JPS63239113A - Production of superconductive material - Google Patents

Production of superconductive material

Info

Publication number
JPS63239113A
JPS63239113A JP62075372A JP7537287A JPS63239113A JP S63239113 A JPS63239113 A JP S63239113A JP 62075372 A JP62075372 A JP 62075372A JP 7537287 A JP7537287 A JP 7537287A JP S63239113 A JPS63239113 A JP S63239113A
Authority
JP
Japan
Prior art keywords
powder
cuo
mixture
molar ratio
superconducting material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62075372A
Other languages
Japanese (ja)
Inventor
Masaru Yamano
山野 大
Masao Nakao
中尾 昌夫
Masaaki Nemoto
雅昭 根本
Shingo Terakado
寺門 伸悟
Atsuo Mizukami
水上 敦夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP62075372A priority Critical patent/JPS63239113A/en
Publication of JPS63239113A publication Critical patent/JPS63239113A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide

Abstract

PURPOSE:To produce with high reproducibility a superconductive material having high critical temp. reaching a superconductive state using liquid H2, etc. by compression molding a mixture of Y2O3, BaCO3, and CuO in a specified molar ratio, sintering then in oxidizing atmosphere, and cooling slowly at an extremely small cooling rate. CONSTITUTION:Powder of Y2O3, BaCO3, and CuO are mixed in 0.2:0.6:2 proportion by molar ratio. An org. solvent such as ethanol is added to the mixture, and the mixture is stirred with a stirrer. The org. solvent is then evaporated, and the residue is ground to powder in a mortar. Obtd. powder is pressed in a metallic die under 750kgf/cm<2> molding pressure to form a pellet. The pellet is charged to an infrared furnace where it is sinterd at 1,000 deg.C while introducing O2 into the furnace, and cooled slowly thereafter with an extremely small cooling rate, (10-100 deg.C/hr, pref. 30 deg.C/hr). By this method, an aimed superconductive material constituted of Y0.6Ba0.4(CuO2)3 having a deformed perovskite structure or a similar crystal structure is obtd.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は100K<ケルビン−絶対温度)近傍で超伝導
状態に入る超伝導物質の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention relates to a method for producing a superconducting material that enters a superconducting state near 100 K<Kelvin-absolute temperature).

(ロ)従来の技術 超伝導現象はある種の導電性物質を絶対零度近傍に置い
た時にその電気抵抗値が零になるもので、現在考えられ
ている応用を列挙する。
(b) Conventional technology Superconductivity is a phenomenon in which the electrical resistance of a certain type of conductive material becomes zero when it is placed near absolute zero, and we will list the applications that are currently being considered.

(1)送電線の無損失送電、 (り核融合におけるプラズマ閉じ込め用コイル、■)リ
ニアモータカーの浮上と推進用のコイル、(荀i+を磁
推進船の推進用フィル、 (SIMRIの磁場発生と信号検出用のフィル、(e粒
子加速器のビームラインの粒子軌道調整コイルと反応粒
子の検出器、 (7)超高速コンピュータ用ジョセフソン素子、■磁気
脳波計と心磁計の微少磁気検出コイル。
(1) Lossless power transmission through power transmission lines, (Coil for plasma confinement in nuclear fusion, ■) Coil for levitation and propulsion of linear motor cars, (Propulsion filter for magnetic propulsion ships using Xun i+, (Magnetic field generation in SIMRI) Fill for signal detection, (particle trajectory adjustment coil and reaction particle detector for beam line of e-particle accelerator, (7) Josephson element for ultra-high-speed computers, minute magnetic detection coil for magnetic electroencephalogram and magnetocardiograph.

このように数多くの応用範囲が考えられるものの、上記
したように超伝導状態は絶対零度近傍に於てのみ生じる
現象であり、その温度を維持することが非常に困難で、
またそのためのコストが極めて高い。
Although many possible applications are possible, as mentioned above, the superconducting state only occurs near absolute zero, and it is extremely difficult to maintain that temperature.
Moreover, the cost for this is extremely high.

代表的な超伝導物質としては、NtzSnを挙げること
ができる。このNbmSnの臨界温度T。
A typical superconducting material is NtzSn. The critical temperature T of this NbmSn.

は18にで、そのためにNbmSnを超伝導状態に維持
するには沸点が4にの液体ヘリウムを必要とした。この
ヘリウムは我が国には殆ど資源がなく、米国の戦略物質
となっており、入手は極めて困難であった。
was 18, which required liquid helium with a boiling point of 4 to maintain NbmSn in a superconducting state. Japan has almost no resources for helium, and it has become a strategic material for the United States, making it extremely difficult to obtain.

一方、1970年代の始めにT、が23.9 Kという
Nb、Geが発見され、その後千年余り、進展は見られ
なかったが、1986年4月にIBMが、LaとBaと
CuOとの化合物がT、−30Kを示すことを発表し、
これに続いて、同年12月に東京大学がT、−37Kを
、ATTのベル研究所がT、−40Kを、そして本年の
1月に電子総合研究所がT、−54Kを記録した。この
電子総合研究所が記録した超伝導物質は、LaとSrと
CuOとの化合物とされている。この電イー総合研究所
が記録した超伝導物質を超伝導状態に維持させるには、
液体水素(沸点−20K)、或いは液体ネオン〈沸点−
27K)が用い得、超伝導が身近かなものになってきた
On the other hand, in the early 1970s, Nb and Ge with T of 23.9 K were discovered, and no progress was made for more than a thousand years, but in April 1986, IBM discovered a compound of La, Ba, and CuO. announced that it shows T, -30K,
Following this, in December of the same year, the University of Tokyo recorded T, -37K, ATT's Bell Laboratories recorded T, -40K, and in January of this year, Electronics Research Institute recorded T, -54K. The superconducting material recorded by the Electronic Research Institute is said to be a compound of La, Sr, and CuO. In order to maintain the superconducting material recorded by this Electrical Engineering Research Institute in a superconducting state,
Liquid hydrogen (boiling point -20K) or liquid neon (boiling point -
27K), and superconductivity has become more familiar.

(ハ)発明が解決しようとした問題点 ところがこの電子総合研究所が記録した超伝導物質と豊
も、非常に安価で容易に入手できる液体窒素(沸点−7
7K)では超伝導状態を得ることはできず、実用性の点
で今−歩であった。
(c) Problems that the invention was intended to solve However, the superconducting material recorded by the Electronic Research Institute was extremely cheap and easily available, such as liquid nitrogen (boiling point -7
7K), it was not possible to obtain a superconducting state, and the practicality of this method was still at a disadvantage.

(ニ)問題を解決するための手段 本発明は、Y、0.とB a COsとCuOとを混合
モル比0.2 : 0.6 : 2で混合して加圧成形
した後、酸化雰囲気中で焼結し、続いて極めて緩やかな
速度で徐冷することを特徴とした [Y +−−B a j−[Cu O−−,1,で表わ
される組成から成る超伝導物質を製造するものである。
(d) Means for solving the problem The present invention provides Y, 0. B a COs and CuO are mixed at a molar ratio of 0.2:0.6:2, pressure molded, sintered in an oxidizing atmosphere, and then slowly cooled at a very slow rate. A superconducting material having a characteristic composition represented by [Y +--B a j-[Cu O--, 1] is produced.

(ホ)作用 本発明に依れば、液体水素や液体ネオンに依って超伝導
状態に達する高い臨界温度を有する超伝導物質が11f
現性良く得ることができる。
(E) Effect According to the present invention, a superconducting material having a high critical temperature that reaches a superconducting state by liquid hydrogen or liquid neon is 11f
It can be obtained easily.

(へ)実施例 Y 1.1B a *、a(Cu Osumの場合の製
造方法を以下に詳細に記述する。
(f) Example Y 1.1B a *, a (The manufacturing method in the case of Cu Osum will be described in detail below.

■第1の工程[原料の混合並びに粉砕工程]Y、08、
B a COs並びにCuOの粉末をモル比、0.2 
: 0.6 : 2で混合し、有機溶媒、例えばエタノ
ールやメタノールを加えてスターラで攪拌する。その後
、有機溶媒を蒸発させ、乳鉢ですりつぶして粉末状にす
る。
■First step [mixing and grinding of raw materials] Y, 08,
B a COs and CuO powder at a molar ratio of 0.2
: 0.6 : 2, add an organic solvent such as ethanol or methanol, and stir with a stirrer. Thereafter, the organic solvent is evaporated and the mixture is ground into a powder in a mortar.

■第2の工程[成形工程] この粉末を1g秤量し、17mm径の金型に入れ、成形
圧力、750kgf/cm”でプレスしてペレット状に
固める。
■Second process [Molding process] Weigh 1 g of this powder, put it into a mold with a diameter of 17 mm, and press it at a molding pressure of 750 kgf/cm'' to solidify it into a pellet.

■第3の工程[焼結工程] 該工程で得たベレットを赤外線炉に入れ、酸素を流入さ
せながら1000℃で1時間、焼結を行なった後、極め
て緩やかな速度、即ち1時間に10℃〜100℃、望ま
しくは1時間に30℃の速度で徐冷擢′る。
■Third step [Sintering step] The pellet obtained in this step is placed in an infrared furnace and sintered at 1000°C for 1 hour while introducing oxygen, and then sintered at a very slow rate, i.e. 100°C per hour. ℃~100℃, preferably at a rate of 30℃ per hour.

この焼結上程は、酸素中で行なわれたが、酸化雰囲気中
であれば同じような結果が得られることが確認されてお
り、その酸化雰囲気としては、0震/N、: 1/10
〜Ox/N*:tloの範囲内にあることが望ましい。
This sintering step was carried out in oxygen, but it has been confirmed that similar results can be obtained in an oxidizing atmosphere, and the oxidizing atmosphere is 0 quakes/N: 1/10
~Ox/N*: It is desirable to be within the range of tlo.

このようにして得られた焼結化合物は、y @、−Ba
 *、a(c u o s>*で表わされる組成から成
り、変形ペロブスカイト構造、或いはそれに類似の結晶
構造を有している。
The sintered compound thus obtained is y@, -Ba
*, a(c u o s >>), and has a modified perovskite structure or a crystal structure similar thereto.

こ、)焼結化合物の温度を徐々に下げていくと、温度と
電気抵抗の関係曲線図に示すように、Tc−80にで超
伝導状態に入り、完全に電気抵抗が零になる終了温度、
Tco−50Kを記録した。
(b) When the temperature of the sintered compound is gradually lowered, it enters a superconducting state at Tc-80, as shown in the temperature-electrical resistance relationship curve, and reaches the end temperature at which the electrical resistance becomes completely zero. ,
Tco-50K was recorded.

(ト)発明の効果 本発明は以上の説明から明らかなように、一般に市販さ
れている素材の攪拌と焼結のみの簡単な工程で超伝導物
質が製造される。そして本発明に依って得られた超伝導
物質は、超伝導状態を得るのに、安価で容易に人手でき
る液体ネオンや液体水素を用いることができ、に記した
超伝導現象の各種の応用分野の実現に本発明が寄りする
ところは大きい。
(G) Effects of the Invention As is clear from the above description, the present invention allows superconducting materials to be produced by a simple process of stirring and sintering commonly available materials. In addition, the superconducting material obtained by the present invention can use liquid neon or liquid hydrogen, which can be inexpensive and easily made by hand, to obtain a superconducting state, and can be used in various application fields of the superconducting phenomenon described in . The present invention greatly contributes to the realization of this.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明超伝導物質の温度と電気抵抗との関係を示す
曲線図である。
The figure is a curve diagram showing the relationship between temperature and electrical resistance of the superconducting material of the present invention.

Claims (4)

【特許請求の範囲】[Claims] (1)Y_2O_3とBaCO_3とCuOとを混合モ
ル比0.2:0.6:2で混合して加圧成形した後、酸
化雰囲気中で焼結し、続いて極めて緩やかな速度で徐冷
することを特徴とした [Y_1_−_wBa_w]_x[CuO_4_−_z
]_yで表わされる組成から成る超伝導物質の製造方法
(1) Y_2O_3, BaCO_3, and CuO are mixed at a molar ratio of 0.2:0.6:2 and pressure-molded, then sintered in an oxidizing atmosphere, and then slowly cooled at a very slow rate. [Y_1_-_wBa_w]_x[CuO_4_-_z
] A method for producing a superconducting material having a composition represented by _y.
(2)上記焼結温度は大略1000℃近傍でその焼結時
間は約1時間であることを特徴とした特許請求の範囲第
1項記載の超伝導物質の製造方法。
(2) The method for producing a superconducting material according to claim 1, wherein the sintering temperature is approximately 1000° C. and the sintering time is about 1 hour.
(3)上記徐冷条件は、1時間に10℃〜100℃であ
ることを特徴とした特許請求の範囲第2項記載の超伝導
物質の製造方法。
(3) The method for producing a superconducting material according to claim 2, wherein the slow cooling condition is 10°C to 100°C per hour.
(4)上記酸化雰囲気は、O_2/N_2:1/10〜
O_2/N_2:1/0の範囲内にあることを特徴とし
た特許請求の範囲第1〜3項記載の超伝導物質の製造方
法。
(4) The above oxidizing atmosphere is O_2/N_2:1/10~
4. A method for producing a superconducting material according to claims 1 to 3, characterized in that O_2/N_2: is within the range of 1/0.
JP62075372A 1987-03-27 1987-03-27 Production of superconductive material Pending JPS63239113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62075372A JPS63239113A (en) 1987-03-27 1987-03-27 Production of superconductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62075372A JPS63239113A (en) 1987-03-27 1987-03-27 Production of superconductive material

Publications (1)

Publication Number Publication Date
JPS63239113A true JPS63239113A (en) 1988-10-05

Family

ID=13574311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62075372A Pending JPS63239113A (en) 1987-03-27 1987-03-27 Production of superconductive material

Country Status (1)

Country Link
JP (1) JPS63239113A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63230565A (en) * 1987-03-11 1988-09-27 インターナシヨナル・ビジネス・マシーンズ・コーポレーシヨン Superconductive substance
JPS63248723A (en) * 1987-03-17 1988-10-17 コンパニイ・ジエネラル・デレクトリシテ Superconductive oxide of copper with mixed atomic values and manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63230565A (en) * 1987-03-11 1988-09-27 インターナシヨナル・ビジネス・マシーンズ・コーポレーシヨン Superconductive substance
JPS63248723A (en) * 1987-03-17 1988-10-17 コンパニイ・ジエネラル・デレクトリシテ Superconductive oxide of copper with mixed atomic values and manufacture

Similar Documents

Publication Publication Date Title
JPH02502903A (en) Superconductivity in rectangular planar compound systems
JPH01286902A (en) Production of oxide superconductor
Akihama et al. Fabrication of multifilamentary Nb-Al by a powder metallurgy process
KR970001525B1 (en) Superconductivity in square-planar compound systems
JPS63222068A (en) Device and system based on novel superconductive material
JPH0259465A (en) Production of oxide high temperature superconductor
JPS63239153A (en) Production of superconductive material
JPS63239113A (en) Production of superconductive material
JPS63239114A (en) Superconductive material and its production
JPS63239115A (en) Superconductive material and its production
JPS63218535A (en) Superconducting substance and its production
JP2609460B2 (en) Method for manufacturing molded body of ceramic oxide superconducting material
JP3165770B2 (en) Manufacturing method of oxide superconductor
JP2003095650A (en) MgB2-BASED SUPERCONDUCTOR HAVING HIGH CRITICAL CURRENT DENSITY AND METHOD FOR MANUFACTURING THE SAME
JP2828631B2 (en) Manufacturing method of superconducting material
JP3219563B2 (en) Metal oxide and method for producing the same
JPH0737442A (en) Oxide superconductor and preparation of superconductor thereof
JP3123893B2 (en) Method for producing RE-Ba-Cu-O-based oxide superconductor
JPH02221125A (en) Oxide superconductor and its production
JP2675998B2 (en) Manufacturing method of highly-oriented sintered compact with high grain orientation
JPH0692717A (en) Production of bi based oxiee superconductor
JPH03187902A (en) Manufacture of high temperature, superconducting substance
JPH013014A (en) Superconducting materials and their manufacturing methods
JPS63288943A (en) Production of superconducting material
Lanagan et al. SUPERCONDUCTING MATERIALS