JPS63239198A - Selective formation of organic built-up film - Google Patents
Selective formation of organic built-up filmInfo
- Publication number
- JPS63239198A JPS63239198A JP7351587A JP7351587A JPS63239198A JP S63239198 A JPS63239198 A JP S63239198A JP 7351587 A JP7351587 A JP 7351587A JP 7351587 A JP7351587 A JP 7351587A JP S63239198 A JPS63239198 A JP S63239198A
- Authority
- JP
- Japan
- Prior art keywords
- film
- organic
- substrate
- deposited
- nucleus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000015572 biosynthetic process Effects 0.000 title abstract description 9
- 238000000034 method Methods 0.000 claims abstract description 51
- 238000000151 deposition Methods 0.000 claims description 21
- 238000010899 nucleation Methods 0.000 claims description 21
- 230000006911 nucleation Effects 0.000 claims description 20
- 150000002894 organic compounds Chemical class 0.000 claims description 5
- 239000013078 crystal Substances 0.000 claims description 4
- 230000003287 optical effect Effects 0.000 claims description 3
- 150000001491 aromatic compounds Chemical class 0.000 claims 1
- 239000000758 substrate Substances 0.000 abstract description 30
- XTTIQGSLJBWVIV-UHFFFAOYSA-N 2-methyl-4-nitroaniline Chemical compound CC1=CC([N+]([O-])=O)=CC=C1N XTTIQGSLJBWVIV-UHFFFAOYSA-N 0.000 abstract description 11
- 238000007740 vapor deposition Methods 0.000 abstract description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 4
- 238000000206 photolithography Methods 0.000 abstract description 4
- 229910052681 coesite Inorganic materials 0.000 abstract description 2
- 229910052906 cristobalite Inorganic materials 0.000 abstract description 2
- 238000010438 heat treatment Methods 0.000 abstract description 2
- 239000000377 silicon dioxide Substances 0.000 abstract description 2
- 235000012239 silicon dioxide Nutrition 0.000 abstract description 2
- 229910052682 stishovite Inorganic materials 0.000 abstract description 2
- 229910052905 tridymite Inorganic materials 0.000 abstract description 2
- 230000001105 regulatory effect Effects 0.000 abstract 3
- 230000001590 oxidative effect Effects 0.000 abstract 1
- 239000010408 film Substances 0.000 description 44
- 239000000463 material Substances 0.000 description 38
- 239000010409 thin film Substances 0.000 description 23
- 230000008021 deposition Effects 0.000 description 18
- 238000010884 ion-beam technique Methods 0.000 description 16
- 238000010586 diagram Methods 0.000 description 14
- 238000002441 X-ray diffraction Methods 0.000 description 7
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 6
- 238000005530 etching Methods 0.000 description 6
- 239000004698 Polyethylene Substances 0.000 description 5
- -1 polyethylene Polymers 0.000 description 5
- 229920000573 polyethylene Polymers 0.000 description 5
- 150000002500 ions Chemical class 0.000 description 4
- 238000007738 vacuum evaporation Methods 0.000 description 4
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- 238000005468 ion implantation Methods 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229920001721 polyimide Polymers 0.000 description 3
- 230000002542 deteriorative effect Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 125000001153 fluoro group Chemical group F* 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- BBEAQIROQSPTKN-UHFFFAOYSA-N pyrene Chemical compound C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C43 BBEAQIROQSPTKN-UHFFFAOYSA-N 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 238000000859 sublimation Methods 0.000 description 2
- 230000008022 sublimation Effects 0.000 description 2
- 238000005092 sublimation method Methods 0.000 description 2
- 101100153586 Caenorhabditis elegans top-1 gene Proteins 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 101100370075 Mus musculus Top1 gene Proteins 0.000 description 1
- 238000000333 X-ray scattering Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthrene Natural products C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000000761 in situ micro-X-ray diffraction Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000007735 ion beam assisted deposition Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 230000011514 reflex Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000007736 thin film deposition technique Methods 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は有機堆積膜の選択形成方法に係り、特に所望パ
ターンを自己整合的に形成する有機堆積膜の選択形成方
法に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for selectively forming an organic deposited film, and more particularly to a method for selectively forming an organic deposited film in which a desired pattern is formed in a self-aligned manner.
本発明は、例えば半導体集積回路、光集積回路、磁気回
路等の電子素子、光素子、磁気素子。The present invention relates to electronic devices, optical devices, and magnetic devices, such as semiconductor integrated circuits, optical integrated circuits, and magnetic circuits.
圧電素子あるいは表面音響素子等に使用される薄膜の作
製に適用される。It is applied to the production of thin films used in piezoelectric elements, surface acoustic elements, etc.
[従来の技術]
第8図は、従来のイオンビームエツチングによる薄膜形
成方法を示す工程図である。[Prior Art] FIG. 8 is a process diagram showing a conventional method of forming a thin film by ion beam etching.
第8図(A)に示すような均一な組成の材料種および均
一1(表面状態を有する基板1を洗浄し、続いて、種々
の薄膜堆積方法(真空蒸着法、スパッタリング法、イオ
ンプレート法、MBE法、LB法等)によって基板1の
全面に薄膜2を堆積させる[第8図(B)]。続いてマ
スク3を重ねイオンビーム4によるエツチングを行い[
第8図(C)]、所望パターンの薄膜2を形成する[第
8図(D)]。A substrate 1 having a uniform composition and uniform surface condition as shown in FIG. 8(A) is cleaned, and then various thin film deposition methods (vacuum evaporation, sputtering, ion plate A thin film 2 is deposited on the entire surface of the substrate 1 by a method (MBE method, LB method, etc.) [FIG. 8(B)]. Next, a mask 3 is placed on top of the mask 3, and etching is performed using an ion beam 4.
FIG. 8(C)], and a thin film 2 having a desired pattern is formed [FIG. 8(D)].
第9図は、レーザービームあるいはフォーカスイオンビ
ームを走査することによる薄膜形成方法を示す工程図で
ある。FIG. 9 is a process diagram showing a method of forming a thin film by scanning a laser beam or a focused ion beam.
第9図(A)に示すような均一な組成の材料種および均
一な表面状態を有する基板1を洗浄し、続いて、種々の
薄膜堆積方法(真空蒸着法、スパッタリング法、イオン
プレート法、MBE法、LB法等)によって基板1の全
面に薄Il!2を堆積させる[第9図(B)]。続いて
レーザービームあるいはフォーカスイオンビーム5を走
査することによって薄膜2を昇華させ[第9図(C)]
、所望パターンの薄11i2を形成する[第9図(0)
]。A substrate 1 having a uniform composition of materials and a uniform surface condition as shown in FIG. method, LB method, etc.) on the entire surface of the substrate 1. 2 is deposited [FIG. 9(B)]. Subsequently, the thin film 2 is sublimated by scanning with a laser beam or a focused ion beam 5 [FIG. 9(C)]
, form a thin layer 11i2 with a desired pattern [FIG. 9(0)
].
上記工程を繰返すことで、所望パターンの薄膜を積層し
、集積回路を構成する。その際、各層の薄膜の位置合せ
が素子の特性にとって極めて重要な要因となる。特に超
LSIのようにサブミクロンの精度が要求される場合で
は、位置合せとともに各層の薄膜の形成精度も極めて重
要なものとなる。By repeating the above steps, thin films with a desired pattern are laminated to form an integrated circuit. In this case, alignment of the thin films of each layer becomes an extremely important factor for the characteristics of the device. Particularly in cases where submicron precision is required, such as in VLSIs, not only alignment but also precision in forming the thin films of each layer is extremely important.
[発明が解決しようとする問題点]
しかしながら、上記従来の薄膜形成方法においては、必
要なマスクの位置合せを精度良く行うことが困難であり
、またエツチングにより所望パターンの薄膜を形成して
いるために、形状の精度も不十分である。単にパターン
のエツジ部分においては堆積膜が有機物であるためにイ
オンビームまたはレーザービームによる部分的融解ある
いはイオン化が生じ、これによる堆積膜の不均一化ある
いは変質が問題となっている。[Problems to be Solved by the Invention] However, in the conventional thin film forming method described above, it is difficult to accurately align the required mask, and the thin film with the desired pattern is formed by etching. Moreover, the accuracy of the shape is also insufficient. Simply at the edge portions of the pattern, since the deposited film is an organic substance, partial melting or ionization occurs due to the ion beam or laser beam, resulting in non-uniformity or deterioration of the deposited film, which poses a problem.
゛ 従って、本発明の目的は従来の上述の問題点を解消
し、マスクの位置合わせが精度良く行える有機堆積膜の
選択形成方法を提供することにある。Therefore, an object of the present invention is to solve the above-mentioned conventional problems and to provide a method for selectively forming an organic deposited film in which mask alignment can be performed with high precision.
[問題点を解決するための手段]
このような目的を達成するために、本発明の有機堆積膜
の選択形成方法は、核形成密度の小さい非核形成面(S
NDS)に、単一核のみより結晶成長するに充分小さい
面積を有し、非核形成面(SNDS)の核形成密度(N
Ds)より大きい核形成密度(NDL)を有する核形成
面(SNDL)を形成し、核形成面(SNDL)に選択
的に有機化合物を堆積させることを特ft1t &する
。[Means for Solving the Problems] In order to achieve such an objective, the method for selectively forming an organic deposited film of the present invention uses a non-nucleation surface (S) with a low nucleation density.
The nucleation density (N
Ds) forming a nucleation surface (SNDL) having a nucleation density (NDL) greater than Ds) and selectively depositing an organic compound on the nucleation surface (SNDL).
[作 用]
このようにして、所望パターンの有機堆積膜かに有機堆
積膜を形成することができる。更に、エツチングプロセ
スが不要となるためプロセスの簡略化を実現でき、かつ
、イオンビームまたはレーザービームによる有機堆積膜
の不均一化あるいは変質を防止することが可能となった
。[Function] In this way, an organic deposited film can be formed in a desired pattern. Furthermore, since no etching process is required, the process can be simplified, and it is also possible to prevent the organic deposited film from becoming non-uniform or deteriorating due to ion beams or laser beams.
[実施例]
以下、本発明の実施例を図面に基づいて詳細に説明する
。[Example] Hereinafter, an example of the present invention will be described in detail based on the drawings.
第1図(A)〜(0)は、本発明による有機堆積膜の選
択形成方法の概略的説明図である。FIGS. 1(A) to 1(0) are schematic illustrations of a method for selectively forming an organic deposited film according to the present invention.
まず、堆積面を構成する二種類の材料をAおよびB、有
機堆積材料をCとし、ある一定の堆積条件の下で有機堆
積材料Cの核形成密度が材料AおよびBで大幅に異なる
ように、上記A、BおよびCを選択する。ここでは材料
Aでの核形成密度が大きく、材料Bでの核形成密度が無
視できる程度に小さいとする。First, two types of materials constituting the deposition surface are A and B, and the organic deposition material is C. Under certain deposition conditions, the nucleation density of organic deposition material C is significantly different between materials A and B. , select A, B and C above. Here, it is assumed that the nucleation density in material A is large and the nucleation density in material B is negligibly small.
基板1上に薄膜形成法により材料Bの薄膜6を堆積させ
、その上に、集束イオンビーム注入技術を用い、所望パ
ターンで材料Aのイオンを注入する[第1図(A)]、
これによって、材料Bの薄膜6に、材料Aの領域7が所
望パターンで形成される[第1図(B)]。このように
堆積面に所望パターンの材料Aを形成する方法としては
、同図(C)に示すように、材料B上にマスク8を所望
パターンで形成し、全面に材料Aのイオンを注入して同
図FB)に示す堆積面を形成してもよい。また、材料B
の薄膜6上に材料Aの薄膜を形成し、材料Aの薄膜をホ
トリソグラフィによって所望パターンに形成してもよい
。同図(B)に示すように、堆積面が材料AおよびBの
薄膜6によって所望パターンで構成されると、所定の堆
積条件で材料Cの堆積膜9を堆積させる。この時、材料
Bの薄膜6上には材料Cは堆積しない。これは、材料C
の飛来分子が、安定核になるまでに再蒸発してしまうこ
とが主な原因であると考えられる。A thin film 6 of material B is deposited on the substrate 1 by a thin film formation method, and ions of material A are implanted thereon in a desired pattern using a focused ion beam implantation technique [FIG. 1(A)].
As a result, regions 7 of material A are formed in the thin film 6 of material B in a desired pattern [FIG. 1(B)]. The method of forming material A in a desired pattern on the deposition surface is to form a mask 8 in a desired pattern on material B and implant ions of material A into the entire surface, as shown in FIG. Alternatively, the deposition surface shown in FIG. FB) may be formed. Also, material B
A thin film of material A may be formed on the thin film 6 of , and the thin film of material A may be formed into a desired pattern by photolithography. As shown in FIG. 5B, once the deposition surface is formed in a desired pattern by the thin films 6 of materials A and B, a deposited film 9 of material C is deposited under predetermined deposition conditions. At this time, material C is not deposited on the thin film 6 of material B. This is material C
The main cause is thought to be that the incoming molecules evaporate again before they become stable nuclei.
こうして材料Aの領域7上だけに材料Cが堆積し、その
結果材料Aの領域7のパターンと同一パターンの有機堆
積膜9が自己整合的に形成される。上記実施例において
、基板表面の単位面積当りに形成される核の密度は、飛
来分子と基板との相互作用に大きく依存し、また温度を
はじめとする堆積条件にも大きく影響される。In this way, material C is deposited only on region 7 of material A, and as a result, an organic deposited film 9 having the same pattern as that of region 7 of material A is formed in a self-aligned manner. In the above embodiments, the density of nuclei formed per unit area of the substrate surface largely depends on the interaction between the incoming molecules and the substrate, and is also greatly influenced by the deposition conditions including temperature.
そこで、堆積膜の材料と基板材料との種類を適当に選択
し、また温度、圧力等の堆積条件を適当に設定すること
で、核形成密度(あるいは核形成速度)を決めることが
できる。したがって、一種類の堆積材料を用い、上記核
形成密度が大きく異なるような多種類の基板材料から成
る堆積面に当該堆積材料を堆積させようとすると、堆積
膜は核形成密度の高低によフて選択的に形成される。Therefore, the nucleation density (or nucleation rate) can be determined by appropriately selecting the types of deposited film material and substrate material, and by appropriately setting deposition conditions such as temperature and pressure. Therefore, if one type of deposition material is used to deposit it on a deposition surface made of many types of substrate materials with greatly different nucleation densities, the deposited film will be affected by the difference in nucleation density. selectively formed.
以下、本発明の具体的な実施例を図面に基づいて詳細に
説明する。Hereinafter, specific embodiments of the present invention will be described in detail based on the drawings.
実施例1
第2図(A)〜(C)は、本発明による有機堆積膜の選
択形成方法の一実施例を示す工程図である。Example 1 FIGS. 2A to 2C are process diagrams showing an example of a method for selectively forming an organic deposited film according to the present invention.
まず、(100)面にあるSt基板1をエツチングし、
表面の酸化膜を除去する[第2図(A)1゜次に、ホト
リソグラフィによって5in2膜1oを500人だけ所
望のパターンで基板1上に堆積させる[第2図(B)]
。最後に真空蒸着法により2−メチル−4−ニトロ−ア
ニリン(MNA)11を蒸着すると5i02膜lO上に
のみ選択的にMNAの膜11が形成される[第2図(C
)]。First, the St substrate 1 on the (100) plane is etched,
The oxide film on the surface is removed [Fig. 2 (A) 1] Next, 500 5in2 films 1o are deposited on the substrate 1 in a desired pattern by photolithography [Fig. 2 (B)]
. Finally, when 2-methyl-4-nitro-aniline (MNA) 11 is deposited by vacuum evaporation, an MNA film 11 is selectively formed only on the 5i02 film IO [Fig.
)].
この時の蒸着条件を以下に示す。真空容器の真空度を5
X 10−’Torr程度、基板温度を室温とし抵抗
加熱法において蒸着を行った。蒸着速度は1〜3人/s
ec程度であった。The vapor deposition conditions at this time are shown below. The vacuum degree of the vacuum container is 5
Vapor deposition was carried out using a resistance heating method at a temperature of about X 10-' Torr and a substrate temperature of room temperature. Deposition speed is 1 to 3 people/s
It was about ec.
第3図に得られたMNA膜11の微小部X線回折図形を
示す。横軸は散乱角であり、縦軸はX線散乱強度である
。更に、Si基板1上の微小部X線回折図形においては
Stの(100)筋反射のみが観察され去J0乳且
実施例1と同様に、Siの(100)面あるいはStの
(111)面基板上に5r(h膜を1000人の厚さに
所望パターンで蒸着し、この5in2膜上に^rイオン
ビームを照射しながらMNAを蒸着した。この時の蒸着
条件は実施例1と同様であるが、イオンビームのイオン
電流は25μA、加速電圧は約IKVに設定した。FIG. 3 shows the microscopic X-ray diffraction pattern of the MNA film 11 obtained. The horizontal axis is the scattering angle, and the vertical axis is the X-ray scattering intensity. Furthermore, in the micro X-ray diffraction pattern on the Si substrate 1, only the (100) streak reflection of St was observed. A 5R (h film) was deposited on the substrate in a desired pattern to a thickness of 1000 mm, and MNA was deposited on this 5in2 film while irradiating it with an ion beam.The deposition conditions at this time were the same as in Example 1. However, the ion current of the ion beam was set to 25 μA, and the acceleration voltage was set to about IKV.
第4図に微小部X線回折法により5t02@上にはMN
A膜が堆積したときの回折パターンを示す。この時、回
折パターンは(010)筋反射のみが観測されSi基板
部からはSiの(100)面あるいはStの(111)
筋反射のみしか観測されなかった。Figure 4 shows MN on 5t02@ by microscopic X-ray diffraction method.
The diffraction pattern when the A film is deposited is shown. At this time, only the (010) streak reflection is observed in the diffraction pattern, and from the Si substrate part, the (100) plane of Si or the (111) plane of St
Only muscle reflexes were observed.
夾適亘ユ
第5図(A)〜(C)に本発明の選択形成方法の工程図
を示す。まず、5ijl結晶基板1を熱酸化して表面に
厚さ1500人程度のSiO2膜12全12する[第5
図(A)]。次に、ホトリソグラフィにより5in2膜
12を部分的に除去し所望のパターンを得る[同図(B
)]。実方へイ1112と同席にイオンビー人古燭茎善
ン↓によりMNA膜1膜管3着する[第5図(C)]。FIGS. 5(A) to 5(C) show process diagrams of the selective forming method of the present invention. First, a 5ijl crystal substrate 1 is thermally oxidized to form a SiO2 film 12 with a thickness of about 1500 on the surface [5th
Figure (A)]. Next, the 5in2 film 12 is partially removed by photolithography to obtain a desired pattern [FIG.
)]. At the same time as Jitsukata Hei 1112, Aeon Bee's old candlestick Zenn↓ installed one MNA membrane and three membrane tubes [Figure 5 (C)].
微微小部X線回折による回折パターンの測定結果は実施
例2と同様であった。The measurement results of the diffraction pattern by microscopic X-ray diffraction were the same as in Example 2.
火族里」
第6図(^)〜(C)に本発明の選択形成方法の工程図
を示す。Figures 6 (^) to (C) show process diagrams of the selective formation method of the present invention.
まず、Si単結晶基板1をエツチングし、表面の酸化膜
を除去する[第6図(A)]。次に、イオン注入法によ
って、基板表面における酸素濃度が〜10”/cm’程
度になるよう酸素を注入し、所望のパターンで基板表面
を変質させる[第6図(B)]。変質部分を14に示す
。実施例2と同様にイオンビーム支援蒸着法によりMN
A膜15を蒸着する[第6図(C)]。微微小部X線回
折による回折パターンの測定結果は実施例2と同様であ
った。First, the Si single crystal substrate 1 is etched to remove the oxide film on the surface [FIG. 6(A)]. Next, by ion implantation, oxygen is implanted so that the oxygen concentration on the substrate surface is about 10"/cm', and the substrate surface is altered in a desired pattern [Figure 6 (B)]. 14. Similar to Example 2, MN was prepared by ion beam assisted deposition method.
A film 15 is deposited [FIG. 6(C)]. The measurement results of the diffraction pattern by microscopic X-ray diffraction were the same as in Example 2.
実施例5
実施例3と同様にして、Si単結晶基板上に所望のパタ
ーンの5in2膜を形成し、昇華法によりMNA膜を堆
積させた。微小部X線回折の結果は実施例1と同様であ
フた。Example 5 In the same manner as in Example 3, a 5in2 film with a desired pattern was formed on a Si single crystal substrate, and an MNA film was deposited by the sublimation method. The results of microscopic X-ray diffraction were the same as in Example 1.
衷五〇址互
第7図(A)〜(C)に、本発明の選択形成方法の工程
図を示す。Figures 7(A) to 7(C) show process diagrams of the selective forming method of the present invention.
まず、厚さ20μmのポリエチレンフィルムを基板16
とする[第7図(A)]、これにフッ素原子をイオン注
入法により、基板16表面におけるフッ素濃度が〜10
227cm3程度になるよう注入する[第7図(B)]
。第7図(B)の17に変質部分を示す。次に、アント
ラセンを昇華法により堆積させるとポリエチレンフィル
ム16上にアントラセン膜18が選択堆積しフッ素によ
り変質した部分17には堆積しなかった[第7図(C)
]。First, a polyethylene film with a thickness of 20 μm is placed on the substrate 16.
[FIG. 7(A)], fluorine atoms are ion-implanted into this, so that the fluorine concentration on the surface of the substrate 16 is ~10
Inject to a volume of about 227 cm3 [Figure 7 (B)]
. The altered portion is shown at 17 in FIG. 7(B). Next, when anthracene was deposited by sublimation, an anthracene film 18 was selectively deposited on the polyethylene film 16 and was not deposited on the portion 17 altered by fluorine [Figure 7 (C)]
].
実施例7
実施例6と同様にしてポリエチレンフィルム、あるいは
ポリイミドフィルム上にフッ素原子または酸素原子をイ
オン注入法により〜10”/cm3程度の濃度となるよ
うに注入し、真空蒸着法によりピレンを蒸着したところ
、ポリエチレンフィルムもしくはポリイミドフィルム上
に選択堆積し、フッ素または酸素により変質した部分に
は堆積しなかった。Example 7 In the same manner as in Example 6, fluorine atoms or oxygen atoms were injected onto a polyethylene film or a polyimide film by ion implantation to a concentration of about 10"/cm3, and pyrene was deposited by vacuum evaporation. As a result, it was selectively deposited on polyethylene film or polyimide film, but not on areas altered by fluorine or oxygen.
[発明の効果]
以上詳細に説明したように、本発明による有機堆積膜の
選択形成方法は、有機堆積材料と堆積面材料の種類また
は表面状態、あるいは種類と表面状態の両方に起因する
堆積面上における核形成密度の差を利用して、所望パタ
ーンの有機堆積膜を自己整合的に形成できるために、所
望パターンの有機堆積膜が高精度に形成でき、特に高集
積回路を構成する上で極めて有利である。更に、核形成
密度差を有する有機堆積材料と堆積面材料の種類または
表面状態、あるいは両方の種類と表面状態とを選択する
ことにより、任意の基板上に有機堆積膜を選択的に高精
度で形成できる。更にエツチングプロセスを必要としな
いためプロセスを簡略化でき、かつ、イオンビームまた
はレーザービームによる有機堆積膜の不均一化あるいは
変質を防止することも可能となった。[Effects of the Invention] As explained in detail above, the method for selectively forming an organic deposited film according to the present invention can improve the deposition surface due to the type or surface condition of the organic deposited material and deposition surface material, or both the type and surface condition. By utilizing the difference in the nucleation density on the upper surface, an organic deposited film with a desired pattern can be formed in a self-aligned manner, so the organic deposited film with a desired pattern can be formed with high precision. Extremely advantageous. Furthermore, by selecting the type or surface condition of the organic deposited material and the deposited surface material, or both types and surface conditions, which have a difference in nucleation density, it is possible to selectively form an organic deposited film on any substrate with high precision. Can be formed. Furthermore, since no etching process is required, the process can be simplified, and it is also possible to prevent the organic deposited film from becoming non-uniform or deteriorating due to ion beams or laser beams.
なお、基板材料として用いたのはSi、ポリエチレンフ
ィルム、ポリイミドフィルムであったが、本発明に適用
可能な基板は何らこれらに限定されるものではなく、例
えばGaAsのような化合物半導体、各種酸化物あるい
はセラミックス、エポキシ樹脂等の高分子フィルム、更
には各種金属9合金等であっても同様な効果を得ること
ができる。また、真空蒸着法、イオンビーム支援蒸着法
あるいは昇華法等の堆積条件に関しては使用する基板、
堆積材料によって自由に選択することができ、何ら限定
されるものではない。更に、堆積方法においても真空蒸
着法、イオンビーム支援蒸着法、昇華法等に何ら限定さ
れるものではなく、cvD法。Note that although Si, polyethylene film, and polyimide film were used as substrate materials, substrates applicable to the present invention are not limited to these in any way; for example, compound semiconductors such as GaAs, various oxides, etc. Alternatively, similar effects can be obtained using ceramics, polymer films such as epoxy resin, and even various metal 9 alloys. Regarding deposition conditions such as vacuum evaporation method, ion beam assisted evaporation method or sublimation method, the substrate used,
It can be freely selected depending on the deposition material and is not limited in any way. Further, the deposition method is not limited to vacuum evaporation, ion beam assisted evaporation, sublimation, etc., and CVD can be used.
スパッタリング法、プラズマ放電法を、MBE法等を用
いても同様な効果を得ることができる。Similar effects can be obtained by using a sputtering method, a plasma discharge method, an MBE method, or the like.
第1図(A)〜(D)は本発明による有機堆積膜の選択
形成方法の概略的説明図、
第2図(A)〜(C)は本発明の第一実施例を示す形成
工程図、
第3図は本発明第一実施例におけるMNAのX線回折パ
ターンを示す図、
7FS4図は本発明第二実施例におけるMNAのX線回
折パターンを示す図、
第5図(A)〜(C)は本発明の第三実施例を示す形成
工程図、
第6図(A)〜(C)は本発明の第四実施例を示す形成
工程図、
第7図(八)〜(C)は本発明の第六実施例を示す形成
工程図、
第8図(A)〜(D)は従来のイオンビームエツチング
による薄膜形成法を示す工程図、
第9図(A)〜(D)は従来のフォーカスイオンビーム
あるいはレーザービームスキャンによる薄膜形成方法を
示す工程図である。
1・・・基板、
2・・・薄膜、
3.8・・・マスク、
4・・・イオンビーム、
5・・・フォーカスイオンビームまたはレーザビーム、
6・・・材料Bの薄膜、
7・・・材料Aの領域、
9・・・材料Cの堆積膜、
10.12・・・5in2膜、
11.13.15・・・MNA [,
14,17・・・イオン注入法による変質部分、1ト・
・フィルム、
18・・・アントラセン膜。
第1 図
第3図
第4図
第5図
(A) +6第7図
(A) 口=======上−1
第8図FIGS. 1(A) to (D) are schematic illustrations of a method for selectively forming an organic deposited film according to the present invention, and FIGS. 2(A) to (C) are forming process diagrams showing a first embodiment of the present invention. , Figure 3 is a diagram showing the X-ray diffraction pattern of MNA in the first example of the present invention, Figure 7FS4 is a diagram showing the X-ray diffraction pattern of MNA in the second example of the present invention, Figures 5 (A) to ( C) is a forming process diagram showing the third embodiment of the present invention, Figures 6 (A) to (C) are forming process diagrams showing the fourth embodiment of the present invention, Figures 7 (8) to (C) 8(A) to (D) are process diagrams showing a conventional thin film forming method by ion beam etching, and FIGS. 9(A) to (D) are process diagrams showing a sixth embodiment of the present invention. FIG. 2 is a process diagram showing a conventional thin film forming method using focused ion beam or laser beam scanning. DESCRIPTION OF SYMBOLS 1... Substrate, 2... Thin film, 3.8... Mask, 4... Ion beam, 5... Focused ion beam or laser beam, 6... Thin film of material B, 7...・Region of material A, 9... Deposited film of material C, 10.12... 5in2 film, 11.13.15... MNA [, 14, 17... Altered portion by ion implantation method, 1 to·
・Film, 18...Anthracene film. Figure 1 Figure 3 Figure 4 Figure 5 (A) +6 Figure 7 (A) Mouth =======Top -1 Figure 8
Claims (1)
に、単一核のみより結晶成長するに充分小さい面積を有
し、前記非核形成面(S_N_D_S)の核形成密度(
ND_S)より大きい核形成密度(ND_L)を有する
核形成面(S_N_D_L)を形成し、該核形成面(S
_N_D_L)に選択的に有機化合物を堆積させること
を特徴とする有機堆積膜の選択形成方法。 2)前記有機化合物が分子内において対称面もしくは回
転対称軸を有する芳香族化合物であることを特徴とする
特許請求の範囲第1項記載の有機堆積膜の選択形成方法
。 3)前記有機化合物が非局在のπ電子を有することを特
徴とする特許請求の範囲第1項に記載の有機堆積膜の選
択形成方法。 4)前記非局在π電子を有する有機化合物が非線形光学
特性を有することを特徴とする特許請求の範囲第3項に
記載の有機堆積膜の選択形成方法。[Claims] 1) Non-nucleation surface with low nucleation density (S_N_D_S)
has a sufficiently smaller area for crystal growth than a single nucleus alone, and the nucleation density (
forming a nucleation surface (S_N_D_L) having a nucleation density (ND_L) greater than the nucleation density (ND_S);
_N_D_L) A method for selectively forming an organic deposited film, comprising selectively depositing an organic compound on _N_D_L. 2) The method for selectively forming an organic deposited film according to claim 1, wherein the organic compound is an aromatic compound having a plane of symmetry or an axis of rotational symmetry in its molecule. 3) The method for selectively forming an organic deposited film according to claim 1, wherein the organic compound has non-localized π electrons. 4) The method for selectively forming an organic deposited film according to claim 3, wherein the organic compound having delocalized π electrons has nonlinear optical properties.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7351587A JPS63239198A (en) | 1987-03-27 | 1987-03-27 | Selective formation of organic built-up film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7351587A JPS63239198A (en) | 1987-03-27 | 1987-03-27 | Selective formation of organic built-up film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63239198A true JPS63239198A (en) | 1988-10-05 |
Family
ID=13520459
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7351587A Pending JPS63239198A (en) | 1987-03-27 | 1987-03-27 | Selective formation of organic built-up film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63239198A (en) |
-
1987
- 1987-03-27 JP JP7351587A patent/JPS63239198A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Broers | Resolution limits of PMMA resist for exposure with 50 kV electrons | |
Hatzakis | Electron resists for microcircuit and mask production | |
US6632483B1 (en) | Ion gun deposition and alignment for liquid-crystal applications | |
EP0372061A1 (en) | Selective area nucleation and growth method for metal chemical vapor deposition using focused ion beams. | |
JPS61218134A (en) | Device and method for forming thin film | |
JP2502789B2 (en) | Method for manufacturing thin film transistor | |
JPS63239198A (en) | Selective formation of organic built-up film | |
JPH05326380A (en) | Thin-film composition and mask for x-ray exposure using the same | |
JPS63177472A (en) | Thin-film transistor | |
JP3979745B2 (en) | Film forming apparatus and thin film forming method | |
US4368215A (en) | High resolution masking process for minimizing scattering and lateral deflection in collimated ion beams | |
JPH04206244A (en) | Aperture device and manufacture thereof | |
JPH0494179A (en) | Production of oxide superconducting thin film device | |
JP3163773B2 (en) | Thin film manufacturing method | |
JPH04214862A (en) | Film forming apparatus | |
JPH0458171B2 (en) | ||
JPH05110088A (en) | Manufacture of thin film transistor circuit | |
JP2909087B2 (en) | Thin film forming equipment | |
Bondar et al. | A semiconducting AlN coating for microstrip gas chambers | |
JPH0748468B2 (en) | Pattern formation method | |
JPH04101413A (en) | Method of forming semiconductor recrystalline layer | |
JPH05152276A (en) | Manufacture of semiconductor device | |
JPS63193520A (en) | Manufacture of polycrystalline silicon thin film | |
JPH026385A (en) | Method for forming thin film and apparatus therefor | |
JPH0247848B2 (en) |