithic catalysts that can satisfy these conditions, for example,
-40% to 65% by weight of treated unexpanded vermiculite treated with an aqueous solution of ammonium dihydrogen phosphate, as disclosed in Publication No. 35143, inorganic fiber material
Heat-expandable sheets are known that contain 25% to 50% by weight and 5% to 15% by weight of a binder selected from inorganic binders. For example, as disclosed in Japanese Patent Publication No. 62-38397, instead of the inorganic binder, natural rubber latex, styrene-butadiene latex,
Heat-expandable sheet materials using organic binders such as butadiene-acrylonitrile latex, latexes of polymers or copolymers of acrylic esters and methacrylic esters are also known. [Problems to be Solved by the Explanation] However, as is clear from Table 2 and the graph in FIG. 3, which are based on the experimental results by the present inventors, in the heat-expandable sheet made using the above-mentioned inorganic binder, A relatively large negative expansion occurs due to the creep phenomenon in the vicinity of 200℃ to 300℃, which corresponds to the low temperature region (more specifically, 200℃ to 325℃), and the amount of thermal expansion is extremely large in the 350℃ to 400℃ region, which corresponds to the medium temperature region. Because of its small size, it causes wobbling, and the holding power of the ceramic honeycomb monolith catalyst decreases significantly.
It was found that the amount of thermal expansion was suppressed and the holding power of the ceramic honeycomb monolith catalyst in the high temperature range was significantly reduced. In other words, with conventional heat-expandable sheets, it is not possible to expect high retention strength in both low-temperature and high-temperature regions, resulting in wobbling.Furthermore, bonding only with inorganic binders allows for shape retention. As a result, the parts exposed to exhaust gas flowing down at high temperatures and high speeds gradually disappear, and the retention function of the monolithic catalyst disappears over time. That is, it has problems such as extremely poor gas attack resistance. It is also known to treat the aforementioned untreated unexpanded vermiculite with sodium dihydrogen phosphate, but with this heat-expandable sheet, negative expansion in the low-temperature region is suppressed, but Sufficient holding force cannot be expected due to the small thermal expansion in Tables 2 and 3.
(see figure). Furthermore, as is clear from Table 5 below, which is based on the experimental results of the present inventors, the heat-expandable sheet material made using the above-mentioned organic binder has low tensile strength at room temperature, and Due to its lack of flexibility, it is prone to cracking over a long range when bent, making it undesirable for this type of heat-expansion-resistant member that is often used in a bent state, such as when wound. The present invention was made in view of these circumstances, and it is possible to secure a sufficiently large holding force from low temperature to high temperature ranges, improve gas attack resistance, and improve tensile strength and flexibility. It is an object of the present invention to provide a heat-expandable member that can be used in various ways. [Means for Solving the Problems] In order to achieve the above object, the heat expansion resistant member of the present invention comprises sepiolite mineral, unexpanded vermiculite treated with a solution of sodium ammonium hydrogen phosphate, This is a heat expansion resistant member made by blending ceramic fibers and an organic binder in a predetermined ratio, and uses an ethylene vinyl acetate acrylate ester copolymer as the organic binder. In addition, the blending ratio of each of the constituent materials is 3 to 5% by weight of sepiolite mineral, 49 to 59% by weight of unexpanded vermiculite treated with a solution of sodium ammonium hydrogen phosphate, and ceramic fiber.
25 to 30% by weight, and 10 to 15% by weight of the organic bonding material using ethylene vinyl acetate acrylate copolymer. Furthermore, the blending ratio of each of the constituent materials is 3 to 5% by weight of sepiolite mineral, 23 to 33% by weight of unexpanded vermiculite treated with a solution of sodium ammonium hydrogen phosphate, and 50 to 60% by weight of ceramic fiber. , 10-15% by weight organic binder using ethylene vinyl acetate acrylate copolymer
It is set to . [Function] According to the present invention, sepiolite mineral, unexpanded vermiculite treated with a solution of sodium ammonium hydrogen phosphate, ceramic fiber,
By blending organic binders using ethylene vinyl acetate acrylic acid ester copolymer at predetermined ratios, we can reduce negative expansion in low-temperature ranges, improve heat resistance strength in high-temperature ranges, and reduce mechanical shocks such as vibrations. Not only does it provide a moderate balance of cushioning properties and shape retention properties at room temperature, but it also ensures a sufficiently large holding force in a wide temperature range from low to high temperatures, as well as gas attack resistance. can be increased. In particular, by using ethylene vinyl acetate acrylate copolymer, which has excellent elongation, adhesiveness, and weather resistance, as an organic binder, it has improved tensile strength and flexibility at room temperature, and is resistant to bending. The occurrence of accompanying cracks is suppressed. In addition, by treating untreated unexpanded vermiculite with a solution of sodium ammonium hydrogen phosphate, the vermiculite that easily exchanges ions with Na+ and the one that easily exchanges ions with NH4+ were able to exchange both of these ions. The containing solution effectively exchanges ions, increasing the swelling amount and swelling power of vermiculite. [Example] Hereinafter, an example of the present invention will be described based on the drawings. FIG. 1 is a schematic cross-sectional view showing an example of a catalytic converter. In the figure, 1 is a monolithic catalyst made of ceramic honeycomb, and a heat-expandable sheet 2 is wound around the outer periphery of the monolithic catalyst, and a metal casing 3 is divided into two parts. The outer periphery of the metal casing 3 is tightened with a metal band 4. The heat-expandable sheet 2 contains 3 to 5% by weight, preferably 4% by weight of sepiolite mineral, 49 to 59% by weight, preferably 54% by weight of unexpanded vermiculite, and 25 to 35% by weight, preferably ceramic fiber. teeth
30% by weight and 10 to 15% by weight, preferably 12% by weight of ethylene vinyl acetate acrylate copolymer as an organic binder, and is manufactured by a papermaking method. The two-split metal casing 3 and metal band 4 are each made of SUS304. There are two types of sepiolite minerals that make up the heat-expandable sheet 2, depending on their degree of crystallinity: α-type sepiolite is a fibrous type with high crystallinity, and α-type sepiolite is a type with low crystallinity or amorphous powder. It is called β-type sepiolite. Since β-type sepiolite is in powder form, it has poor entanglement with ceramic fibers, unexpanded vermiculite, etc.
Alpha-type sepiolite is used. However, α type and β type may be used together. Moreover, sepiolite mineral solidifies when kneaded with water and dried. moreover,
Light sinterability is obtained at temperatures of 400 to 800°C, and α-type sepiolite in particular entangles well with ceramic fibers and vermiculite, and it does not break like glass fibers or ceramic fibers even when rubbed or tightened. There is no. For this purpose, the heat-expandable sheet 2 containing sepiolite mineral is
Negative expansion at around 300°C is prevented to improve the holding power of the ceramic honeycomb monolith catalyst 1. The treated unexpanded vermiculite is treated with an aqueous solution of sodium ammonium hydrogen phosphate. In this way, by immersing the untreated unexpanded vermiculite in the aqueous solution, the
Those that are easily ion-exchanged with Na+ and those that are easily ion-exchanged with NH4+ are effectively ion-exchanged by the aqueous solution containing both ions, increasing the amount of expansion and expansion power of vermiculite. Ceramic fibers not only improve heat resistance strength but also play a role in preventing negative expansion around 300℃.
Particularly in high-temperature regions where the organic binder completely disappears, it exhibits a bonding function and improves shape retention. As the organic binder, use an ethylene vinyl acetate acrylate copolymer (for example, Sumikaflex 900 manufactured by Sumitomo Chemical Co., Ltd.), and if it is less than 10% by weight, the strength and flexibility at room temperature will be insufficient, Must be in the range of 15% by weight. After immersing 1000 g of unexpanded vermiculite from South Africa in the aqueous solution shown in Table 1 for 120 hours at room temperature,
Wash with running water and dry for 2 hours at 105℃.
After performing the prescribed heat treatment for 30 minutes, the specific volume of the vermiculite was measured using a measuring cylinder. The measurement results are shown in Table 2 and FIG. 3.

【表】【table】

【表】 尚、前記表2において( )内の数値は熱膨張
率%を示す。また、バーミキユライト1号は粒子
径が0.5〜2mmである。 前記表2においてリン酸水素アンモニウムナト
リウムはリン酸2水素アンモニウム処理にみられ
るような200〜300℃での収縮、つまり負膨張がな
い。またリン酸水素ナトリウム処理に比べて高い
膨張度合(膨張量)を示し、さらに膨張開始温度
が275℃と早い特徴を持つことが判る。 α型セピオライト(昭和鉱業(株)のミルコンMS
−2−2)4重量%、リン酸水素アンモニウムナ
トリウムの水溶液によつて処理された未膨張バー
ミキユライト(南アフリカ産0号)54重量、セラ
ミツク繊維(新日化(株)のSC1260D2)30重量%、
有機結合材としてエチレン酢酸ビニルアクリル酸
エステル共重合体エマルジヨン(住友化学(株)のス
ミカフレツクス900)12重量%によつて、厚さ4.9
mm、密度0.5〜0.8g/cm3、好ましくは0.7g/cm3の耐
熱膨張性マツトを抄造法によつて製造し、このマ
ツトから直径φ15mm×厚さ4.9mmの試料Aを作成
し、第2図に示すように、加熱炉5内においてロ
ードセル6により石英棒7A,7Aで厚さ3mmに
圧縮して、約50分で750℃に昇温する間の熱膨張
力を測定した。その結果を下記表3に示す。
[Table] In Table 2, the numbers in parentheses indicate the coefficient of thermal expansion (%). Further, vermiculite No. 1 has a particle size of 0.5 to 2 mm. In Table 2, sodium ammonium hydrogen phosphate does not shrink at 200 to 300°C, that is, does not undergo negative expansion, as seen in ammonium dihydrogen phosphate treatment. It also shows a higher degree of expansion (amount of expansion) compared to sodium hydrogen phosphate treatment, and the expansion start temperature is as early as 275°C. α-type sepiolite (Milcon MS of Showa Mining Co., Ltd.)
-2-2) 4% by weight, unexpanded vermiculite (No. 0 produced in South Africa) treated with an aqueous solution of sodium ammonium hydrogen phosphate (54 weight), ceramic fiber (SC1260D2 from Shin Nikka Co., Ltd.) 30 weight %,
By using 12% by weight of ethylene vinyl acetate acrylic ester copolymer emulsion (Sumikaflex 900, manufactured by Sumitomo Chemical Co., Ltd.) as an organic binder, the thickness was 4.9%.
A heat-expandable mat with a density of 0.5 to 0.8 g/cm 3 , preferably 0.7 g/cm 3 is manufactured by a papermaking method, and a sample A with a diameter of 15 mm and a thickness of 4.9 mm is prepared from this mat. As shown in FIG. 2, the material was compressed to a thickness of 3 mm with quartz rods 7A, 7A using a load cell 6 in a heating furnace 5, and the thermal expansion force was measured while the temperature was raised to 750° C. in about 50 minutes. The results are shown in Table 3 below.

【表】 前記表3によつて、高温領域でも高い膨張力を
得ることが判る。特に粒子径の小さい、バーミキ
ユライト(0号)の方が高い膨張力を有し、かつ
高温時の膨張力低下が小さいから、自動車用セラ
ミツク触媒用保持材等の、高温においても高い膨
張力を要求されるものに適し、また、粒子径の大
きいバーミキユライト(1号)のように、粒子径
の小さいバーミキユライト(0号)よりも膨張力
の点で若干低いけれども、前記表2で判るよう
に、膨張量の大きいものは、例えば構築壁の貫通
孔に挿通されている送電ケーブルの外周を巻回す
る耐火用シール材などに適しているといえる。 第4図に示す外形φ76mmの円筒形触媒10の外
周に本発明にかかる耐熱膨張性シート2または従
来例(特公昭61−35143号公報)の耐熱膨張性シ
ートを巻回し、内径φ82.2mmの金属製円筒形ケー
シング11に装填して加熱処理を行なつたのち、
ゴム板12および金属板13を介して、ロードセ
ル14により圧縮速度5m/minで円筒形触媒1
0を矢印方向に押圧して、円筒形触媒10を押し
出すのに要する押圧力、つまり耐熱膨張性シート
2の保持力を測定した。その結果を下記表4およ
び第5図のグラフに示す。
[Table] From Table 3, it can be seen that high expansion power is obtained even in the high temperature range. In particular, vermiculite (No. 0), which has a small particle size, has a higher expansion power and less decrease in expansion power at high temperatures, so it can be used as a holding material for ceramic catalysts for automobiles, etc., and has high expansion power even at high temperatures. Table 2 above shows that vermiculite (No. 1), which has a large particle size, has a slightly lower expansion force than vermiculite (No. 0), which has a small particle size. As can be seen, materials with a large expansion amount are suitable for use as fireproof sealing materials, for example, to be wound around the outer periphery of power transmission cables inserted through through holes in construction walls. The heat expansion resistant sheet 2 according to the present invention or the heat expansion resistant sheet of the conventional example (Japanese Patent Publication No. 61-35143) is wound around the outer periphery of a cylindrical catalyst 10 with an outside diameter of 76 mm as shown in FIG. After being loaded into a metal cylindrical casing 11 and subjected to heat treatment,
A cylindrical catalyst 1 is compressed at a compression speed of 5 m/min by a load cell 14 via a rubber plate 12 and a metal plate 13.
0 in the direction of the arrow to measure the pressing force required to extrude the cylindrical catalyst 10, that is, the holding force of the heat-expandable sheet 2. The results are shown in Table 4 below and the graph in FIG.

【表】 前記表4および第5図のグラフにより、従来の
耐熱膨張性シート2では、前述の負膨張によつ
て、325℃の保持力が著しく低下し、しかも600℃
以上の高温領域における保持力が小さいけれど
も、本発明にかかる耐熱膨張性シート2によれ
ば、325℃における負膨張領域でも保持力の大幅
な低域がみられず、また600℃以上の高温領域に
おいて大きい保持力を確保できることが判る。こ
のことは、リン酸水素アンモニウムナトリウムに
よつて処理されたバーミキユライトおよび従来の
シートには配合されていないセピオライト鉱物が
それぞれ保有している膨張量と膨張力の相乗作用
によるものであるといえる。 また、上述した配合比率で抄造法により製造し
たマツト(実施例)と、有機結合材としてNBR
ラテツクス(日本ゼオン(株)の1562および1571)を
使用して同一の配合比率で製造した従来のマツト
(比較例1および2)との引張り強度および耐屈
曲性をそれぞれ測定して、有機結合材としてエチ
レン酢酸ビニルアクリル酸エステル共重合体を使
用することの有効性を確認した。その試験結果を
表5に示す。 引張り試験は、幅25mm×長さ160mm×厚さ4.9mm
の共試マツトを用いて、標点間距離100mm、引張
速度20mm/minで引張つた。 また、耐屈曲性試験は、幅(W)25mm×長さ
(L)80mm×厚さ(t)4.9mmの供試マツトAを第
6図に示すように、180°に折曲げた際にその屈曲
部の外面に発生する亀裂長さ(l)を測定したも
のである。
[Table] According to the graphs in Table 4 and Figure 5, in the conventional heat-expandable sheet 2, the holding power at 325°C is significantly reduced due to the above-mentioned negative expansion, and furthermore, the holding power at 600°C is
Although the holding force in the above high temperature range is small, according to the heat expansion resistant sheet 2 according to the present invention, the holding force is not significantly low even in the negative expansion range at 325°C, and in the high temperature range of 600°C or higher. It can be seen that a large holding force can be secured. This can be said to be due to the synergistic effect of the expansion amount and expansion power possessed by vermiculite treated with sodium ammonium hydrogen phosphate and sepiolite mineral, which is not included in conventional sheets. . In addition, matte (example) manufactured by the papermaking method with the above-mentioned blending ratio and NBR as an organic binder were also used.
The tensile strength and bending resistance of conventional pine (Comparative Examples 1 and 2) manufactured using latex (Nippon Zeon Co., Ltd.'s 1562 and 1571) at the same blending ratio were measured, and the organic binder The effectiveness of using ethylene vinyl acetate acrylic ester copolymer was confirmed. The test results are shown in Table 5. Tensile test is 25mm wide x 160mm long x 4.9mm thick.
It was pulled using a joint test mat with a gage distance of 100 mm and a pulling speed of 20 mm/min. In addition, the bending resistance test was carried out when a sample mat A of width (W) 25 mm x length (L) 80 mm x thickness (t) 4.9 mm was bent at 180° as shown in Figure 6. The crack length (l) generated on the outer surface of the bent portion was measured.

【表】 前記表5によつて、従来の耐熱膨張性マツトに
比べて引張り強度が約2.3〜3.5倍も増大し、耐屈
曲性も著しくすぐれていることが判明した。 以上の実施例は、4輪自動車の排気系のよう
に、エンジンの排気口から触媒コンバータまでの
距離が長く、速度が若干緩められた排ガスにさら
され、耐熱膨張性シートへのガスアタツクが比較
的小さく剛性の高い触媒コンバータへの採用に適
した配合比率の耐熱膨張性部材を示したが、自動
2輪車の排気系のように、エンジンの排気口から
触媒コンバータまでの距離が短いために、触媒コ
ンバータが高速で流下する排ガスにさらされ、耐
熱膨張性シートへのガスアタツクが激しいものに
は、膨張量よりも耐ガスアタツク性を重視した配
合比率の耐熱膨張性部材を用いることが要望され
る。そのための各構成材料の配合比率は、セピオ
ライト鉱物3〜5重量%、好ましくは4重量%、
リン酸水素アンモニウムナトリウムの溶液によつ
て処理された未膨張バーミキユライト23〜33重量
%、好ましくは28重量%、セラミツク繊維50〜60
重量%、好ましくは56重量%、有機結合剤として
エチレン酢酸ビニルアクリル酸エステル共重合体
10〜15重量%、好ましくは12重量%であり、この
場合は、4輪自動車の排気系に好適な実施例のも
のに比べて、未膨張バーミキユライトの配合比率
を低くして膨張量を抑える反面、耐熱強度を向上
に寄与するセラミツク繊維の配合比率を高め、も
つて、過剰膨張によるモノリス触媒1の割れおよ
び金属製ケーシング3の異常な変形を防止するこ
とができる。 [発明の効果] 以上のように、請求項1の本発明によれば、低
温領域における負膨張の低域、高温領域における
耐熱強度の向上、振動等の機械的衝撃を有効に緩
和するクツシヨン性および保形性が適度にバラン
ス良く付与され、したがつて、靱性に劣るもろい
特性を有しているセラミツクハニカム製モノリス
触媒を低温領域および高温領域にかかわらず大き
い保持力でがたつくことなく適正に保持すること
ができるので、自動車の走行時に発生する振動等
の機械的な衝撃が負荷されることでセラミツクハ
ニカム製モノリス触媒が損傷する不都合を未然に
防止できる。 しかも、有機結合材として、伸び、接着性、耐
候性に優れたエチレン酢酸ビニルアクリル酸エス
テル共重合体を使用したことにより、常温時の引
張り強度を向上できるともに、柔軟性を向上させ
て、耐屈曲性を増大でき、実使用時の屈曲にとも
なう亀裂の発生を抑制し耐久性の著しい向上達成
することができる。 さらには、未膨張バーミキユライトをリン酸水
素アンモニウムナトリウムの溶液によつて処理し
たことによつて、未膨張バーミキユライトの膨張
量と膨張力が低温領域から著しく増大され、保持
力を大幅に高めることができる。 請求項2の耐熱膨張性部材においては、リン酸
水素アンモニウムナトリウムの溶液によつて処理
した未膨張バーミキユライトの配合比率をセピオ
ライト鉱物の配合比率よりも十分に高くして、特
に膨張量と膨張力の増大を図り、適度の耐ガスア
タツク性を確保するようにしているので、ハニカ
ム製モノリス触媒の圧縮強度が大きく、また金属
製ケーシングが厚肉に形成されて高い剛性を有し
ているけれども、流速が若干緩められた排ガスに
さらされる4輪自動車用の触媒コンバータに適し
ている。 請求項3の耐熱膨張性部材においては、リン酸
水素アンモニウムナトリウムの溶液によつて処理
した未膨張バーミキユライトの配合率を低くする
反面、セラミツク繊維の配合率を高くして、膨張
量および膨張力を抑えつつ、耐熱強度の向上を図
り、耐ガスアタツク性を十分に確保するようにし
ているので、ハニカム製モノリス触媒の圧縮強度
が小さく、また金属製ケーシングが薄肉に形成さ
れて剛性が低いけれども流速の高い排ガスにさら
される自動2輪車用の触媒コンバータに適してい
る。
Table 5 shows that the tensile strength is approximately 2.3 to 3.5 times higher than that of conventional heat expansion resistant mats, and the bending resistance is also significantly superior. In the above embodiment, like the exhaust system of a four-wheeled vehicle, the distance from the engine exhaust port to the catalytic converter is long and the exhaust gas is exposed to a slightly slower speed, so that the gas attack on the heat-expandable sheet is relatively small. We have shown a thermal expansion resistant material with a blending ratio suitable for use in small and highly rigid catalytic converters, but because the distance from the engine exhaust port to the catalytic converter is short, such as in the exhaust system of motorcycles, In cases where the catalytic converter is exposed to exhaust gas flowing down at high speed and the gas attack on the thermal expansion resistant sheet is severe, it is desirable to use a thermal expansion resistant member with a blending ratio that emphasizes gas attack resistance rather than the amount of expansion. The blending ratio of each constituent material for this is 3 to 5% by weight of sepiolite mineral, preferably 4% by weight,
Unexpanded vermiculite 23-33% by weight, preferably 28% by weight, treated with a solution of sodium ammonium hydrogen phosphate, ceramic fibers 50-60%
% by weight, preferably 56% by weight, ethylene vinyl acetate acrylate copolymer as organic binder
The amount is 10 to 15% by weight, preferably 12% by weight, and in this case, the amount of expansion is reduced by lowering the blending ratio of unexpanded vermiculite compared to the example suitable for the exhaust system of a four-wheeled vehicle. On the other hand, it is possible to increase the blending ratio of ceramic fibers that contribute to improving heat resistance strength, thereby preventing cracking of the monolithic catalyst 1 and abnormal deformation of the metal casing 3 due to excessive expansion. [Effects of the Invention] As described above, according to the present invention of claim 1, the low negative expansion range in the low temperature region, the improvement in heat resistance strength in the high temperature region, and the cushioning property that effectively alleviates mechanical shocks such as vibrations are achieved. The ceramic honeycomb monolith catalyst, which has a suitable balance of shape retention and poor toughness, can be held properly without wobbling with a large holding power regardless of the low temperature or high temperature range. Therefore, it is possible to prevent the inconvenience of damage to the ceramic honeycomb monolith catalyst due to mechanical shocks such as vibrations generated when the automobile is running. Furthermore, by using ethylene vinyl acetate acrylate copolymer, which has excellent elongation, adhesiveness, and weather resistance, as an organic binder, it is possible to improve tensile strength at room temperature, improve flexibility, and improve durability. Flexibility can be increased, cracking caused by bending during actual use can be suppressed, and durability can be significantly improved. Furthermore, by treating unexpanded vermiculite with a solution of sodium ammonium hydrogen phosphate, the expansion amount and expansion force of unexpanded vermiculite are significantly increased from the low temperature range, and the holding power is significantly increased. can be increased. In the heat expansion resistant member according to claim 2, the blending ratio of unexpanded vermiculite treated with a solution of sodium ammonium hydrogen phosphate is sufficiently higher than the blending ratio of sepiolite mineral, so that the amount of expansion and the expansion are particularly improved. Although the compressive strength of the honeycomb monolith catalyst is high and the metal casing is formed with a thick wall and has high rigidity, it is designed to increase the force and ensure appropriate gas attack resistance. Suitable for catalytic converters for four-wheeled vehicles that are exposed to exhaust gas with a slightly slower flow rate. In the heat expansion resistant member according to claim 3, the blending ratio of unexpanded vermiculite treated with a solution of sodium ammonium hydrogen phosphate is lowered, while the blending ratio of ceramic fibers is increased, thereby increasing the amount of expansion and expansion. Although the compressive strength of the honeycomb monolith catalyst is low and the metal casing is formed thin and has low rigidity, it is possible to improve the heat resistance strength and ensure sufficient gas attack resistance while suppressing the force. Suitable for catalytic converters for motorcycles that are exposed to high-flowing exhaust gas.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の耐熱膨張性部材が適用される
触媒コンバータの一例を示す概略断面図、第2図
は熱膨張力測定装置を示す概略正面図、第3図は
処理液によつて異なるバーミキユライトの膨張度
合を示すグラフ、第4図は耐熱膨張性シートの保
持力測定装置の説明断面図、第5図は保持力測定
結果を示す比較グラフ、第6図は屈曲性試験の状
態を示す斜視図である。 2……耐熱膨張性シート(耐熱膨張性部材)
Fig. 1 is a schematic cross-sectional view showing an example of a catalytic converter to which the thermal expansion resistant member of the present invention is applied, Fig. 2 is a schematic front view showing a thermal expansion force measuring device, and Fig. 3 differs depending on the processing liquid. A graph showing the degree of expansion of vermiculite, Fig. 4 is an explanatory cross-sectional view of the holding force measurement device for heat-expandable sheets, Fig. 5 is a comparison graph showing the holding force measurement results, and Fig. 6 is the state of the bending test. FIG. 2... Heat expansion resistant sheet (heat expansion resistant member)

Claims (1)

【特許請求の範囲】 1 セピオライト鉱物と、リン酸水素アンモニウ
ムナトリウムの溶液によつて処理された未膨張バ
ーミキユライトと、セラミツク繊維と、有機結合
材とを所定の比率に配合してなる耐熱膨張性部材
であつて、前記有機結合材として、エチレン酢酸
ビニルアクリル酸エステル共重合体を使用してな
ることを特徴とする耐熱膨張性部材。 2 セピオライト鉱物3〜5重量%と、リン酸水
素アンモニウムナトリウムの溶液によつて処理さ
れた未膨張バーミキユライト49〜59重量%と、セ
ラミツク繊維25〜30重量%と、有機結合材10〜15
重量%とを配合してなる請求項1に記載の耐熱膨
張性部材。 3 セピオライト鉱物3〜5重量%と、リン酸水
素アンモニウムナトリウムの溶液によつて処理さ
れた未膨張バーミキユライト23〜33重量%と、セ
ラミツク繊維50〜60重量%と、有機結合材10〜15
重量%とを配合してなる請求項1に記載の耐熱膨
張性部材。
[Claims] 1. A heat-resistant expansion product made by blending sepiolite mineral, unexpanded vermiculite treated with a solution of sodium ammonium hydrogen phosphate, ceramic fiber, and an organic binder in a predetermined ratio. 1. A heat-expandable member characterized in that the organic binder is an ethylene-vinyl acetate acrylate copolymer. 2 3-5% by weight of sepiolite mineral, 49-59% by weight of unexpanded vermiculite treated with a solution of sodium ammonium hydrogen phosphate, 25-30% by weight of ceramic fibers, and 10-15% of organic binder.
% by weight. The heat expansion resistant member according to claim 1. 3-5% by weight of sepiolite mineral, 23-33% by weight of unexpanded vermiculite treated with a solution of sodium ammonium hydrogen phosphate, 50-60% by weight of ceramic fibers, and 10-15% by weight of an organic binder.
% by weight. The heat expansion resistant member according to claim 1.
JP2195975A 1990-07-23 1990-07-23 Heat expansion-resistant member Granted JPH0483773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2195975A JPH0483773A (en) 1990-07-23 1990-07-23 Heat expansion-resistant member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2195975A JPH0483773A (en) 1990-07-23 1990-07-23 Heat expansion-resistant member

Publications (2)

Publication Number Publication Date
JPH0483773A JPH0483773A (en) 1992-03-17
JPH0573717B2 true JPH0573717B2 (en) 1993-10-14

Family

ID=16350122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2195975A Granted JPH0483773A (en) 1990-07-23 1990-07-23 Heat expansion-resistant member

Country Status (1)

Country Link
JP (1) JPH0483773A (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998045583A1 (en) * 1997-04-10 1998-10-15 Mitsubishi Chemical Corporation Catalyst converter
US8404187B1 (en) 1998-03-11 2013-03-26 Unifrax I Llc Support element for fragile structures such as catalytic converters
KR20030032666A (en) * 2001-10-19 2003-04-26 현대자동차주식회사 a substrate supporting structure of catalytic converter in vehicles
WO2010074711A2 (en) 2008-12-15 2010-07-01 Unifrax I Llc Ceramic honeycomb structure skin coating
CN102575542B (en) 2009-08-14 2014-09-10 尤尼弗瑞克斯I有限责任公司 Mounting mat for exhaust gas treatment device
KR20120074284A (en) 2009-09-24 2012-07-05 유니프랙스 아이 엘엘씨 Multiple layer mat and exhaust gas treatment device
EP2513442B1 (en) 2009-12-17 2017-11-29 Unifrax I LLC An exhaust gas treatment device
EP2513443B1 (en) 2009-12-17 2016-08-10 Unifrax I LLC Mounting mat for exhaust gas treatment device
WO2012021817A2 (en) 2010-08-12 2012-02-16 Unifrax I Llc Exhaust gas treatment device
EP2638261A4 (en) 2010-11-11 2014-08-06 Unifrax I Llc Mounting mat and exhaust gas treatment device
KR20170118679A (en) 2015-02-24 2017-10-25 유니프랙스 아이 엘엘씨 High temperature resistant insulation mat
JPWO2017141739A1 (en) * 2016-02-19 2018-08-09 本田技研工業株式会社 Exhaust gas purification catalytic converter

Also Published As

Publication number Publication date
JPH0483773A (en) 1992-03-17

Similar Documents

Publication Publication Date Title
JP5551588B2 (en) Corrosion-resistant mounting material and method for producing and using the same
JP5336479B2 (en) FIXABLE MOUNT MATERIAL, ITS MANUFACTURING METHOD, AND USE METHOD
JP4982363B2 (en) Exhaust gas treatment apparatus and method for manufacturing the same
JP4309349B2 (en) Exhaust gas treatment apparatus and method for manufacturing the same
US9174169B2 (en) Mounting mat for exhaust gas treatment device
US8017085B2 (en) Substrate mounting system
JPH0662932B2 (en) Heat-resistant expansion material
US8951323B2 (en) Multiple layer mat and exhaust gas treatment device
JP2018048647A (en) Multilayer mounting mat for pollution control device
JPH0573717B2 (en)
CA2734951A1 (en) Mounting mat with flexible edge protection and exhaust gas treatment device incorporating the mounting mat
EP2603676B1 (en) Mounting mat with flexible edge protection and exhaust gas treatment device incorporating the mounting mat
WO2012021817A2 (en) Exhaust gas treatment device
US8926911B2 (en) Use of microspheres in an exhaust gas treatment device mounting mat
US5945361A (en) Heat-resistant expansive member
JPH0536139Y2 (en)
JPH07115918B2 (en) Heat expansion material
JP2568472B2 (en) Heat resistant composite member and molded product thereof
JPH03919A (en) Heat-resistant expansive member
US20130189505A1 (en) Mounting mat and exhaust gas treatment device