JPS63239190A - Method for selectively growing crystal - Google Patents

Method for selectively growing crystal

Info

Publication number
JPS63239190A
JPS63239190A JP7352687A JP7352687A JPS63239190A JP S63239190 A JPS63239190 A JP S63239190A JP 7352687 A JP7352687 A JP 7352687A JP 7352687 A JP7352687 A JP 7352687A JP S63239190 A JPS63239190 A JP S63239190A
Authority
JP
Japan
Prior art keywords
crystal
nucleus
substrate
nucleation
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7352687A
Other languages
Japanese (ja)
Inventor
Kazuaki Omi
近江 和明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP7352687A priority Critical patent/JPS63239190A/en
Publication of JPS63239190A publication Critical patent/JPS63239190A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To form crystal having good heat release properties and easy application to a device by selectively forming an inorganic nonoxidative compd. good in insulating properties and heat conductivity on a nucleus nonformation face. CONSTITUTION:A nucleus nonformation face 1 which consists of an inorganic nonoxidative compd. (e.g. BN) having heat conductivity and insulating properties and is small in nucleus formation density is prepared. A nucleus formation face 3 having small area sufficient to grow crystal of only single nucleus and having nucleus formation density larger than the nucleus formation density of the face 1 is formed thereon. Then single crystal 4 consisting of the single nucleus is grown by performing crystal formation treatment to the faces 1, 3.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は結晶の選択成長方法、特に堆積面材料の種類に
よる堆積材料の核形成密度の差を利用して作成した単結
晶ないし粒径が制御された多結晶の選択成長方法に関す
るものである。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a method for selectively growing crystals, particularly a single crystal or a single crystal with a grain size that is created by utilizing the difference in the nucleation density of the deposited material depending on the type of the deposition surface material. This invention relates to a controlled selective growth method for polycrystals.

[従来の技術] 従来、半導体電子素子や光素子等に用いられる単結晶薄
膜は、単結晶基板上にエピタキシャル成長させることで
形成されていた。例えば、St単結晶基板(シリコンウ
ェハ)上には、Si、Ge、GaAs等を液相、気相ま
たは固相からエピタキシャル成長することが知られてお
り、またGaAs単結晶基板上にはGaAs、GaAJ
2 へs等の単結晶がエピタキシャル成長することが知
られている。このようにして形成された半導体薄膜を用
いて、半導体素子および集積回路、半導体レーザやLE
D等の発光素子等が作製される。
[Prior Art] Conventionally, single-crystal thin films used in semiconductor electronic devices, optical devices, and the like have been formed by epitaxial growth on single-crystal substrates. For example, it is known that Si, Ge, GaAs, etc. are epitaxially grown on a St single crystal substrate (silicon wafer) from the liquid phase, gas phase, or solid phase, and on a GaAs single crystal substrate, GaAs, GaAJ, etc.
It is known that single crystals such as 2s and the like can be epitaxially grown. Using the semiconductor thin film thus formed, semiconductor devices, integrated circuits, semiconductor lasers and LE
A light emitting element such as D is manufactured.

また、最近、二次元電子ガスを用いた超高速トランジス
タや、量子井戸を利用した超格子素子等の研究開発が盛
んであるが、これらを可能にしたのは、例えば超高真空
を用いたMBE  (分子線エピタキシー)゛やMOC
VD  (有機金属化学気相法)等の高精度エピタキシ
ャル技術である。
In addition, recently there has been much research and development into ultrahigh-speed transistors using two-dimensional electron gas and superlattice devices using quantum wells. (Molecular beam epitaxy) and MOC
High-precision epitaxial technology such as VD (organometallic chemical vapor deposition).

このような単結晶基板上のエピタキシャル成長では、基
板の単結晶材料とエピタキシャル成長層との間に、格子
定数と熱膨張係数とを整合する必要がある。この整合が
不十分であると格子欠陥がエピタキシャル層に発達する
。また基板を構成する元素がエピタキシャル層に拡散す
ることもある。
In such epitaxial growth on a single crystal substrate, it is necessary to match the lattice constant and thermal expansion coefficient between the single crystal material of the substrate and the epitaxially grown layer. If this alignment is insufficient, lattice defects will develop in the epitaxial layer. Additionally, elements constituting the substrate may diffuse into the epitaxial layer.

このように、エピタキシャル成長による従来の単結晶薄
膜の形成方法、その基板材料に大きく依存することが分
る。Mathews等は、基板材料とエピタキシャル成
長層との組合せを調べている(EPITAXIAL G
ROWTH,Academtc Press、 New
 York。
Thus, it can be seen that the conventional method of forming a single crystal thin film by epitaxial growth largely depends on the substrate material. Mathews et al. investigate combinations of substrate materials and epitaxially grown layers (EPITAXIAL G
ROWTH, Academtc Press, New
York.

1975  ed、  by  J、W、Mathew
s)。
1975 ed, by J.W.Mathew
s).

また、基板の大きさは、現在Siウェハで6インチ程度
であり、GaAs、サファイア基板の大型化は更に遅れ
ている。加えて、単結晶基板は製造コストが高いために
、チップ当りのコストが高くなる。
Furthermore, the size of the substrate is currently about 6 inches for Si wafers, and the increase in the size of GaAs and sapphire substrates is even slower. In addition, single crystal substrates are expensive to manufacture, resulting in a high cost per chip.

このように、従来の方法によって、良質な素子が作製可
能な単結晶層を形成するには、基板材料の種類が極めて
狭い範囲に限定されるという問題点を有していた。
As described above, in order to form a single-crystal layer from which a high-quality device can be manufactured by the conventional method, there is a problem in that the types of substrate materials are limited to an extremely narrow range.

一方、半導体素子を基板の法線方向に積層形成し、高集
積化および多機能化を達成する三次元集積回路の研究開
発が近年盛んに行われており、また安価なガラス上に素
子をアレー状に配列する太陽電池や液晶画素のスイッチ
ングトランジスタ等の大面積半導体装置の研究開発も年
々型んになりつつある。
On the other hand, research and development of three-dimensional integrated circuits, in which semiconductor elements are stacked in the normal direction of a substrate to achieve high integration and multi-functionality, has been actively conducted in recent years, and there has also been active research and development in three-dimensional integrated circuits, in which semiconductor elements are stacked in the normal direction of a substrate. Research and development of large-area semiconductor devices, such as solar cells arranged in a pattern or switching transistors for liquid crystal pixels, is becoming more common year by year.

これら両者に共通することは、半導体薄膜を非晶質絶縁
物上に形成し、そこにトランジスタ等の電子素子を形成
する技術を必要とすることである。その中でも特に、非
晶質絶縁物上に高品質の単結晶半導体を形成する技術が
望まれている。
What these two methods have in common is that they require a technique for forming a semiconductor thin film on an amorphous insulator and forming electronic elements such as transistors thereon. Among these, a technique for forming a high quality single crystal semiconductor on an amorphous insulator is particularly desired.

一般的に、5in2等の非晶質絶縁物基板上に薄膜を堆
積させると、基板材料の長距離秩序の欠如によって、堆
積膜の結晶構造は非晶質または多結晶となる。ここで非
晶質膜とは、最近接原子程度の近距離秩序は保存されて
いるが、それ以上の長距離秩序はない状態のものであり
、多結晶膜とは、特定の結晶方位を持たない単結晶粒が
粒界で隔離されて集合したものである。
Generally, when a thin film is deposited on an amorphous insulator substrate such as 5in2, the crystal structure of the deposited film becomes amorphous or polycrystalline due to the lack of long-range order in the substrate material. Here, an amorphous film is one in which short-range order at the level of the nearest neighbor atoms is preserved, but no longer-range order, and a polycrystalline film is one that has a specific crystal orientation. It is a collection of single crystal grains separated by grain boundaries.

例えば、5in2上にSiをCVD法によって形成する
場合、堆積温度が約600℃以下であれば非晶質シリコ
ンとなり、それ以上の温度であれば粒径が数百〜数千人
の間で分布した多結晶シリコンとなる。ただし、多結晶
シリコンの粒径およびその分布は形成方法によって大き
く変化する。
For example, when forming Si on 5in2 by CVD method, if the deposition temperature is below about 600℃, it will become amorphous silicon, and if the temperature is higher than that, the grain size will be distributed between several hundred to several thousand. It becomes polycrystalline silicon. However, the grain size and distribution of polycrystalline silicon vary greatly depending on the formation method.

更に、非晶質または多結晶膜をレーザや棒状ヒータ等の
エネルギビームによって溶融固化させることによって、
ミクロンあるいはミリメートル程度の大粒径の多結晶薄
膜が得られている(Single−Crystal  
5ilicon  on  non−single−c
rystalinsulators、 Journal
 of crystal Growth vol。
Furthermore, by melting and solidifying the amorphous or polycrystalline film using an energy beam such as a laser or a rod-shaped heater,
Polycrystalline thin films with large grain sizes on the order of microns or millimeters have been obtained (Single-Crystal
5ilicon on non-single-c
rystalinsulators, Journal
of crystal growth vol.

63、 No、3.0ctober、 1983 ed
ited by G、 W。
63, No. 3.0ctober, 1983 ed.
ited by G, W.

Cu1len)。Cullen).

このようにして形成された各結晶構造の薄膜にトランジ
スタを形成し、その特性から電子易動度を測定すると、
非晶質シリコンでは〜0.1c+n2/V・sec 、
数百人の粒径を有する多結晶シリコンでは1〜10ca
+2/V−see 、溶融固化による大粒径の多結晶シ
リコンでは単結晶シリコンの場合と同程度の易動度が得
られている。
When a transistor is formed in the thin film of each crystal structure formed in this way and the electron mobility is measured from its characteristics,
For amorphous silicon, ~0.1c+n2/V・sec,
1 to 10ca for polycrystalline silicon with a grain size of several hundred
+2/V-see, large-grain polycrystalline silicon obtained by melting and solidification has a mobility comparable to that of single-crystal silicon.

この結果から、結晶粒内の単結晶領域に形成された素子
と、粒界に車たがって形成された素子とは、その電気的
特性に大きな差異のあることが分る。すなわち、従来法
で得られていた非晶質上の堆積膜は非晶質または粒径分
布をもった多結晶構造となり、そこに作製された素子は
、単結晶層に作製された素子に比べて、その性能が大き
く劣るものとなる。そのために、用途としては簡単なス
イッチング素子、太陽電池、光電変換素子等に限られる
This result shows that there is a large difference in electrical characteristics between an element formed in a single crystal region within a crystal grain and an element formed along a grain boundary. In other words, the deposited film on an amorphous layer obtained by the conventional method has an amorphous or polycrystalline structure with a grain size distribution, and the devices fabricated there have a higher level of performance than those fabricated on a single crystal layer. As a result, its performance will be greatly degraded. Therefore, its applications are limited to simple switching elements, solar cells, photoelectric conversion elements, etc.

また、溶融固化によって大粒径の多結晶薄膜を形成する
方法は、ウェハごとに非晶質または単結晶薄膜をエネル
ギビームで走査するために、大粒径比に多大な時間を要
し、量産性に乏しく、また大面積化に向かないという問
題点を有していた。
In addition, the method of forming a polycrystalline thin film with a large grain size by melting and solidifying requires a large amount of time to achieve a large grain size ratio because the amorphous or single crystal thin film is scanned with an energy beam on each wafer. It has the problem that it has poor performance and is not suitable for large-area applications.

[発明が解決しようとする問題点1 以上述べたように、従来の結晶成長方法およびそれによ
って形成される結晶では、三次元集積化や大面積化が容
易ではなく、デバイスへの実用的な応用が困難であり、
優れた特性を有するデバイスを作製するために必要とさ
れる単結晶および多結晶等の結晶を容易に、かつ低コス
トで形成することができなかった。
[Problem to be Solved by the Invention 1] As mentioned above, with conventional crystal growth methods and the crystals formed thereby, it is not easy to achieve three-dimensional integration or increase the area, and practical application to devices is difficult. is difficult,
Crystals such as single crystals and polycrystals required for producing devices with excellent properties have not been able to be easily formed at low cost.

従って、本発明は上記の従来の問題点を解消し、三次元
集積化や大面積化が容易で、デバイスへの実用的な応用
が容易で優れた特性を有する単結晶および多結晶の形成
方法を提供することを目的とする。
Therefore, the present invention solves the above-mentioned conventional problems, and provides a method for forming single crystals and polycrystals that are easy to three-dimensionally integrate and have a large area, are easy to practically apply to devices, and have excellent properties. The purpose is to provide

[問題点を解決するための手段コ このような目的を達成するために、本発明の結晶の選択
成長方法は、 熱伝導性と絶縁性を有する無機非酸化物
からなり、かつ核形成密度の小さい非核形成面(SMD
Iりと、単一核のみ結晶成長するのに充分小さい面積を
有し、かつ該非核形成面(Ssos)の核形成密度(N
DS)より大きな核形成密度(NDL)  とを有する
核形成面(SNDL)に、結晶形成処理を施して、単一
核より単結晶を成長させることを特徴とする。
[Means for Solving the Problems] In order to achieve these objectives, the method of selectively growing crystals of the present invention consists of an inorganic non-oxide having thermal conductivity and insulating properties, and a crystal with a low nucleation density. Small non-nucleating surface (SMD)
It has a sufficiently small area for crystal growth of only a single nucleus, and the nucleation density (N
It is characterized in that a crystal formation process is performed on a nucleation surface (SNDL) having a larger nucleation density (NDL) than DS) to grow a single crystal from a single nucleus.

[作 用] 本発明は成長させるべき結晶の核形成密度(ND)が結
晶を成長させる而の材質によって異なることを利用する
ものである。例えばS1結晶を堆積する場合、Sin、
は小さな核形成密度(NDS)を、SiNは大きな核形
成密度(N[lL)を有する。そしてSin2面とSi
N面を基板上ではこの核形成密度の差(ΔND)によっ
て、St結晶はSiN上に堆積成長し、5in2上には
成長しない。このように大きな核形成密度(NDL)を
もち結晶が堆積成長する面を核形成面(SNDL) 、
小さな核形成密度(NDS)をもち、結晶が成長しない
面を非核形成面(SNDS)と称する。この時、核形成
面(SNOL)上に単結晶が成長する。
[Function] The present invention utilizes the fact that the nucleation density (ND) of a crystal to be grown differs depending on the material from which the crystal is grown. For example, when depositing S1 crystal, Sin,
has a small nucleation density (NDS) and SiN has a large nucleation density (N[lL). And Sin2 side and Si
When the N-plane is on the substrate, due to this difference in nucleation density (ΔND), the St crystal grows deposited on SiN but does not grow on 5in2. The surface with such a large nucleation density (NDL) on which crystals accumulate and grow is called the nucleation surface (SNDL).
A surface that has a small nucleation density (NDS) and on which no crystal grows is called a non-nucleation surface (SNDS). At this time, a single crystal grows on the nucleation surface (SNOL).

更に、本発明によれば、非核形成面に絶縁性が良好で熱
伝導性の良好な無機非酸化物を選択したことにより、放
熱性が良好でデバイスへの実用的な応用が容易な結晶を
形成することができる。
Furthermore, according to the present invention, by selecting an inorganic non-oxide with good insulation properties and good thermal conductivity for the non-nucleation surface, it is possible to create a crystal with good heat dissipation properties and easy practical application to devices. can be formed.

[実施例] 本発明に用いる熱伝導性が良く、絶縁性の良好な無機非
酸化物としては、例えばTiB2. ZrB2 。
[Example] Examples of inorganic non-oxides with good thermal conductivity and good insulation used in the present invention include TiB2. ZrB2.

HfB2.TaBz、MoB2.(:rB2.NbB2
.MoB、NbB、WB、Mo2B。
HfB2. TaBz, MoB2. (:rB2.NbB2
.. MoB, NbB, WB, Mo2B.

ThB2のような各種ホウ化物、BN、Al1N、Hf
N、TaN。
Various borides such as ThB2, BN, Al1N, Hf
N.TaN.

ZrN、TjN、ThN、NbN、VN、CrNおよび
Si3N4のような各種窒化物、82C,Tic、2r
C,HfC,ThC,VC,NbC,WC,W2C。
Various nitrides such as ZrN, TjN, ThN, NbN, VN, CrN and Si3N4, 82C, Tic, 2r
C, HfC, ThC, VC, NbC, WC, W2C.

Cr2C3,SiCおよびTaCのような各種炭化物が
例示できる。このような無機非酸化物の熱伝導性は0゜
01cal 7cm−5ec・℃以上とすることが放熱
性の実現に好ましい。
Examples include various carbides such as Cr2C3, SiC and TaC. The thermal conductivity of such an inorganic non-oxide is preferably 0°01cal 7cm-5ec·°C or higher in order to achieve heat dissipation.

無機非酸化物の中で、BNは絶縁性、耐熱性、耐摩耗性
にすぐれている。更に、8Nは酸化シリコンと同じ程度
の絶縁性を有し、銅の数倍程度の熱伝導性を有し、超L
SIの絶縁材料としての利用が考えられている。そこで
本発明実施例においてはBNを例に取り図面を参照しつ
つ説明する。
Among inorganic non-oxides, BN has excellent insulation, heat resistance, and wear resistance. Furthermore, 8N has an insulating property similar to that of silicon oxide, a thermal conductivity several times that of copper, and an ultra-low
The use of SI as an insulating material is being considered. Therefore, in the embodiment of the present invention, a BN will be taken as an example and explained with reference to the drawings.

去妻1述土 第1図は本発明の選択成長方法を示す第一実施態様例を
示す形成工程図である。同図において、1はBN基板で
あり、2はレジスト材あるいはマスクであり、3は核形
成領域を形成するSi3N4層である。また4は成長し
た結晶である。
Figure 1 is a formation process diagram showing a first embodiment of the selective growth method of the present invention. In the figure, 1 is a BN substrate, 2 is a resist material or a mask, and 3 is a Si3N4 layer forming a nucleation region. Further, 4 is a grown crystal.

まずBN基板1の表面にレジスト材2を塗布しフォトリ
ングラフィによりレジストパターンを形成する[第2図
(A)]。この時もし単結晶成長をおこさせるためには
レジストパターンの大きさを充分に小さく、例えば数μ
m程度にすることが必要である。次にプラズマCVD法
によりSi3N4層3を約0.15μm堆積させる[第
1図(B)】。その後レジスト材2を除去して5iJ4
3層のパターンを形成する。次に基体全体を加熱し、H
CJ2ガスを基体上に流すことにより基体を清浄化した
後、112で希釈したSt(:lL4を用い、減圧下(
〜200Torr)基板温度850℃で基体上にSi層
4の堆積を行う[第1図(C)]。この時Si3N4層
3の大きさを充分小さくすればSi層4は単結晶として
成長する。その際、BNが表面に露出している領域では
SLの結晶核の発生とその成長は認められなかった。S
i層4の大きさはSi3N、層の大きさが3μmのとき
約90μmであった。
First, a resist material 2 is applied to the surface of the BN substrate 1, and a resist pattern is formed by photolithography [FIG. 2(A)]. At this time, in order to cause single crystal growth, the size of the resist pattern must be sufficiently small, for example, several microns.
It is necessary to make it about m. Next, a Si3N4 layer 3 of about 0.15 μm is deposited by plasma CVD method [FIG. 1(B)]. After that, resist material 2 is removed and 5iJ4
A three-layer pattern is formed. Next, the entire substrate is heated and H
After cleaning the substrate by flowing CJ2 gas over the substrate, it was washed under reduced pressure using St(:lL4) diluted with 112
~200 Torr) A Si layer 4 is deposited on the substrate at a substrate temperature of 850° C. [FIG. 1(C)]. At this time, if the size of the Si3N4 layer 3 is made sufficiently small, the Si layer 4 will grow as a single crystal. At that time, generation and growth of SL crystal nuclei were not observed in the area where BN was exposed on the surface. S
The size of the i-layer 4 was approximately 90 μm when Si3N was used and the layer size was 3 μm.

実施例2 第2図は本発明の選択成長方法を示す第二の実施態様例
を示す形成工程図である。同図において、5は石英基板
、6はBN膜である。
Example 2 FIG. 2 is a formation process diagram showing a second embodiment of the selective growth method of the present invention. In the figure, 5 is a quartz substrate, and 6 is a BN film.

まず核形成密度の小さいBN膜6を石英基板5の上にI
Vp法により堆積する[第2図(A)]。ここでIVI
I法とは、窒素イオン照射と金属ホウ素の真空蒸着を同
時に行う方法である。本実施例では窒素イオン(N2”
)はPIGイオン源から5にVの引出電圧で供給し、B
はEB蒸着により供給した。得られたON層6はB/N
比が1.6で膜厚は0.2μmであった。また、このB
NI]莫6は多結晶質であり、−都立方晶BN (C−
BN)相が含まれていた。
First, a BN film 6 with a low nucleation density is placed on a quartz substrate 5.
It is deposited by the Vp method [Figure 2 (A)]. Here IVI
The I method is a method in which nitrogen ion irradiation and vacuum deposition of metallic boron are performed simultaneously. In this example, nitrogen ions (N2”
) is supplied from the PIG ion source to 5 with an extraction voltage of V, and B
was supplied by EB evaporation. The obtained ON layer 6 has B/N
The ratio was 1.6 and the film thickness was 0.2 μm. Also, this B
NI] Mo6 is polycrystalline, -Tokyo cubic BN (C-
BN) phase was included.

以下実施例1と同様の方法でSi層の堆積を行うと核形
成領域3を中心に単結晶または双晶が成長し、核形成領
域3以外からの核発生および成長は抑えられた。
Thereafter, when a Si layer was deposited in the same manner as in Example 1, single crystals or twin crystals grew around the nucleation region 3, and nucleation and growth from areas other than the nucleation region 3 were suppressed.

実施例3 第2図(A)に示した核形成密度の小さいBNniをプ
ラズマCVD法により堆積した以外は実施例2と同様に
行った。本実施例では8 、 H,とC2HBおよび1
12を用いてBNliを得た。得られた88層はB−C
−Hから成る非晶質ON薄膜で膜厚は0.15μmで透
明であった。
Example 3 The same procedure as Example 2 was carried out except that BNni having a low nucleation density as shown in FIG. 2(A) was deposited by plasma CVD. In this example, 8, H, and C2HB and 1
12 was used to obtain BNli. The obtained 88 layers are B-C
The amorphous ON thin film made of -H had a thickness of 0.15 μm and was transparent.

他に実施例1と同様の方法でSi層の堆積を行うと、核
形成領域3を中心に単結晶または双晶が成長し、領域3
以外からの核発生および成長は抑えられた。
Otherwise, when a Si layer is deposited in the same manner as in Example 1, single crystals or twin crystals grow around the nucleation region 3, and the region 3
Nuclei generation and growth from other sources were suppressed.

[発明の効果] 以上説明したように、本発明によれば、非核形成面に絶
縁性が良好で熱伝導性の良好な無機非酸化物を選択した
ことにより、放熱性が良好でデバイスへの実用的な応用
が容易な結晶を形成することができるという効果がある
[Effects of the Invention] As explained above, according to the present invention, by selecting an inorganic non-oxide with good insulation properties and good thermal conductivity for the non-nucleation surface, heat dissipation is good and the device is This has the effect of forming crystals that are easy to use in practical applications.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の結晶の選択成長方法を行う第一の実施
態様例を示す形成工程図、 第2図は本発明の別の結晶の選択成長方法を行う第二の
実施態様例を示す形成工程図である。 1・・・BN基板、 2・・・レジスト材またはマスク、 3・・・核形成領域、 4・・・結晶、 5・・・石英基板、 6・・・BN膜。
FIG. 1 is a formation process diagram showing a first embodiment of the selective crystal growth method of the present invention, and FIG. 2 shows a second embodiment of another crystal selective growth method of the present invention. It is a formation process diagram. DESCRIPTION OF SYMBOLS 1... BN substrate, 2... Resist material or mask, 3... Nucleation region, 4... Crystal, 5... Quartz substrate, 6... BN film.

Claims (1)

【特許請求の範囲】[Claims]  熱伝導性と絶縁性を有する無機非酸化物からなり、か
つ核形成密度の小さい非核形成面(S_N_D_S)と
、単一核のみ結晶成長するのに充分小さい面積を有し、
かつ該非核形成面(S_N_D_S)の核形成密度(N
D_S)より大きな核形成密度(ND_L)とを有する
核形成面(S_N_D_L)に、結晶形成処理を施して
、前記単一核より単結晶を成長させることを特徴とする
結晶の選択成長方法。
It is made of an inorganic non-oxide having thermal conductivity and insulation, and has a non-nucleation surface (S_N_D_S) with a low nucleation density and a sufficiently small area for crystal growth of only a single nucleus,
and the nucleation density (N
A method for selectively growing a crystal, characterized in that a crystal formation treatment is performed on a nucleation surface (S_N_D_L) having a nucleation density (ND_L) greater than D_S) to grow a single crystal from the single nucleus.
JP7352687A 1987-03-27 1987-03-27 Method for selectively growing crystal Pending JPS63239190A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7352687A JPS63239190A (en) 1987-03-27 1987-03-27 Method for selectively growing crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7352687A JPS63239190A (en) 1987-03-27 1987-03-27 Method for selectively growing crystal

Publications (1)

Publication Number Publication Date
JPS63239190A true JPS63239190A (en) 1988-10-05

Family

ID=13520769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7352687A Pending JPS63239190A (en) 1987-03-27 1987-03-27 Method for selectively growing crystal

Country Status (1)

Country Link
JP (1) JPS63239190A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02283349A (en) * 1989-04-26 1990-11-20 Topcon Corp Ophthalmic apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02283349A (en) * 1989-04-26 1990-11-20 Topcon Corp Ophthalmic apparatus

Similar Documents

Publication Publication Date Title
AU645538B2 (en) Method for forming crystal and crystal article obtained by said method
US6270573B1 (en) Silicon carbide substrate, and method for producing the substrate, and semiconductor device utilizing the substrate
US5130103A (en) Method for forming semiconductor crystal and semiconductor crystal article obtained by said method
US5846320A (en) Method for forming crystal and crystal article obtained by said method
JPH11162850A (en) Silicon carbide substrate and its production, and semiconductor element using the same
EP0863542A3 (en) III-V epitaxial wafer production
EP0240309B1 (en) Method for forming crystal and crystal article obtained by said method
AU651568B2 (en) Method for forming crystalline deposited film
US5423286A (en) Method for forming crystal and crystal article
JPH03132016A (en) Method of forming crystal
CA1329756C (en) Method for forming crystalline deposited film
US5232862A (en) Method of fabricating a transistor having a cubic boron nitride layer
JPH04233277A (en) Transistor provided with layer of cubic boron nitride
JPS63239190A (en) Method for selectively growing crystal
CA1333248C (en) Method of forming crystals
JP2592834B2 (en) Crystal article and method for forming the same
US5254211A (en) Method for forming crystals
US5364815A (en) Crystal articles and method for forming the same
JP2592832B2 (en) Crystal formation method
Fujikawa et al. Silicon on insulator for symmetry-converted growth
JP2659745B2 (en) III-Group V compound crystal article and method of forming the same
JPH04130717A (en) Formation method of crystal
JPH01132118A (en) Preparation of semiconductor crystal and semiconductor crystal product obtained thereby
JP2522618B2 (en) Phosphorus alloyed cubic boron nitride film
JPH01723A (en) 3-Group V compound crystal article and method for forming the same