WO1998045583A1 - Catalyst converter - Google Patents

Catalyst converter Download PDF

Info

Publication number
WO1998045583A1
WO1998045583A1 PCT/JP1998/001636 JP9801636W WO9845583A1 WO 1998045583 A1 WO1998045583 A1 WO 1998045583A1 JP 9801636 W JP9801636 W JP 9801636W WO 9845583 A1 WO9845583 A1 WO 9845583A1
Authority
WO
WIPO (PCT)
Prior art keywords
monolith
casing
holding material
catalytic converter
thickness
Prior art date
Application number
PCT/JP1998/001636
Other languages
French (fr)
Japanese (ja)
Inventor
Mamoru Shoji
Toshiaki Sasaki
Original Assignee
Mitsubishi Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corporation filed Critical Mitsubishi Chemical Corporation
Priority to AU67478/98A priority Critical patent/AU6747898A/en
Publication of WO1998045583A1 publication Critical patent/WO1998045583A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2839Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration
    • F01N3/2853Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration using mats or gaskets between catalyst body and housing

Definitions

  • the present invention relates to a catalytic converter, and more particularly, to a catalytic converter mainly used for automobiles, in which a monolith is stably fixed by a specific monolith holding material, and exhaust gas from the outer periphery of the monolith is fixed.
  • the present invention relates to a catalytic converter that reliably prevents leakage.
  • a catalytic converter is a device that removes harmful components such as carbon monoxide, hydrocarbons, and nitrogen oxides contained in exhaust gas of an internal combustion engine using a noble metal catalyst.
  • Japanese Patent Application Laid-Open No. 9-946 discloses a so-called integrated catalyst in which a catalyst metal is supported on a cylindrical monolithic carrier (hereinafter, referred to as "monolith") provided with a large number of exhaust gas passages.
  • monolith cylindrical monolithic carrier
  • the catalytic converter described in the above-mentioned publication contains a monolith (1) formed in a cylindrical shape and carrying an exhaust gas purifying catalyst, and a monolith (1), and both ends thereof are connected to an exhaust gas conduit. And a monolith holding material (3) wound around the monolith (1) and interposed in the gap between the monolith and the casing (2).
  • the monolith (1) usually has a honeycomb structure that can secure a larger surface area in the exhaust gas flow path in order to reduce the resistance when passing exhaust gas and increase catalyst efficiency.
  • the monolith holding material (3) is composed of an alumina fiber mat containing an organic binder, and is restored in the casing (2) by thermal decomposition to hold the monolith (1) with an appropriate force. It has the function to do.
  • the second reason is that the monolith (1) is properly fixed to prevent the monolith (1) from detaching or shifting. Therefore, the monolith holding material (3) needs to maintain a predetermined holding force from normal temperature to high temperature during operation. That is, it is necessary to follow the change in the gap caused by the thermal expansion of the monolith (1) ⁇ casing (2) due to the passage of exhaust gas.
  • the present invention has been made in view of the above circumstances, and has as its object to stably fix a monolith by a specific monolith holding material and to more reliably prevent leakage of exhaust gas from the outer periphery of the monolith.
  • An object of the present invention is to provide an improved catalytic converter. Disclosure of the invention
  • the catalytic converter of the present invention is formed in a tubular shape and serves as an exhaust gas purifying catalyst.
  • a monolith that holds the monolith a metal casing that houses the monolith and is connected to an exhaust gas conduit, and a monolith holding material that is wound around the monolith and interposed in a gap between the monolith and the casing.
  • the catalytic converter composed of: the monolith holding material, the crystalline alumina fiber mat compressed in the thickness direction and the organic fiber uniformly impregnated in the alumina fiber mat and disappeared by thermal decomposition.
  • the monolith holding member on the side in contact with the monolith has a large number of grooves orthogonal to the winding direction of the monolith holding member.
  • the monolith holding material is formed by the gap between the outer peripheral surface of the monolith and the inner surface of the casing based on a change in temperature of the monolith casing after the organic binder contained therein disappears due to thermal decomposition. And supports the monolith with its restoring elasticity.
  • the monolith holding material provided with the specific groove does not generate a shear when it is wound around the monolith, and exhibits high adhesion to the outer peripheral surface of the monolith.
  • FIG. 1 is a perspective view showing a monolith holding material used in the catalytic converter 1 of the present invention.
  • FIG. 2 is a front view showing a wound state of the monolith holding material in the catalytic converter of the present invention, and the monolith in the figure shows a ceramic monolith as an example.
  • FIG. 3 is an assembled perspective view showing a general structure of the catalytic converter 1, and the monolith in the figure shows a metal monolith as an example.
  • FIG. 4 is a perspective view showing a general procedure for winding a monolith holding material on a monolith.
  • Fig. 5 is a front view showing the wound state of the monolith holding material in the conventional catalytic converter.
  • FIG. 3 and FIG. 4 used in the background description of the related art are used together.
  • a catalytic converter 1 As shown in FIG. 3, a catalytic converter 1 according to the present invention has a monolith (1), which is formed substantially in a tubular shape and carries an exhaust gas purifying catalyst, A metal casing (2) connected to the gas conduit, and a monolith holding material (3) wound around the monolith (1) and interposed in the gap between the monolith and the casing (2) Be composed.
  • the monolith (1) a monolith composed of ceramics mainly composed of cordierite or the like, or a monolith composed of a metal foil material can be used.
  • fly-based stainless steel foil containing Fe, Cr, A1 or Si as a basic component has good compatibility with the coating material and the catalyst when supporting the catalyst, and has relatively little thermal change after the catalyst is supported. Since it is small, it is a suitable material for constructing metal monoliths.
  • the monolith (1) is usually provided with a catalyst function by supporting a noble metal layer such as Pt and Ph.
  • the casing (2) has a two-part clamshell structure that combines and integrates two members, a casing member (2a) constituting the upper half of the casing and a casing member (2b) constituting the lower half. .
  • the casing members (2a) and (2b) have flange portions (21a) and (21b), respectively, and the flange portions (21a) and (21b) weld the casing members (2a) and (2b). It functions as a joining surface in the case.
  • connection ports (4) and (5) for connecting to an exhaust gas conduit are provided at both ends of one casing member (2b.
  • connection ports (4) and (5) for connecting to an exhaust gas conduit are provided at both ends of one casing member (2b.
  • reference numerals (22a) and (22b) denote bolt holes for fixing to a vehicle body or the like.
  • As the metal casing a casing having a stuffing structure, which is formed in a tubular shape in advance and into which a monolith is inserted,
  • the monolith holding material (3) is made of a non-expandable crystalline alumina fiber mat (hereinafter abbreviated as “mat”) compressed in the thickness direction and uniformly impregnated into the mat. And an organic binder that is eliminated by thermal decomposition.
  • the above mat exhibits a specific restoring force when compressed to a thickness corresponding to the gap between the monolith (1) outer peripheral surface and the casing (2) inner surface, and does not destroy the monolith (1) and The effect of supporting the monolith is fully exhibited.
  • the above mat is preferably 0.1 to 10.0 kg fZcm 2 , more preferably 0.1 mm, in a compressed state having a thickness corresponding to a gap between the outer peripheral surface of the monolith (1) and the inner surface of the casing (2). and a restoring force of ⁇ 8.0kgf / cm 2.
  • the above-mentioned restoring force is developed after the organic binder uniformly impregnated in the mat disappears by thermal decomposition.
  • the resilience of the mat is equivalent to the force (compression force) required to compress the mat to a thickness corresponding to the gap between the monolith (1) outer surface and the casing (2) inner surface.
  • the above-mentioned index of the restoring force is determined by the compressive force at the time of mat formation.
  • the thickness of the mat is determined by the elasticity, the monolith (1) the gap between the outer peripheral surface and the casing (2) the inner surface, the amount of thermal change, gas sealability, and the breaking strength of the monolith (1).
  • the monolith (1) is set to have a compressive force equivalent to the above-mentioned restoring force when compressed to a thickness corresponding to the gap between the outer peripheral surface and the casing (2) the inner surface.
  • the mat as the base material of the monolith holding material (3) refers to an aggregate of alumina fibers that are substantially uniformly laminated in the thickness direction, and includes a so-called blanket or block.
  • alumina fiber usually, a fiber diameter of l to 50 / m and a fiber length of 0.5 to 500 mm is used, but from the viewpoint of restoring force and shape retention, the fiber diameter is 3 to 8 / zm, Fibers having a fiber length of 0.5 to 300 mm are particularly preferred.
  • the composition of the above-mentioned alumina fiber is alumina-silicone crystalline short fiber, having an alumina content of 5% by weight or less, that is, high alumina having an alumina content of 95% by weight or more, and having an alumina content of 70 to 70% by weight.
  • a typical material is 95% by weight and the balance is composed of sili force.
  • a fiber having a mullite composition of 72 to 85% by weight of alumina is excellent in high-temperature stability and elasticity
  • a preferred alumina fiber is a crystalline alumina fiber which is the same as an alumina-silica non-crystalline ceramic fiber.
  • the organic binder can be used without particular limitation as long as it can maintain the thickness of the compressed mat at room temperature and can restore the thickness of the above mat after disappearance by thermal decomposition.
  • organic binders must be avoided.
  • Various organic rubbers, water-soluble organic Polymer compounds, thermoplastic resins, thermosetting resins, and the like can be used.
  • Examples of the rubbers include natural rubbers; copolymers of ethyl acrylate and chloroethyl vinyl ether, copolymers of n-butyl acrylate and acrylonitrile, and copolymers of ethyl acrylate and acrylonitrile.
  • Acryl rubber nitrile rubber of a copolymer of butadiene and acrylonitrile; butadiene rubber; and the like.
  • Examples of the water-soluble organic high molecular compound include carboxymethyl cellulose and polyvinyl alcohol.
  • thermoplastic resin examples include acryl resin which is a homopolymer or a copolymer of acrylic acid, acrylic acid ester, acrylamide, acrylonitrile, methacrylic acid, methacrylic acid ester, etc .; acrylonitrile styrene copolymer; acrylonitrile Butadiene / styrene copolymer.
  • thermosetting resin examples include a bisphenol-type epoxy resin and a novolak-type epoxy resin.
  • binder solutions Aqueous solutions, water-dispersed emulsions, latex, and organic solvent solutions (collectively referred to as "binder solutions") containing the above-mentioned organic binder as an active ingredient are commercially available. Since it can be used after being diluted with a solvent, it can be applied at relatively low cost.
  • the organic binder does not need to be one kind, and may be a mixture of two kinds.
  • At least one selected from the group consisting of acrylyl rubber, nitrile rubber, carboxymethylcellulose, polyvinyl alcohol and acrylyl resin other than acrylyl rubber is preferable, and particularly, synthetic rubber such as acrylic rubber and nitrile rubber. Of these, flexible rubber is effective.
  • the content of the organic binder is not particularly limited, and the type and shape of the fiber constituting the mat, the absolute thickness of the mat, and the molded product including the organic binder before being incorporated into the casing (2). Determined by the thickness and the repulsive force.
  • Organic bi Usually, the content of the organic binder is preferably 3 to 30 parts by weight based on 100 parts by weight of the alumina fiber. If the content of the organic binder is less than 3 parts by weight, the thickness of the molded body may not be maintained due to repulsion of the mat. There is a risk that flexibility may be impaired. From such a viewpoint, the ratio of the organic binder is preferably in the range of 5 to 20 parts by weight.
  • the monolith holding material (3) is formed in a specific shape. That is, on the surface of the monolith holding member (3) on the side that comes into contact with the monolith (1), a number of grooves (3c) orthogonal to the winding direction of the monolith holding member are provided.
  • the cross section of the groove (3c) is usually formed in a substantially V shape or a substantially U shape. According to such a configuration, when the monolith holding material (3) is wound around the monolith (1), it is possible to prevent the occurrence of a screen on the inner peripheral surface of the monolith holding material (3), thereby preventing the exhaust gas from leaking. It can be prevented more reliably.
  • the depth of the groove (3c) is 130 to 12 of the thickness of the monolith holding material (3) in order to further enhance the adhesion to the monolith (1).
  • the width of the groove (3c) (the maximum width of the opening of the groove) is 130 to 1/2 of the thickness of the monolith holding material (3).
  • the arrangement pitch of the grooves (3c) is 1 to 20 to 2 which is the radius of curvature of the monolith (1).
  • the radius of curvature of the monolith (1) is usually 10 to 80 mm.
  • the monolith holding material (3) is prepared by (a) a step of impregnating the organic binder liquid into the mat, (b) a step of compressing the mat impregnated with the organic binder liquid in the thickness direction, and (c) a step of compressing the mat. It is produced through a process of removing the solvent component of the organic binder liquid as it is. Then, the groove (3c) on the surface of the monolith holding material (3) was formed by applying a smooth forming plate to one surface of the mat in the above-mentioned step (b) and having a ridge corresponding to the groove (3c). Formed by pressing the board against the other side of the mat, or Alternatively, after the step (c), it is formed by subjecting the obtained molded body to grooving.
  • the obtained monolith holding material (3) has a connection that can be combined with each other when it is wound around the monolith (1) to prevent twisting and displacement during assembly.
  • the portions are provided at both ends in the winding direction by cutting or the like.
  • the monolith holding material (3) obtained by the above steps is wound around the outer periphery of the monolith (1) as shown in FIG.
  • the monolith holding member (3) can be extremely easily and accurately wound since a large number of grooves (3c) are provided on one surface corresponding to the inner peripheral side of the monolith holding member (3).
  • the monolith holding material (3) is wound, as shown in Fig. 2, the difference in the length between the outer circumference and the inner circumference caused by the thickness of the monolith holding material (3) causes a large number of grooves (3c). Because it is complemented by the monolith (3), it can be wound close to the monolith (3). Then, the monolith (1) on which the monolith holding material (3) is wound is accommodated in the casing (2) shown in FIG.
  • the catalytic converter illustrated in FIG. 3 has a two-part structure in which the flange (21a) of the casing member (2a) and the flange (21b) of the casing member (2b) are welded to each other as a joint surface.
  • the case (2) is adopted.
  • the thickness of the monolith holding material (3) is the same as the gap formed by the outer surface of the monolith (1) and the inner surface of the casing (2). It is not necessary to have a small thickness. However, if it is too thick, if the sliding with the casing (2) is poor, some of the fibers of the monolith holding material (3) will protrude to the joint surface of the flanges (21a) and (21b).
  • the thickness is set to 1.0 to 2.0 times the above gap to cause inconveniences such as making welding impossible.
  • the upper limit of such a set value is preferably 1.7 times, more preferably 1.6 times.
  • the monolith (1) is directly supported by the monolith holding material (3) made of a crystalline alumina fiber mat. Is preferred. That is, in the structure in which the monolith (1) is directly supported by the specific monolith holding material (3) as described above, an appropriate tightening force can be exerted on the monolith (1) and the monolith (1) There is no fear of destroying.
  • the catalytic converter of the present invention is mainly attached to an exhaust gas pipe of an automobile.
  • the temperature of the monolith (1), the casing (2) and the monolith holding material (3) rises, and the monolith is held.
  • material (3) the organic binder impregnated in the mat disappears due to thermal decomposition, and the monolith (1) is fixed by restoring its thickness.
  • the metal casing (2) has a larger thermal expansion than the monolith (1), so that the monolith (1) is Casing (2) The distance between the casing and the inner surface increases.
  • the monolith (1) is made of a metal as described above, the thermal expansion of the monolith (1) is larger than that of the metal casing (2).
  • the distance between the inner surface and the case is narrow.
  • the above specific monolith holding material (3) follows the change in the gap between the monolith (1) outer peripheral surface and the casing (2) inner surface based on the temperature change of the monolith (1) ⁇ casing (2). Then, directly fix the monolith (1) elastically in the casing (2).
  • the monolith holding material (3) is formed by uniformly impregnating the compressed mat with the organic binder. At the time of assembly, the resilience of the thickness is suppressed by the binding force of the organic binder, so that the monolith holding material (3) can be easily formed.
  • the monolith (1) can be fixed very stably because the organic binder disappears due to thermal decomposition and exhibits a restoring elasticity of its thickness when it is put into operation.
  • the monolith holding material (3) has a large number of grooves (3c) on the surface of the monolith (1). What High adhesion to the outer peripheral surface of the monolith (1). As a result, the gap between the monolith (1) and the casing (2) can be completely sealed, and leakage of exhaust gas from the outer periphery of the monolith (1) can be more reliably prevented. Industrial applicability
  • the monolith since the specific monolith holding material that is restored in the thickness direction by the thermal decomposition of the binder is used, the monolith is fixed easily and stably. it can.
  • the surface of the monolith holding member that is in contact with the monolith has a large number of grooves, the monolith holding member can be easily wound around the monolith during assembly, and Since the adhesion of the monolith supporting material to the squirrel can be further enhanced, the leakage of exhaust gas from the gap between the outer peripheral surface of the monolith and the inner surface of the casing can be more reliably prevented.
  • the catalytic converter of the present invention is useful as a device for more reliably removing harmful components such as carbon monoxide, hydrocarbons and nitrogen oxides contained in the exhaust gas of an internal combustion engine.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

A catalyst converter in which a monolith is stably fixed by a specific monolith support and from which no exhaust gas leaks at all through the outer periphery of the monolith. The monolith support (3) comprises a compressed crystalline alumina fiber mat and an organic binder, and has a large number of grooves (3c) orthogonal to the winding direction in the surface thereof. The monolith support (3) follows up changes in the clearance between the outer peripheral surface of the monolith and the inner surface of the casing resulting from the temperature change of the monolith (1) and the casing (2) after the organic binder is thermally decomposed, supports the monolith (1) by its restoring elastic force, and exhibits strong adhesion to the outer peripheral surface of the monolith (1) thanks to the grooves (3c).

Description

明 細 書 触媒コンバーター  Description Catalytic converter
技術分野 Technical field
本発明は、 触媒コンバーターに関するものであり、 詳しくは、 主に自動車に 使用される触媒コンバータ一であって、 特定のモノリス保持材によってモノリ スを安定的に固定し且つモノリス外周からの排気ガスの漏洩を確実に防止した 触媒コンバータ一に関するものである。  The present invention relates to a catalytic converter, and more particularly, to a catalytic converter mainly used for automobiles, in which a monolith is stably fixed by a specific monolith holding material, and exhaust gas from the outer periphery of the monolith is fixed. The present invention relates to a catalytic converter that reliably prevents leakage.
背景従来 Background
触媒コンバータ一は、 周知の通り、 内燃機関の排気ガス中に含まれる一酸化 炭素、 炭化水素、 窒素酸化物などの有害成分を貴金属触媒によって除去する装 置である。 特開平 9 - 946号公報には、多数の排気ガス通路が設けられた円筒状 モノ リス担体 (以下、 「モノ リス」 と言う。) に触媒金属を担持させて成るいわ ゆる一体型触媒を使用し、 耐久性の向上および小型化を企図した図 3〜図 5に示 す様な触媒コンバーターの技術が開示されている。  As is well known, a catalytic converter is a device that removes harmful components such as carbon monoxide, hydrocarbons, and nitrogen oxides contained in exhaust gas of an internal combustion engine using a noble metal catalyst. Japanese Patent Application Laid-Open No. 9-946 discloses a so-called integrated catalyst in which a catalyst metal is supported on a cylindrical monolithic carrier (hereinafter, referred to as "monolith") provided with a large number of exhaust gas passages. In addition, the technology of a catalytic converter as shown in FIGS. 3 to 5, which aims at improving durability and miniaturization, is disclosed.
上記の公報に記載の触媒コンバータ一は、 筒状に形成され且つ排気ガス浄化 用触媒を担持するモノ リス (1) と、 モノ リス (1) を収容し且つその両端が排 気ガス導管に接続される金属製のケーシング (2) と、 モノリス (1) に巻回さ れて当該モノリスとケ一シング (2) との間隙に介装されるモノリス保持材 (3) とから構成される。  The catalytic converter described in the above-mentioned publication contains a monolith (1) formed in a cylindrical shape and carrying an exhaust gas purifying catalyst, and a monolith (1), and both ends thereof are connected to an exhaust gas conduit. And a monolith holding material (3) wound around the monolith (1) and interposed in the gap between the monolith and the casing (2).
モノリス (1) は、排気ガス通過時の抵抗を低減し且つ触媒効率を高めるため、 通常、 排気ガス流路において一層大きな表面積を確保し得るハニカム構造にな されている。 そして、 モノリス保持材 (3) は、 有機バインダーが含有されたァ ルミナ質繊維マツ 卜で構成され、 熱分解によってケーシング (2) 内で復元する ことにより、 適度な力でモノリス (1) を保持する機能を備えている。 The monolith (1) usually has a honeycomb structure that can secure a larger surface area in the exhaust gas flow path in order to reduce the resistance when passing exhaust gas and increase catalyst efficiency. Have been. The monolith holding material (3) is composed of an alumina fiber mat containing an organic binder, and is restored in the casing (2) by thermal decomposition to hold the monolith (1) with an appropriate force. It has the function to do.
モノリス (1) とケ一シング (2) との間隙に上記の様なモノリス保持材 (3) を介在させる第 1の理由は、 ハニカムの熱が金属製のケーシング (2) に直接伝 わるのを防止し、 アイ ドリング時のモノリス (1) の温度低下を防止するためで ある。 そして、 第 2の理由は、 モノリス (1) を適切に固定することにより、 モ ノ リス (1) の脱離やずれを防止するためである。 従って、 モノ リス保持材 (3) は、 常温から稼働時の高温に亘り所定の保持力を持続する必要がある。 すなわ ち、 排気ガスの通過によるモノ リス (1) ゃケーシング (2) の熱膨張に起因し た間隙の変化に追随する必要がある。  The first reason that the monolith holding material (3) as described above is interposed in the gap between the monolith (1) and the casing (2) is that the heat of the honeycomb is transmitted directly to the metal casing (2). This is to prevent the temperature of the monolith (1) from dropping during idling. The second reason is that the monolith (1) is properly fixed to prevent the monolith (1) from detaching or shifting. Therefore, the monolith holding material (3) needs to maintain a predetermined holding force from normal temperature to high temperature during operation. That is, it is necessary to follow the change in the gap caused by the thermal expansion of the monolith (1) ゃ casing (2) due to the passage of exhaust gas.
ところで、 特開平 9一 946号公報に記載の触媒コンバータ一においては、 図 5 に示す様に、 円筒状のモノ リス (1) にモノリス保持材 (3) を巻回した場合、 モ ノリス保持材 (3) の厚さに応じて内周側にシヮ (3d) が生じ、 モノ リス (1) と モノリス保持材 (3) の間に微小な隙間が形成されるため、排気条件によっては、 僅かながら排気ガスが漏洩する虞がある。 また、 不均一なシヮ (3d) の形成に より、 保持材が不均一に充填される虞がある。  By the way, in the catalytic converter described in JP-A-9-1946, as shown in FIG. 5, when a monolith holding material (3) is wound around a cylindrical monolith (1), a monolith holding material is used. Depending on the thickness of (3), a shim (3d) is formed on the inner peripheral side, and a minute gap is formed between the monolith (1) and the monolith holding material (3). Exhaust gas may leak slightly. In addition, the formation of the non-uniform shies (3d) may cause the holding material to be non-uniformly filled.
本発明は、 上記の実情に鑑みなされたものであり、 その目的は、 特定のモノ リス保持材によってモノリスを安定的に固定し且つモノリス外周からの排気ガ スの漏洩を一層確実に防止し得る様に改良された触媒コンバータ一を提供する ことにある。 発明の開示  The present invention has been made in view of the above circumstances, and has as its object to stably fix a monolith by a specific monolith holding material and to more reliably prevent leakage of exhaust gas from the outer periphery of the monolith. An object of the present invention is to provide an improved catalytic converter. Disclosure of the invention
本発明の触媒コンバータ一は、 筒状に形成され且つ排気ガス浄化用触媒を担 持するモノリスと、 当該モノリスを収容し且つ排気ガス導管に接続される金属 製のケ一シングと、 前記モノリスに巻回されて当該モノリスと前記ケーシング との間隙に介装されるモノリス保持材とから構成された触媒コンバータ一にお いて、 前記モノ リス保持材は、 厚さ方向に圧縮された結晶質アルミナ繊維マツ 卜と当該アルミナ繊維マツ 卜に均一に含浸され且つ熱分解によって消失する有 機バインダーとから構成され、 し力、も、 前記モノ リスに接触する側の前記モノ リス保持材の表面には、 当該モノリス保持材の巻回方向に直交する溝が多数設 けられていることを特徴とする。 The catalytic converter of the present invention is formed in a tubular shape and serves as an exhaust gas purifying catalyst. A monolith that holds the monolith, a metal casing that houses the monolith and is connected to an exhaust gas conduit, and a monolith holding material that is wound around the monolith and interposed in a gap between the monolith and the casing. In the catalytic converter composed of: the monolith holding material, the crystalline alumina fiber mat compressed in the thickness direction and the organic fiber uniformly impregnated in the alumina fiber mat and disappeared by thermal decomposition. The monolith holding member on the side in contact with the monolith has a large number of grooves orthogonal to the winding direction of the monolith holding member. Features.
上記の触媒コンバータ一において、 モノリス保持材は、 これに含有された有 機バインダーが熱分解によって消失した後において、 モノリスゃケ一シングの 温度変化に基づくモノリス外周面とケ一シング内面との間隙の変化に追従し且 つその復元弾性力によりモノ リスを支持する。 また、 特定の溝が設けられたモ ノ リス保持材は、 モノ リスに巻回された状態においてシヮの発生がなく、 モノ リス外周面に対して高い密着性を発揮する。 図面の簡単な説明  In the above-described catalytic converter, the monolith holding material is formed by the gap between the outer peripheral surface of the monolith and the inner surface of the casing based on a change in temperature of the monolith casing after the organic binder contained therein disappears due to thermal decomposition. And supports the monolith with its restoring elasticity. In addition, the monolith holding material provided with the specific groove does not generate a shear when it is wound around the monolith, and exhibits high adhesion to the outer peripheral surface of the monolith. BRIEF DESCRIPTION OF THE FIGURES
図 1は、本発明の触媒コンバータ一に使用されるモノリス保持材を示す斜視図 である。 図 2は、本発明の触媒コンバーターにおけるモノリス保持材の巻回状態 を示す正面図であり、 図中のモノリスは一例としてのセラミックス製モノリス を示している。 図 3は、触媒コンバータ一の一般的な構造を示す組立斜視図であ り、図中のモノリスは一例としての金属製モノリスを示している。 図 4は、 モノ リスに対するモノ リス保持材の一般的な巻回要領を示す斜視図である。 図 5は、 従来の触媒コンバーターにおけるモノリス保持材の巻回状態を示す正面図であ る o 発明を実施するための最良の形態 FIG. 1 is a perspective view showing a monolith holding material used in the catalytic converter 1 of the present invention. FIG. 2 is a front view showing a wound state of the monolith holding material in the catalytic converter of the present invention, and the monolith in the figure shows a ceramic monolith as an example. FIG. 3 is an assembled perspective view showing a general structure of the catalytic converter 1, and the monolith in the figure shows a metal monolith as an example. FIG. 4 is a perspective view showing a general procedure for winding a monolith holding material on a monolith. Fig. 5 is a front view showing the wound state of the monolith holding material in the conventional catalytic converter. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の実施形態を図面に基づいて説明する。 なお、 実施形態の説明におい ては、 背景従来の説明に用いた図 3及び図 4を併用する。  An embodiment of the present invention will be described with reference to the drawings. In the description of the embodiment, FIG. 3 and FIG. 4 used in the background description of the related art are used together.
本発明の触媒コンバータ一は、 図 3に示す様に、 概略、筒状に形成され且つ排 気ガス浄化用触媒を担持するモノ リス (1) と、 モノ リス (1) を収容し且つ排 気ガス導管に接続される金属製のケ一シング (2) と、 モノリス (1) に卷回さ れて当該モノリスとケーシング (2) との間隙に介装されるモノリス保持材 (3) とから構成される。  As shown in FIG. 3, a catalytic converter 1 according to the present invention has a monolith (1), which is formed substantially in a tubular shape and carries an exhaust gas purifying catalyst, A metal casing (2) connected to the gas conduit, and a monolith holding material (3) wound around the monolith (1) and interposed in the gap between the monolith and the casing (2) Be composed.
モノリス (1) としては、 コーディェライ ト等を主成分とするセラミックスに よって構成されたモノ リスの他、 金属箔素材によって構成されたモノリスを使 用することも出来る。 特に、 Fe、 Cr、 A1又は Siを基本成分とするフヱライ ト 系ステンレス箔は、 触媒を担持させる際のコート材および触媒との馴染みが良 く、 しかも、 触媒担持後の熱的変化が比較的少ないため、 金属製モノ リスを構 成するのに好適な素材である。 モノリス (1) には、 通常、 Pt、 Ph等の貴金属 層を担持させることにより、 触媒としての機能を付与される。  As the monolith (1), a monolith composed of ceramics mainly composed of cordierite or the like, or a monolith composed of a metal foil material can be used. In particular, fly-based stainless steel foil containing Fe, Cr, A1 or Si as a basic component has good compatibility with the coating material and the catalyst when supporting the catalyst, and has relatively little thermal change after the catalyst is supported. Since it is small, it is a suitable material for constructing metal monoliths. The monolith (1) is usually provided with a catalyst function by supporting a noble metal layer such as Pt and Ph.
ケーシング(2) は、 当該ケーシングの上半分を構成するケーシング部材 (2a) 及び下半分を構成するケーシング部材 (2b) の 2つ部材を合わせて一体化する 2分割のクラムシェル構造を備えている。 ケーシング部材 (2a) 及び (2b) は、 各々、 フランジ部 (21a)、 (21b) を有し、 フランジ部 (21a)、 (21b) は、 ケー シング部材 (2a) 及び (2b) を溶接する際の接合面として機能する。 また、一 方のケーシング部材 (2b) の両端部には、 排気ガス導管へ接続するための接続 口 (4)、 (5) が設けられる。 図 3中、 符号 (22a) 及び (22b) は、 自動車の車 体などに固定するためのボルト穴を示す。 なお、 金属製のケ一シングとしては、 予め筒状に形成されてモノリスが装入されるスタッフィング構造のケーシング を採用することも出来る。 The casing (2) has a two-part clamshell structure that combines and integrates two members, a casing member (2a) constituting the upper half of the casing and a casing member (2b) constituting the lower half. . The casing members (2a) and (2b) have flange portions (21a) and (21b), respectively, and the flange portions (21a) and (21b) weld the casing members (2a) and (2b). It functions as a joining surface in the case. At both ends of one casing member (2b), connection ports (4) and (5) for connecting to an exhaust gas conduit are provided. In FIG. 3, reference numerals (22a) and (22b) denote bolt holes for fixing to a vehicle body or the like. As the metal casing, a casing having a stuffing structure, which is formed in a tubular shape in advance and into which a monolith is inserted, is used. Can also be adopted.
本発明の一つの特徴は、 特定のモノリス保持材 (3) を採用した点にある。 す なわち、 モノリス保持材 (3) は、 厚さ方向に圧縮された非膨張性の結晶質アル ミナ繊維マツ ト (以下、 「マツ ト」 と略記する。) と当該マツ 卜に均一に含浸さ れ且つ熱分解によって消失する有機バインダーとから構成される。 上記マツ ト は、 モノリス (1) 外周面とケ一シング (2) 内面との間隙に相当する厚さに圧 縮した際に特定の復元力を示し、 モノリス (1) を破壊することなく且つ当該モ ノリスに対する支持効果を十分に発揮する。  One feature of the present invention is that a specific monolith holding material (3) is employed. That is, the monolith holding material (3) is made of a non-expandable crystalline alumina fiber mat (hereinafter abbreviated as “mat”) compressed in the thickness direction and uniformly impregnated into the mat. And an organic binder that is eliminated by thermal decomposition. The above mat exhibits a specific restoring force when compressed to a thickness corresponding to the gap between the monolith (1) outer peripheral surface and the casing (2) inner surface, and does not destroy the monolith (1) and The effect of supporting the monolith is fully exhibited.
具体的には、 上記マツ トは、 モノ リス (1) 外周面とケーシング (2) 内面と の間隙に相当する厚さの圧縮状態において、 好ましくは 0.1〜10.0kgfZcm2 、 更に好ましくは 0.1〜8.0kgf/cm2 の復元力を有している。 斯かるの復元力は、 モノリス (1) がセラミックス製の場合で 0.5〜10.0kgf/cm2 程度、 好ましく は 0.5〜8.0kgf/cm2 程度とされ、 モノリス (1) が金属製の場合で 0.1〜4.0kgf /cm2 程度とされる。 Specifically, the above mat is preferably 0.1 to 10.0 kg fZcm 2 , more preferably 0.1 mm, in a compressed state having a thickness corresponding to a gap between the outer peripheral surface of the monolith (1) and the inner surface of the casing (2). and a restoring force of ~8.0kgf / cm 2. Such a restoring force, monolith (1) 0.5~10.0kgf / cm 2 approximately in the case of ceramics, preferably is a 0.5~8.0kgf / cm 2 or so, when the monolith (1) is made of metal 0.1 It is ~4.0kgf / cm 2 about.
上記の復元力は、 マツ 卜に均一に含浸された有機バインダーが熱分解によつ て消失した後に発現する。 マツトの復元力は、 モノリス (1) 外周面とケ一シン グ (2) 内面との間隙に相当する厚さにマツ トを圧縮するのに要する力 (圧縮力) に相当する。 従って、 本発明においては、 マツ ト形成時の圧縮力によって上記 の復元力の指標としている。  The above-mentioned restoring force is developed after the organic binder uniformly impregnated in the mat disappears by thermal decomposition. The resilience of the mat is equivalent to the force (compression force) required to compress the mat to a thickness corresponding to the gap between the monolith (1) outer surface and the casing (2) inner surface. Accordingly, in the present invention, the above-mentioned index of the restoring force is determined by the compressive force at the time of mat formation.
すなわち、 マツ トの厚さは、 弾力性、 モノリス (1) 外周面とケ一シング (2) 内面との間隙、 その熱変化量、 ガスシール性およびモノリス (1) の破壊強度に よって決定されるが、 モノ リス (1) 外周面とケ一シング (2) 内面との間隙に 相当する厚さに圧縮する際に上記の復元力に相当する圧縮力となる様に設定さ れる。 モノリス保持材 (3) の基材としてのマツ 卜とは、 厚さ方向にほぼ均一に積層 したアルミナ繊維の集合体を言い、 所謂ブランケッ ト又はブロックと呼ばれる ものを包含する。 アルミナ繊維としては、 通常、 繊維径が l〜50 / m、 繊維長 が 0.5〜500mmのものが使用されるが、復元力および形状保持性の観点からは、 繊維径が 3〜8 /z m、 繊維長が 0.5〜300mmの繊維が特に好ましい。 In other words, the thickness of the mat is determined by the elasticity, the monolith (1) the gap between the outer peripheral surface and the casing (2) the inner surface, the amount of thermal change, gas sealability, and the breaking strength of the monolith (1). However, the monolith (1) is set to have a compressive force equivalent to the above-mentioned restoring force when compressed to a thickness corresponding to the gap between the outer peripheral surface and the casing (2) the inner surface. The mat as the base material of the monolith holding material (3) refers to an aggregate of alumina fibers that are substantially uniformly laminated in the thickness direction, and includes a so-called blanket or block. As the alumina fiber, usually, a fiber diameter of l to 50 / m and a fiber length of 0.5 to 500 mm is used, but from the viewpoint of restoring force and shape retention, the fiber diameter is 3 to 8 / zm, Fibers having a fiber length of 0.5 to 300 mm are particularly preferred.
上記アルミナ繊維の組成としては、 アルミナ -シリ力系結晶質短繊維であつ て、 シリカ含有率が 5重量%以下のアルミナ、 すなわち、 アルミナが 95重量% 以上の高アルミナの他、 アルミナが 70〜95重量%で且つ残余がシリ力で構成さ れる一般的なものが挙げられる。 特に、 アルミナ 72〜85重量%のムライ ト組成 の繊維は、 高温安定性および弾力性に優れており、 好ましいアルミナ繊維であ 結晶質アルミナ繊維は、 同じアルミナ一シリカ系の非結晶質セラミック繊維 と比較して耐熱性に優れ、 セラミック繊維の様に軟化収縮などの熱劣化が極め て少ないため、 圧縮マツ トとした場合に弾力性に富んでいる。 すなわち、 マツ トは、 低い嵩密度で高.い保持力を発生し且つその温度変化が少ないと言う性質 を持つ。 従って、 モノリス (1) と金属製のケ一シング (2) との熱膨張の差に よってモノリス (1) とケーシング (2) との間隙が変化し、 その嵩密度が上昇 した場合にも、 モノリス (1) に対する保持圧が急激に変化することがない。 有機バインダーは、 圧縮されたマツ 卜の厚さを常温下において維持でき、 熱 分解による消失後に上記マツ 卜の厚さを復元し得るものであれば特に制限なく 使用できるが、 モノリス (1) の使用温度以上でも分解しない様なもの、更には、 有機ノ イング一を含浸させることによってマッ トの柔軟性および復元面圧特性 を阻害し、 モノリス (1) の破壊を助長する様な性質を持つ有機バインダーの使 用は、 避ける必要がある。 有機バインダーとしては、 各種のゴム、 水溶性有機 高分子化合物、 熱可塑性樹脂、 熱硬化性樹脂などを使用できる。 The composition of the above-mentioned alumina fiber is alumina-silicone crystalline short fiber, having an alumina content of 5% by weight or less, that is, high alumina having an alumina content of 95% by weight or more, and having an alumina content of 70 to 70% by weight. A typical material is 95% by weight and the balance is composed of sili force. In particular, a fiber having a mullite composition of 72 to 85% by weight of alumina is excellent in high-temperature stability and elasticity, and a preferred alumina fiber is a crystalline alumina fiber which is the same as an alumina-silica non-crystalline ceramic fiber. Compared to ceramic fibers, they have excellent heat resistance and extremely low thermal degradation such as softening and shrinkage, so they have high elasticity when used as a compressed mat. That is, mat has a property that it generates a high holding force at a low bulk density and its temperature change is small. Therefore, even if the gap between the monolith (1) and the casing (2) changes due to the difference in thermal expansion between the monolith (1) and the metal casing (2), and the bulk density increases, The holding pressure against the monolith (1) does not change rapidly. The organic binder can be used without particular limitation as long as it can maintain the thickness of the compressed mat at room temperature and can restore the thickness of the above mat after disappearance by thermal decomposition. A material that does not decompose even at the operating temperature or higher, and further impregnates organic knives to impair the flexibility and restoring surface pressure characteristics of the mat and promote the destruction of the monolith (1) The use of organic binders must be avoided. Various organic rubbers, water-soluble organic Polymer compounds, thermoplastic resins, thermosetting resins, and the like can be used.
上記ゴム類としては、 天然ゴム;ェチルァクリレー卜とクロロェチルビニル エーテルの共重合体、 n—ブチルァクリレートとアタリロニトリルの共重合体、 ェチルァクリレートとァクリロニトリルの共重合体などのァクリルゴム;ブタ ジェンとァクリロニトリルの共重合体の二トリルゴム;ブタジエンゴム等が挙 げられ、 水溶性有機高分子化合物としては、 カルボキシメチルセルロース、 ポ リビニルアルコール等が挙げられる。 熱可塑性樹脂としては、 アクリル酸、 ァ クリル酸エステル、 アクリルアミ ド、 ァクリロニトリル、 メタクリル酸、 メタ クリル酸エステル等の単独重合体および共重合体であるァクリル樹脂; ァクリ ロニトリノレ.スチレン共重合体;アクリロニトリル .ブタジエン ·スチレン共 重合体などが挙げられる。 また、 熱硬化性樹脂としては、 ビスフエノール型ェ ポキシ樹脂、 ノボラック型エポキシ樹脂などが挙げられる。  Examples of the rubbers include natural rubbers; copolymers of ethyl acrylate and chloroethyl vinyl ether, copolymers of n-butyl acrylate and acrylonitrile, and copolymers of ethyl acrylate and acrylonitrile. Acryl rubber; nitrile rubber of a copolymer of butadiene and acrylonitrile; butadiene rubber; and the like. Examples of the water-soluble organic high molecular compound include carboxymethyl cellulose and polyvinyl alcohol. Examples of the thermoplastic resin include acryl resin which is a homopolymer or a copolymer of acrylic acid, acrylic acid ester, acrylamide, acrylonitrile, methacrylic acid, methacrylic acid ester, etc .; acrylonitrile styrene copolymer; acrylonitrile Butadiene / styrene copolymer. Examples of the thermosetting resin include a bisphenol-type epoxy resin and a novolak-type epoxy resin.
上記の有機バインダーを有効成分とした水溶液、 水分散型エマルシヨン、 ラ テックス、 有機溶媒溶液 (これらを総称して 「バインダー液」 と言う) が市販 されており、 これらのバインダー液は、 そのまま水などの溶媒で希釈して使用 できるため、 比較的安価に適用し得る。 なお、 有機バインダーは一種である必 要はなく 2種の混合物であってもよい。  Aqueous solutions, water-dispersed emulsions, latex, and organic solvent solutions (collectively referred to as "binder solutions") containing the above-mentioned organic binder as an active ingredient are commercially available. Since it can be used after being diluted with a solvent, it can be applied at relatively low cost. The organic binder does not need to be one kind, and may be a mixture of two kinds.
上記の有機バインダ一の中では、 ァクリルゴム、 二トリルゴム、 カルボキシ メチルセルロース、 ポリビニルアルコール及びァクリルゴム以外のァクリル樹 脂の群から選ばれる少なくとも 1種が好ましく、 特に、 アクリルゴム、 二トリル ゴム等の合成ゴムのうち柔軟性のあるゴムが有効である。  Among the above organic binders, at least one selected from the group consisting of acrylyl rubber, nitrile rubber, carboxymethylcellulose, polyvinyl alcohol and acrylyl resin other than acrylyl rubber is preferable, and particularly, synthetic rubber such as acrylic rubber and nitrile rubber. Of these, flexible rubber is effective.
有機バインダー含有量は、 特に限定されるものではなく、 マツ トを構成する 繊維の種類、 形状、 マツ 卜の絶対厚さ、 ケ一シング (2) に組み込む前の有機バ ィンダ一を含む成形体としての厚さ及び反発力によって決定される。 有機バイ ンダー含有量は、 通常、 アルミナ繊維 100重量部に対して有機バインダーの有 効成分が 3〜30重量部にするのがよい。 有機バインダ一の含有量が 3重量部未満 の場合は、 マツ 卜の反発によって成形体としての厚さを維持できない虞があり、 30重量部を超える場合は、 コスト高になる他、 成形体の柔軟性が損なわれる虞 が生ずる。 斯かる観点から、 有機バインダーの上記割合は 5〜20重量部の範囲 が好ましい。 The content of the organic binder is not particularly limited, and the type and shape of the fiber constituting the mat, the absolute thickness of the mat, and the molded product including the organic binder before being incorporated into the casing (2). Determined by the thickness and the repulsive force. Organic bi Usually, the content of the organic binder is preferably 3 to 30 parts by weight based on 100 parts by weight of the alumina fiber. If the content of the organic binder is less than 3 parts by weight, the thickness of the molded body may not be maintained due to repulsion of the mat. There is a risk that flexibility may be impaired. From such a viewpoint, the ratio of the organic binder is preferably in the range of 5 to 20 parts by weight.
本発明の最大の特徴は、 モノ リス保持材 (3) を特定の形状に形成した点にあ る。 すなわち、 モノリス (1) に接触する側のモノリス保持材 (3) の表面には、 当該モノリス保持材の卷回方向に直交する溝 (3c) が多数設けられる。 溝 (3c) の断面は、通常、略 V字状または略 U字状に形成される。 斯かる構成により、 モ ノ リス (1) にモノ リス保持材 (3) を巻回した際、 モノ リス保持材 (3) の内周 面におけるシヮの発生を防止でき、 排気ガスの漏洩を一層確実に防止し得る。 また、 モノリス保持材 (3) においては、 モノリス (1) に対する密着性を一 層高めるため、 溝 (3c) の深さがモノリス保持材 (3) の厚さの 1 30〜1 2で あり、 かつ、 溝 (3c) の幅 (溝の開口最大幅) がモノリス保持材 (3) の厚さの 1 30〜1/2であるのが好ましい。 更に、 モノリス保持材 (3) においては、 溝 (3c) の配列ピッチがモノリス (1) の曲率半径の 1ノ 20〜2であるのが好ましい。 なお、 モノリス (1) の曲率半径は、 通常、 10〜80mmである。  The greatest feature of the present invention is that the monolith holding material (3) is formed in a specific shape. That is, on the surface of the monolith holding member (3) on the side that comes into contact with the monolith (1), a number of grooves (3c) orthogonal to the winding direction of the monolith holding member are provided. The cross section of the groove (3c) is usually formed in a substantially V shape or a substantially U shape. According to such a configuration, when the monolith holding material (3) is wound around the monolith (1), it is possible to prevent the occurrence of a screen on the inner peripheral surface of the monolith holding material (3), thereby preventing the exhaust gas from leaking. It can be prevented more reliably. Further, in the monolith holding material (3), the depth of the groove (3c) is 130 to 12 of the thickness of the monolith holding material (3) in order to further enhance the adhesion to the monolith (1). In addition, it is preferable that the width of the groove (3c) (the maximum width of the opening of the groove) is 130 to 1/2 of the thickness of the monolith holding material (3). Further, in the monolith holding material (3), it is preferable that the arrangement pitch of the grooves (3c) is 1 to 20 to 2 which is the radius of curvature of the monolith (1). The radius of curvature of the monolith (1) is usually 10 to 80 mm.
上記モノリス保持材 (3) は、 (a) マツ 卜に有機バインダー液を含浸させるェ 程、 (b) 有機バインダー液を含浸させたマツ トを厚さ方向に圧縮する工程、 (c) 圧縮したままの状態で有機バインダー液の溶媒分を除去する工程を経て製造さ れる。 そして、 モノ リス保持材 (3) 表面の溝 (3c) は、 上記 (b) 工程におい て、 平滑な成形板をマツ 卜の一面にあてがい且つ溝 (3c) に相当する凸条を備 えた成形板をマツ 卜の他の面にあてがって圧縮することにより形成されるか、 ま たは、 上記 (c) 工程を経た後、 得られた成形体に溝切り加工を施すことにより 形成される。 また、 得られたモノ リス保持材 (3) には、 図 1に示す様に、 組立 時の捩れやずれを防止するため、 モノ リス (1) に巻回した際に互いに嚙合わせ 可能な接続部が巻回方向の両端部に裁断加工などによって設けられる。 The monolith holding material (3) is prepared by (a) a step of impregnating the organic binder liquid into the mat, (b) a step of compressing the mat impregnated with the organic binder liquid in the thickness direction, and (c) a step of compressing the mat. It is produced through a process of removing the solvent component of the organic binder liquid as it is. Then, the groove (3c) on the surface of the monolith holding material (3) was formed by applying a smooth forming plate to one surface of the mat in the above-mentioned step (b) and having a ridge corresponding to the groove (3c). Formed by pressing the board against the other side of the mat, or Alternatively, after the step (c), it is formed by subjecting the obtained molded body to grooving. In addition, as shown in Fig. 1, the obtained monolith holding material (3) has a connection that can be combined with each other when it is wound around the monolith (1) to prevent twisting and displacement during assembly. The portions are provided at both ends in the winding direction by cutting or the like.
上記の工程によって得られたモノ リス保持材 (3) は、 図 4に示す様に、 モノ リス (1) の外周に巻回される。 その場合、 モノ リス保持材 (3) の内周側に相 当する一面に多数の溝 (3c) が設けられているため、 極めて簡単に且つ正確に モノリス保持材 (3) を巻回できる。 また、 モノリス保持材 (3) を巻回した場 合、 図 2に示す様に、 モノ リス保持材 (3) の厚さによって生じる外周と内周の 長さの差異が多数の溝 (3c) によって補完されるため、 モノリス (3) に対して シヮのない密着した状態に巻回できる。 そして、 モノリス保持材 (3) が巻回さ れたモノリス (1) は、 図 3に示すケ一シング (2) に収容される。  The monolith holding material (3) obtained by the above steps is wound around the outer periphery of the monolith (1) as shown in FIG. In this case, the monolith holding member (3) can be extremely easily and accurately wound since a large number of grooves (3c) are provided on one surface corresponding to the inner peripheral side of the monolith holding member (3). In addition, when the monolith holding material (3) is wound, as shown in Fig. 2, the difference in the length between the outer circumference and the inner circumference caused by the thickness of the monolith holding material (3) causes a large number of grooves (3c). Because it is complemented by the monolith (3), it can be wound close to the monolith (3). Then, the monolith (1) on which the monolith holding material (3) is wound is accommodated in the casing (2) shown in FIG.
図 3に例示する触媒コンバータ一おいては、 ケ一シング部材 (2a) のフラン ジ部 (21a) とケ一シング部材 (2b) のフランジ部 (21b) を接合面として溶接 する 2分割構造のケ一シング (2) が採用されている。 ケ一シング (2) にモノ リス (1) を収容する場合、 モノリス (1) 外周面とケーシング (2) 内面とで形 成される間隙に対し、 モノ リス保持材 (3) が同じ厚さを有する必要はなく、 僅 かに厚いものまで装着が可能である。 しかしながら、 厚すぎた場合ゃケ一シン グ (2) との滑りが悪い場合には、 モノリス保持材 (3) の繊維の一部がフラン ジ部 (21a)、 (21b) の接合面にはみ出し、 溶接が不可能となる等の不都合を生 ずるため、 その厚さは上記の間隙の 1.0〜2.0倍に設定される。 斯かる設定値の 上限は、 好ましくは 1.7倍、 更に好ましくは 1.6倍とされる。  The catalytic converter illustrated in FIG. 3 has a two-part structure in which the flange (21a) of the casing member (2a) and the flange (21b) of the casing member (2b) are welded to each other as a joint surface. The case (2) is adopted. When the monolith (1) is housed in the casing (2), the thickness of the monolith holding material (3) is the same as the gap formed by the outer surface of the monolith (1) and the inner surface of the casing (2). It is not necessary to have a small thickness. However, if it is too thick, if the sliding with the casing (2) is poor, some of the fibers of the monolith holding material (3) will protrude to the joint surface of the flanges (21a) and (21b). However, the thickness is set to 1.0 to 2.0 times the above gap to cause inconveniences such as making welding impossible. The upper limit of such a set value is preferably 1.7 times, more preferably 1.6 times.
図示する様に、 本発明の触媒コンバーターにおいては、 結晶質アルミナ繊維 マッ トから成るモノ リス保持材 (3) によってモノ リス (1 ) が直接支持される のが好ましい。 すなわち、 上記の様な特定のモノリス保持材 (3) によってモノ リス (1) を直接支持した構造においては、 モノ リス (1) に対して適切な締め 付け力を発揮でき且つモノ リス (1) を破壊する虞もない。 As shown in the figure, in the catalytic converter of the present invention, the monolith (1) is directly supported by the monolith holding material (3) made of a crystalline alumina fiber mat. Is preferred. That is, in the structure in which the monolith (1) is directly supported by the specific monolith holding material (3) as described above, an appropriate tightening force can be exerted on the monolith (1) and the monolith (1) There is no fear of destroying.
本発明の触媒コンバータ一は、 主に、 自動車の排気ガス管に取り付けられる。 本発明の触媒コンバーターにおいては、 内燃機関から排出される高温の排気ガ スを通過させた際、 モノリス (1)、 ケ一シング (2) 及びモノリス保持材 (3) が 昇温し、 モノリス保持材 (3) は、 マツ 卜に含浸された有機バインダーが熱分解 によって消失し、 その厚さの復元によってモノリス (1) を固定する。  The catalytic converter of the present invention is mainly attached to an exhaust gas pipe of an automobile. In the catalytic converter of the present invention, when the high temperature exhaust gas discharged from the internal combustion engine is passed, the temperature of the monolith (1), the casing (2) and the monolith holding material (3) rises, and the monolith is held. In material (3), the organic binder impregnated in the mat disappears due to thermal decomposition, and the monolith (1) is fixed by restoring its thickness.
すなわち、 排気ガスの通過により、 モノリス (1) がセラミックス製の場合に は、 モノリス (1) に比べて金属製のケーシング (2) の熱膨張が大きいため、 モ ノ リス (1) 外周面とケーシング (2) 内面との間隔が大きくなる。 他方、 モノ リス (1) が上記の様な金属製の場合には、 金属製のケ一シング (2) に比べて モノ リス (1) の熱膨張が大きいため、 モノ リス (1) 外周面とケ一シング (2) 内面との間隔が狭くなる。 これに対し、 上記の特定のモノリス保持材 (3) は、 モノリス (1) ゃケーシング(2) の温度変化に基づくモノリス (1)外周面とケー シング (2) 内面との間隙の変化に追従し、 ケーシング (2) 内にて弾性的にモ ノ リス (1) を直接固定する。  In other words, when the monolith (1) is made of ceramics due to the passage of exhaust gas, the metal casing (2) has a larger thermal expansion than the monolith (1), so that the monolith (1) is Casing (2) The distance between the casing and the inner surface increases. On the other hand, when the monolith (1) is made of a metal as described above, the thermal expansion of the monolith (1) is larger than that of the metal casing (2). (2) The distance between the inner surface and the case is narrow. On the other hand, the above specific monolith holding material (3) follows the change in the gap between the monolith (1) outer peripheral surface and the casing (2) inner surface based on the temperature change of the monolith (1) ゃ casing (2). Then, directly fix the monolith (1) elastically in the casing (2).
換言すれば、 モノリス保持材 (3) は、 圧縮されたマツ 卜に有機バインダーを 均一に含浸させて構成され、 組立の際、 有機バインダーの結合力によって厚さ の復元性が抑えられるため容易に装着でき、 また、 稼働させた際、 有機バイン ダ一が熱分解によって消失し、 その厚さの復元弾性力を発揮するため、 極めて 安定的にモノ リス (1) を固定できる。  In other words, the monolith holding material (3) is formed by uniformly impregnating the compressed mat with the organic binder. At the time of assembly, the resilience of the thickness is suppressed by the binding force of the organic binder, so that the monolith holding material (3) can be easily formed. The monolith (1) can be fixed very stably because the organic binder disappears due to thermal decomposition and exhibits a restoring elasticity of its thickness when it is put into operation.
し力、も、 モノリス保持材 (3) は、 モノリス (1) 側の表面に多数の溝 (3c) が 設けられているため、 モノリス (1) に巻回された状態においてシヮの発生がな く、 モノリス (1) の外周面に対して高い密着性を発揮する。 その結果、 モノリ ス (1) とケ一シング (2) との間隙を完全に封止でき、 モノリス (1) 外周から の排気ガスの漏洩を一層確実に防止できる。 産業上の利用可能性 The monolith holding material (3) has a large number of grooves (3c) on the surface of the monolith (1). What High adhesion to the outer peripheral surface of the monolith (1). As a result, the gap between the monolith (1) and the casing (2) can be completely sealed, and leakage of exhaust gas from the outer periphery of the monolith (1) can be more reliably prevented. Industrial applicability
以上説明した様に、 本発明の触媒コンバーターによれば、 バインダーの熱分 解により厚さ方向に復元する特定のモノ リス保持材を使用しているため、 モノ リスを簡易に且つ安定的に固定できる。 しかも、 モノ リスに接触する側のモノ リス保持材の表面に多数の溝が設けられているため、 組立の際にモノ リスに対 してモノ リス保持材を容易に巻回でき、 そして、 モノ リスに対するモノ リス保 持材の密着性を一層高めることが出来るため、 モノリス外周面とケーシング内 面との間隙からの排気ガスの漏洩を一層確実に防止し得る。  As described above, according to the catalytic converter of the present invention, since the specific monolith holding material that is restored in the thickness direction by the thermal decomposition of the binder is used, the monolith is fixed easily and stably. it can. In addition, since the surface of the monolith holding member that is in contact with the monolith has a large number of grooves, the monolith holding member can be easily wound around the monolith during assembly, and Since the adhesion of the monolith supporting material to the squirrel can be further enhanced, the leakage of exhaust gas from the gap between the outer peripheral surface of the monolith and the inner surface of the casing can be more reliably prevented.
従って、 本発明の触媒コンバータ一は、 内燃機関の排気ガス中に含まれる一 酸化炭素、 炭化水素、 窒素酸化物などの有害成分を一層確実に除去する装置と して有用である。  Therefore, the catalytic converter of the present invention is useful as a device for more reliably removing harmful components such as carbon monoxide, hydrocarbons and nitrogen oxides contained in the exhaust gas of an internal combustion engine.

Claims

請 求 の 範 囲 The scope of the claims
1 . 筒状に形成され且つ排気ガス浄化用触媒を担持するモノリス (1 ) と、 モノ リス (1) を収容し且つ排気ガス導管に接続される金属製のケ一シング (2) と、 モノリス (1) に巻回されて当該モノリスとケーシング (2) との間隙に介装さ れるモノリス保持材 (3) とから構成された触媒コンバーターにおいて、 モノリ ス保持材 (3) は、 厚さ方向に圧縮された結晶質アルミナ繊維マツ トと当該アル ミナ繊維マツ 卜に均一に含浸され且つ熱分解によって消失する有機バインダ一 とから構成され、 し力、も、 モノリス (1) に接触する側のモノリス保持材 (3) の 表面には、 当該モノ リス保持材の巻回方向に直交する溝 (3c) が多数設けられ ていることを特徴とする触媒コンバーター。  1. A monolith (1) formed in a cylindrical shape and carrying an exhaust gas purifying catalyst; a metal casing (2) containing the monolith (1) and connected to an exhaust gas conduit; In a catalytic converter composed of a monolith holding material (3) wound around (1) and interposed in the gap between the monolith and the casing (2), the monolith holding material (3) has a thickness direction. It is composed of a crystalline alumina fiber mat compressed to a low temperature and an organic binder that is uniformly impregnated in the alumina fiber mat and disappears by thermal decomposition. A catalytic converter characterized in that the surface of the monolith holding member (3) is provided with a large number of grooves (3c) orthogonal to the winding direction of the monolith holding member.
2 . 溝(3c) の深さがモノリス保持材(3)の厚さの 1 30〜1/2であり、溝(3c) の幅がモノリス保持材 (3) の厚さの 1/30〜1/2である請求項 1に記載の触媒 コンバーター。  2. The depth of the groove (3c) is 130 to 1/2 of the thickness of the monolith holding material (3), and the width of the groove (3c) is 1/30 to 1/30 of the thickness of the monolith holding material (3). 2. The catalytic converter according to claim 1, wherein the ratio is 1/2.
3 . 溝 (3c) の配列ピッチがモノリス (1) の曲率半径の 1 20〜2である請求 項 1又は 2に記載の触媒コンバータ一。 3. The catalytic converter according to claim 1, wherein an arrangement pitch of the grooves (3c) is 120 to 2 having a radius of curvature of the monolith (1).
4 . モノ リス保持材 (3) を構成するアルミナ繊維マツ トは、 モノ リス (1) 外 周面とケーシング (2) 内面との間隙に相当する厚さの圧縮状態において、 0.1 lO.OkgfZcm2 の復元力を有している請求項 1〜3の何れかに記載の触媒コン ノく一夕— 4. The alumina fiber mat constituting the monolith holding material (3) has a thickness of 0.1 lO.OkgfZcm 2 in a compressed state with a thickness corresponding to the gap between the monolith (1) outer peripheral surface and the casing (2) inner surface. 4. The catalytic converter according to claim 1, which has a restoring force.
PCT/JP1998/001636 1997-04-10 1998-04-09 Catalyst converter WO1998045583A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU67478/98A AU6747898A (en) 1997-04-10 1998-04-09 Catalyst converter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9/108211 1997-04-10
JP10821197 1997-04-10

Publications (1)

Publication Number Publication Date
WO1998045583A1 true WO1998045583A1 (en) 1998-10-15

Family

ID=14478848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/001636 WO1998045583A1 (en) 1997-04-10 1998-04-09 Catalyst converter

Country Status (2)

Country Link
AU (1) AU6747898A (en)
WO (1) WO1998045583A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6185820B1 (en) * 1998-10-26 2001-02-13 General Motors Corporation Reduced cost substrate retaining mat
EP1892393A1 (en) 2006-08-21 2008-02-27 Ibiden Co., Ltd. Holding sealer and exhaust gas processing device
WO2008113631A1 (en) * 2007-03-22 2008-09-25 Robert Bosch Gmbh Filter and catalyst element having increased thermomechanical stability

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0154090B2 (en) * 1985-07-25 1989-11-16 Interuatomu Gmbh
JPH0483773A (en) * 1990-07-23 1992-03-17 Nippon Pillar Packing Co Ltd Heat expansion-resistant member
JPH06305847A (en) * 1993-04-16 1994-11-01 Nippon Pillar Packing Co Ltd Heat-resistant composite member and its formed body
JPH07102961A (en) * 1993-10-05 1995-04-18 Honda Motor Co Ltd Holding material for catalytic converter
JPH08103662A (en) * 1994-10-03 1996-04-23 Nippondenso Co Ltd Ceramic catalytic converter
JPH09195759A (en) * 1996-01-19 1997-07-29 Akira Ukai Assembled structure of catalyst converter and retainer for catalyst carrier
JPH09201514A (en) * 1995-11-21 1997-08-05 Mitsubishi Chem Corp Catalytic converter and manufacturing method thereof
JPH09317457A (en) * 1996-05-29 1997-12-09 Ibiden Co Ltd Exhaust gas purification converter installation method and jig
JPH09317456A (en) * 1996-05-28 1997-12-09 Toyota Motor Corp Catalytic device using honeycomb body

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0154090B2 (en) * 1985-07-25 1989-11-16 Interuatomu Gmbh
JPH0483773A (en) * 1990-07-23 1992-03-17 Nippon Pillar Packing Co Ltd Heat expansion-resistant member
JPH06305847A (en) * 1993-04-16 1994-11-01 Nippon Pillar Packing Co Ltd Heat-resistant composite member and its formed body
JPH07102961A (en) * 1993-10-05 1995-04-18 Honda Motor Co Ltd Holding material for catalytic converter
JPH08103662A (en) * 1994-10-03 1996-04-23 Nippondenso Co Ltd Ceramic catalytic converter
JPH09201514A (en) * 1995-11-21 1997-08-05 Mitsubishi Chem Corp Catalytic converter and manufacturing method thereof
JPH09195759A (en) * 1996-01-19 1997-07-29 Akira Ukai Assembled structure of catalyst converter and retainer for catalyst carrier
JPH09317456A (en) * 1996-05-28 1997-12-09 Toyota Motor Corp Catalytic device using honeycomb body
JPH09317457A (en) * 1996-05-29 1997-12-09 Ibiden Co Ltd Exhaust gas purification converter installation method and jig

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6185820B1 (en) * 1998-10-26 2001-02-13 General Motors Corporation Reduced cost substrate retaining mat
EP1892393A1 (en) 2006-08-21 2008-02-27 Ibiden Co., Ltd. Holding sealer and exhaust gas processing device
US7794671B2 (en) 2006-08-21 2010-09-14 Ibiden Co., Ltd. Holding sealer and exhaust gas processing device
WO2008113631A1 (en) * 2007-03-22 2008-09-25 Robert Bosch Gmbh Filter and catalyst element having increased thermomechanical stability

Also Published As

Publication number Publication date
AU6747898A (en) 1998-10-30

Similar Documents

Publication Publication Date Title
JP3919034B2 (en) Inorganic fiber molded body and catalytic converter
EP0765993B1 (en) Monolith holding material, method for producing the same, catalytic converter using the monolith, and method for producing the same
JP3025445B2 (en) Catalytic converter and method for producing the same
US7501099B2 (en) Hybrid mounting system for pollution control devices
JP3072281B2 (en) Catalytic converter
JP3318822B2 (en) Mounting method of heat-insulating sealing material for converter for purifying exhaust gas and mounting jig
WO2002033233A1 (en) Holding seal material for catalytic converter and method of manufacturing the holding seal material
US6967006B1 (en) Method for mounting and insulating ceramic monoliths in an automobile exhaust system and a mounting produced according to this method
JP4687496B2 (en) Monolith holding material
KR20020089402A (en) Catalyst converter and diesel particulate filter system
ZA200602552B (en) Pollution control element-retaining member and pollution control device
JP3025433B2 (en) Monolith holding material, method for producing the same, and catalytic converter using the monolith
WO1998045583A1 (en) Catalyst converter
CN1891990B (en) Exhaust gas treatment device and the manufacturing process
JPH07102961A (en) Holding material for catalytic converter
JP4239485B2 (en) Method for assembling catalyst reformer
JP2001032710A (en) Exhaust emission controlling catalytic converter and its manufacture
JP4138079B2 (en) Manufacturing method of exhaust gas purification catalyst converter
JP4687483B2 (en) Monolith holding material
JP3750206B2 (en) Ceramic catalytic converter
KR100509393B1 (en) Hybrid mounting system for pollution control device
JP2000220448A (en) Manufacturing of catalytic converter
JP2001248431A (en) Catalyst converter for exhaust emission control and manufacturing method for it
JP2002147230A (en) Catalytic converter and method of manufacturing the same
JP2000161051A (en) Catalytic converter for exhaust gas emission control

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase