JPS63288943A - Production of superconducting material - Google Patents

Production of superconducting material

Info

Publication number
JPS63288943A
JPS63288943A JP62123450A JP12345087A JPS63288943A JP S63288943 A JPS63288943 A JP S63288943A JP 62123450 A JP62123450 A JP 62123450A JP 12345087 A JP12345087 A JP 12345087A JP S63288943 A JPS63288943 A JP S63288943A
Authority
JP
Japan
Prior art keywords
periodic table
group
molded body
superconducting
superconducting material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62123450A
Other languages
Japanese (ja)
Inventor
Tsunehisa Kyodo
倫久 京藤
Shigeru Hirai
茂 平井
Kenichi Takahashi
謙一 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP62123450A priority Critical patent/JPS63288943A/en
Publication of JPS63288943A publication Critical patent/JPS63288943A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To produce a superconducting material having high critical temp., high purity, and uniform compsn. by exposing a molded body of fluorides of constituting elements of a superconducting material to oxidizing atmosphere and forming a specified compound oxide on the surface of the molded body. CONSTITUTION:Each fluoride or compound fluoride 3 of (A) >=one element selected from the group IIa of the periodic table, (B) >=one element selected from the group IIIa of the periodic table, and (C) >=one element of the groups Ib, IIb, IIIb, IVb, and VIIIa of the periodic table is charged to a crucible 2 mounted in a heating furnace 1. After melting and mixing the charged materials, the materials are poured into a mold 4 and cooled by allowing to stand to obtain thus a molded body of compound fluoride 3. The molded body 3 is then held in a vessel 6 mounted in a heating furnace 1 and melted by heating. The melt is extruded through a nozzle 5, then exposed to oxidizing atmosphere. Thus a compound oxide expressed by the formula (wherein 1<=w; x<=5; 1<=y<=15; 1<=z<=20) is formed on at least the surface of the molded body.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、高い超電導臨界温度を備えた超電導材を連続
的に製造することのできる新規な製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a novel production method that allows continuous production of superconducting materials with a high superconducting critical temperature.

従来の技術 超電導現象下で物質は完全な反磁性を示し、内部で有限
な定常電流が流れているにも関わらず電位差が現れなく
なる。そこで、電力損失の全くない伝送媒体としての超
電導体の各種応用が提案されている。
Conventional technology Under superconducting phenomena, materials exhibit complete diamagnetic properties, and no potential difference appears even though a finite steady-state current flows inside them. Therefore, various applications of superconductors as transmission media with no power loss have been proposed.

即ち、その応用分野は、MHD発電、電力送電、電力貯
蔵等の電力分野、或いは、磁気浮上列車、電磁気推進船
舶等の動力分野、更に、磁場、マイクロ波、放射線等の
超高感度センサとしてNMR。
That is, its application fields include power fields such as MHD generation, power transmission, and power storage, power fields such as magnetic levitation trains and electromagnetic propulsion ships, and NMR as ultra-sensitive sensors for magnetic fields, microwaves, radiation, etc. .

π中間子治療、高エネルギー物理実験装置などの計測の
分野等、極めて多くの分野を挙げることができる。
There are many fields that can be mentioned, such as pi-meson therapy, measurement fields such as high-energy physics experimental equipment, etc.

また、ジョセフソン素子に代表されるエレクトロニクス
の分野でも、単に消費電力の低減のみならず、動作の極
めて高速な素子を実現し得る技術として期待されている
Furthermore, in the field of electronics, typified by Josephson devices, this technology is expected to not only reduce power consumption but also realize devices that operate at extremely high speeds.

ところで、嘗て超電導は超低温下においてのみ観測され
る現象であった。即ち、従来の超電導材料として最も高
い超電導臨界温度Tcを有するといわれていたNb3 
Geにおいても23.2 Kという極めて低い温度が長
期間に亘って超電導臨界温度の限界とされていた。
By the way, superconductivity was once a phenomenon observed only at extremely low temperatures. That is, Nb3, which is said to have the highest superconducting critical temperature Tc among conventional superconducting materials,
Even in Ge, an extremely low temperature of 23.2 K was considered to be the limit of superconducting critical temperature for a long time.

それ故、従来は、超電導現象を実現するために、沸点が
4.2にの液体ヘリウムを用いて超電導材料をTc以下
まで冷却していた。しかしながら、液体ヘリウムの使用
は、液化設備を含めた冷却設備による技術的負担並びに
コスト的負担が極めて大きく、超電導技術の実用化への
妨げとなっていた。
Therefore, conventionally, in order to realize the superconducting phenomenon, superconducting materials have been cooled to below Tc using liquid helium with a boiling point of 4.2. However, the use of liquid helium imposes an extremely large technical burden and cost burden due to cooling equipment including liquefaction equipment, which has hindered the practical application of superconducting technology.

ところが、近年に到ってla族元素あるいはIIIa族
元素の酸化物を含む焼結体が極めて高いTcで超電導体
となり得ることが報告され、非低温超電導体による超電
導技術の実用化が俄かに促進されようとしている。既に
報告されている例では、ペロブスカイト型酸化物と類似
した結晶構造を有すると考えられる(La、 Ba) 
2CUO4あるいは〔シa。
However, in recent years, it has been reported that sintered bodies containing oxides of La group elements or IIIa group elements can become superconductors at extremely high Tc, and the practical application of superconducting technology using non-low-temperature superconductors has suddenly begun. is about to be promoted. In the examples that have already been reported, it is thought that they have a crystal structure similar to that of perovskite oxides (La, Ba)
2CUO4 or [sha.

Sr〕2cuo<等の複合酸化物が挙げられる。これら
の物質では、30乃至50にという従来に比べて飛躍的
に高いTcが観測され、更に、オルソロンピック構造等
のいわば擬似ペロブスカイト型の結晶構造を有すると考
えられるBa、 ySCuの酸化物の焼結体では70に
以上のTcも報告されている。
Examples include complex oxides such as Sr]2cuo<. In these materials, a significantly higher Tc than conventional ones of 30 to 50 was observed, and furthermore, oxides of Ba and ySCu, which are thought to have a so-called pseudo-perovskite crystal structure such as an orthorhombic structure, were observed. It has also been reported that sintered bodies have a Tc of 70 or more.

このように高い温度で超電導現象を示す材料を用いるな
らば、液体水素、液体窒素等のように人手が容易で廉価
な冷却媒体を用いることができるので、冷却のための技
術的並びにコスト的な負担なしに超電導現象を利用する
ことが可能となる。
If materials that exhibit superconductivity at such high temperatures are used, it is possible to use cooling media such as liquid hydrogen, liquid nitrogen, etc., which are easy to use and inexpensive, which reduces the technical and cost savings for cooling. It becomes possible to utilize the superconducting phenomenon without any burden.

発明が解決しようとする問題点 しかしながら、上述の如く液体窒素温度で超電導現象を
示す材料は、目下のところ焼結体とじて得られるので加
工性並びに機械的強度の点では極めて劣悪な特性を有し
ている。従って、複雑な形状の部材を作成することは実
質的に不可能である。
Problems to be Solved by the Invention However, as mentioned above, materials that exhibit superconductivity at liquid nitrogen temperatures are currently obtained as sintered bodies, which have extremely poor properties in terms of workability and mechanical strength. are doing. Therefore, it is virtually impossible to create a member with a complicated shape.

また、電力あるいは電流の電送媒体として考えた場合、
超電導材料を線材あるいはテープ材等の長尺材に加工す
ることは不可欠であるが、上述のような材料では側底伸
線加工等に耐えるものではなく、超電導技術の実用化に
おける大きな課題となっている。
Also, when considered as a transmission medium for electric power or current,
It is essential to process superconducting materials into long materials such as wire rods or tape materials, but the materials mentioned above cannot withstand processes such as side-bottom wire drawing, which poses a major challenge in the practical application of superconducting technology. ing.

そこで、本発明の目的は、上記従来技術の問題を解決し
、Tcの高い複合酸化物超電導材料の材を工業的に製造
することのできる新規な製造方法を提供することにある
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a novel manufacturing method capable of solving the problems of the prior art described above and industrially manufacturing a composite oxide superconducting material having a high Tc.

問題点を解決するための手段 即ち、本発明に従い、周期律表IIa族から選択された
1種以上である元素αと、周期律表IIa族から選択さ
れた1種以上である元素βと、周期律表Ib。
A means for solving the problem, that is, according to the present invention, an element α which is one or more types selected from Group IIa of the Periodic Table, an element β which is one or more types selected from Group IIa of the Periodic Table, Periodic table Ib.

I[b、 II[b、 IVaおよびVIIIa族から
選択された1種以上の元素Tとの、それぞれの弗化物あ
るいは複合弗化物を融解・混合した後成形し、該成形体
を酸化性雰囲気に曝すことによって、該成形体の少なく
とも表面に 一般式: Aw B)l CuyOz (但し、元素Aは周期律表IIa族から選択された1種
の元素であり、元素Bは周期律表IIIa族から選択さ
れた1種の元素であり、元素Cは周期律表Ib、IIb
、Ib、VIIIa族から選択された1種の元素であり
w、x、yXzはそれぞれ1≦W≦5.1≦X≦5、■
≦y≦15、■≦2≦20を満たす数である) で示される複合酸化物を形成することを特徴とする超電
導材の製造方法が提供される。
The respective fluorides or composite fluorides with one or more elements T selected from groups I[b, II[b, IVa and VIIIa are melted and mixed, then molded, and the molded product is placed in an oxidizing atmosphere. By exposing at least the surface of the molded body to the general formula: Aw B)l CuyOz (where element A is an element selected from group IIa of the periodic table, and element B is an element selected from group IIIa of the periodic table). One selected element, element C is Ib, IIb of the periodic table.
, Ib, and one type of element selected from the VIIIa group, and w, x, and yXz are each 1≦W≦5.1≦X≦5, ■
A method for manufacturing a superconducting material is provided, which is characterized by forming a composite oxide having the following formula: ≦y≦15, ■≦2≦20.

作用 本発明に従う超電導材の製造方法は、鋳造によって超電
導材を成形することをその主要な特徴としている。即ち
、一旦原料を溶融することによって、均一な混合と自由
な成形を実現したものである。
Function The method for manufacturing a superconducting material according to the present invention is characterized in that the superconducting material is formed by casting. That is, by once melting the raw materials, uniform mixing and free molding are achieved.

尚、本発明の特徴によれば、原料は超電導材料を形成す
る元素の弗化物あるいは複合弗化物を用いる。これは、
超電導材料を形成する■a族、IIIa族、Ib族、■
b族、■b族、IVa族、VIIIa族の各元素の酸化
物が非常に高い融点を有するため、これらを溶融して混
合すると、相対的に融点の低い金属元素あるいは酸素等
が揮散してしまい、製品の組成が変化してしまうためで
ある。この点、これら元素の弗化物は一般に融点が低く
、有効な成分制御が可能となる。
According to a feature of the present invention, a fluoride or composite fluoride of an element forming a superconducting material is used as the raw material. this is,
■A group, IIIa group, Ib group, ■ forming superconducting materials
The oxides of each element of group b, group b, group IVa, and group VIIIa have extremely high melting points, so when these are melted and mixed, metal elements with relatively low melting points, oxygen, etc. are volatilized. This is because the composition of the product changes. In this regard, fluorides of these elements generally have a low melting point, making it possible to effectively control the composition.

尚、原料融液の成形は、鋳型を用いる方法やノズルから
押し出す方法等の各種鋳造技術を適用することができる
In addition, various casting techniques such as a method using a mold or a method of extruding from a nozzle can be applied to molding the raw material melt.

こうして形成された超電導材料の構成元素弗化物の成形
体を、例えば酸素ガス等の酸化性雰囲気中に置くことに
よって、 一般式: Aw Bll Cu、 Ox(但し、元素A
は周期律表na族から選択された1種の元素であり、元
素Bは周期律表1a族から選択された1種の元素であり
、元素Cは周期律表Ib、IIb、■b、VIIIa族
から選択された1種の元素でありw、xSy、zはそれ
ぞれ1≦W≦5.1≦X≦5.1≦y≦15.1≦2≦
20を満たす数である) で示される複合酸化物超電導体を、成形体の表面に形成
することができる。尚、この工程において、酸素の反応
を促進するために、材料を加熱しておくことも好ましい
By placing the formed body of the constituent element fluoride of the superconducting material thus formed in an oxidizing atmosphere such as oxygen gas, the general formula: Aw Bll Cu, Ox (however, element A
is an element selected from group na of the periodic table, element B is an element selected from group 1a of the periodic table, and element C is an element selected from group 1a of the periodic table, and element C is an element selected from group 1a of the periodic table. w, xSy, and z are each an element selected from the group 1≦W≦5.1≦X≦5.1≦y≦15.1≦2≦
A composite oxide superconductor represented by the following formula (a number satisfying 20) can be formed on the surface of the molded body. In addition, in this step, it is also preferable to heat the material in order to promote the reaction of oxygen.

以下に実施例を挙げて本発明をより具体的に詳述するが
、以下に開示するものは本発明の一実施例に過ぎず、本
発明の技術的範囲を何ら制限するものではない。尚、以
下の記述においては、超電導臨界温度をTc 、超電導
体の電気抵抗が完全に零となる相転移の終了温度をTc
i、TcとTciとの差をΔTとして示す。
The present invention will be described in more detail with reference to examples below, but what is disclosed below is only one example of the present invention and does not limit the technical scope of the present invention in any way. In the following description, the superconducting critical temperature is Tc, and the phase transition end temperature at which the electrical resistance of the superconductor becomes completely zero is Tc.
The difference between i, Tc and Tci is indicated as ΔT.

実施例 第1図(a)並びにら)および第2図は、本実施例の操
作を補助的に説明する図である。
Embodiment FIGS. 1(a) and 2) are diagrams for supplementary explanation of the operation of this embodiment.

BaFSYFs、Cu F 2の各粉末を、各々2mo
l  :1mol  : 3molの割合で混合し、第
1図(a) l:示すように、加熱炉1内に載置したカ
ーボン坩堝2内に収容し、1000℃に加熱して原料弗
化物3を溶融した後、30分間これを維持して撹拌した
。続いて、この弗化物融液を、第1図ら)に示すように
、Auで被覆した円筒形の鋳型4に流し込み放冷した。
2 mo each of BaFSYFs and Cu F 2 powders
The raw material fluoride 3 was mixed at a ratio of 1 mol: 3 mol, placed in a carbon crucible 2 placed in a heating furnace 1, and heated to 1000°C, as shown in Figure 1(a). After melting, this was maintained and stirred for 30 minutes. Subsequently, this fluoride melt was poured into a cylindrical mold 4 coated with Au, as shown in Fig. 1 et al., and allowed to cool.

こうして得られた複合弗化物ロッド3を、加熱炉1内に
載置したノズル5を備えた容器6中に収容し、900℃
に加熱した後直径Q、 2mmのノズル5から押し出し
て線材とした。尚、ノズル5は冷却を兼ねてN2ガス気
流によって保護した。
The composite fluoride rod 3 thus obtained was placed in a container 6 equipped with a nozzle 5 placed in a heating furnace 1, and heated to 900°C.
After heating, the wire was extruded through a nozzle 5 with a diameter Q of 2 mm to obtain a wire rod. Note that the nozzle 5 was protected by a N2 gas stream for cooling.

更に、こうして得られた線材を02ガスに曝しながら9
50℃に加熱して12時間反応させた。
Furthermore, while exposing the wire thus obtained to 02 gas, 9
The mixture was heated to 50°C and reacted for 12 hours.

得られた線材を30cm切り取って、これを試料として
臨界温度Tc並びにTciの測定を行った。測定は定法
に従って試料の両端にAg導電ペーストにて電極を付け
、タラビオスタット中で一旦50Kまで冷却して電気抵
抗が完全に零になることを確認した後、温度を少しづつ
上昇させながら抵抗の変化を測定した。抵抗測定は直流
4点プローブ法で行い、温度はキャリブレーション済み
のAu(Fe) −Ag熱電対を用いて行った。
A 30 cm piece of the obtained wire was cut and used as a sample to measure the critical temperature Tc and Tci. The measurement was carried out by attaching electrodes with Ag conductive paste to both ends of the sample according to the standard method, and after cooling it to 50K in a Tarabiostat and confirming that the electrical resistance was completely zero, the resistance was increased while gradually increasing the temperature. The change in was measured. Resistance measurement was performed using a DC four-point probe method, and temperature was measured using a calibrated Au(Fe)-Ag thermocouple.

測定した結果、上述の線材は、109にのTcと81に
のTciを示した。
As a result of measurement, the above-mentioned wire showed a Tc of 109 and a Tci of 81.

また、900℃に加熱し?H2ガス中で行った熱重量測
定の結果から推察すると、この線材では表面から約10
μmまでが複合酸化物となっているものと思われる。
Also, heated to 900℃? Judging from the results of thermogravimetric measurements conducted in H2 gas, this wire has a depth of approximately 10 mm from the surface.
It is thought that the composite oxide is formed up to μm.

発明の効果 以上詳述のように、本発明による超電導材の製造方法は
、鋳造によって製造するというその特徴的な方法により
、高い臨界温度を有する超電導材料を自由な形状で形成
することができる。
Effects of the Invention As described in detail above, the method for manufacturing a superconducting material according to the present invention is capable of forming a superconducting material having a high critical temperature into a free shape due to its characteristic method of manufacturing by casting.

また、原料を弗化物として供給することによって、比較
的低い温度で鋳造を行うことができるので、金属元素等
の揮散あるいは坩堝、鋳型等の溶解による超電導材の汚
染が低減される。従って1、  不純物が少なく組成の
均一な高品質の超電導材が得られる。
Further, by supplying the raw material as a fluoride, casting can be performed at a relatively low temperature, so that contamination of the superconducting material due to volatilization of metal elements or melting of the crucible, mold, etc. is reduced. Therefore, 1. A high-quality superconducting material with a uniform composition and few impurities can be obtained.

更に、液相状態で構成元素を混合するので、組成が均一
で、密度の高い部材を得ることができる。
Furthermore, since the constituent elements are mixed in a liquid phase state, a member with a uniform composition and high density can be obtained.

このような本発明の方法は、単なる線材や板材のみなら
ず、磁気遮蔽材等の製造方法として広い範囲で応用する
ことができる。
Such a method of the present invention can be applied in a wide range of ways, not only for manufacturing wire rods and plate materials, but also for manufacturing magnetic shielding materials and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)並びに(b)および第2図は、本発明の詳
細な説明する図であり、各々の工程における操作を模式
的に描いたものである。 〔主な参照番号〕 1・・・加熱炉、 2・・・カーボン坩堝、 3・・・弗化物原料(ロッド)、 4・・・鋳型、 5・・・ノズル、 6・・・容器
FIGS. 1(a) and 1(b) and FIG. 2 are diagrams for explaining the present invention in detail, and schematically depict the operations in each step. [Main reference numbers] 1... Heating furnace, 2... Carbon crucible, 3... Fluoride raw material (rod), 4... Mold, 5... Nozzle, 6... Container

Claims (5)

【特許請求の範囲】[Claims] (1)周期律表IIa族から選択された1種以上である元
素αと、周期律表IIIa族から選択された1種以上であ
る元素βと、周期律表 I b、IIb、IIIb、IVaおよび
VIIIa族から選択された1種以上の元素γとの、それぞ
れの弗化物あるいは複合弗化物を融解・混合した後成形
し、該成形体を酸化性雰囲気に曝すことによって、該成
形体の少なくとも表面に 一般式:A_wB_xCu_yO_z (但し、元素Aは周期律表IIa族から選択された1種の
元素であり、元素Bは周期律表IIIa族から選択された
1種の元素であり、元素Cは周期律表 I b、IIb、II
Ib、VIIIa族から選択された1種の元素でありw、x
、y、zはそれぞれ1≦w≦5、1≦x≦5、1≦y≦
15、1≦z≦20を満たす数である) で示される複合酸化物を形成することを特徴とする超電
導材の製造方法。
(1) Element α, which is one or more elements selected from Group IIa of the Periodic Table, element β, which is one or more elements selected from Group IIIa of the Periodic Table, and Ib, IIb, IIIb, and IVa of the Periodic Table. and
The respective fluorides or composite fluorides with one or more elements γ selected from group VIIIa are melted and mixed, then molded, and the molded product is exposed to an oxidizing atmosphere to improve at least the surface of the molded product. General formula: A_wB_xCu_yO_z (However, element A is an element selected from group IIa of the periodic table, element B is an element selected from group IIIa of the periodic table, and element C is an element selected from group IIIa of the periodic table. Table Ib, IIb, II
One type of element selected from groups Ib and VIIIa w, x
, y, and z are respectively 1≦w≦5, 1≦x≦5, 1≦y≦
15. A method for producing a superconducting material, which comprises forming a composite oxide represented by the formula (a number satisfying 1≦z≦20).
(2)前記酸化工程において、前記成形体を加熱するこ
とを特徴とする特許請求の範囲第1項に記載の超電導材
の製造方法。
(2) The method for manufacturing a superconducting material according to claim 1, wherein in the oxidation step, the molded body is heated.
(3)前記元素αがBaであり、前記元素βがYであり
、前記元素γがCuであることを特徴とする特許請求の
範囲第1項乃至第3項の何れか1項に記載の超電導材の
連続製造方法。
(3) The element α is Ba, the element β is Y, and the element γ is Cu according to any one of claims 1 to 3. Continuous manufacturing method for superconducting materials.
(4)前記元素αがBaであり、前記元素βがLaであ
り、前記元素γがCuであることを特徴とする特許請求
の範囲第1項乃至第3項の何れか1項に記載の超電導材
の製造方法。
(4) The element α is Ba, the element β is La, and the element γ is Cu. Method for manufacturing superconducting materials.
(5)前記元素αがSrであり、前記元素βがLaであ
り、前記元素γがCuであることを特徴とする特許請求
の範囲第1項乃至第3項の何れか1項に記載の超電導材
の製造方法。
(5) The element α is Sr, the element β is La, and the element γ is Cu. Method for manufacturing superconducting materials.
JP62123450A 1987-05-20 1987-05-20 Production of superconducting material Pending JPS63288943A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62123450A JPS63288943A (en) 1987-05-20 1987-05-20 Production of superconducting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62123450A JPS63288943A (en) 1987-05-20 1987-05-20 Production of superconducting material

Publications (1)

Publication Number Publication Date
JPS63288943A true JPS63288943A (en) 1988-11-25

Family

ID=14860908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62123450A Pending JPS63288943A (en) 1987-05-20 1987-05-20 Production of superconducting material

Country Status (1)

Country Link
JP (1) JPS63288943A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63291815A (en) * 1987-05-25 1988-11-29 Nippon Cement Co Ltd Production of superconductor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63291815A (en) * 1987-05-25 1988-11-29 Nippon Cement Co Ltd Production of superconductor

Similar Documents

Publication Publication Date Title
JP2707499B2 (en) Manufacturing method of oxide superconductor
US4973574A (en) Superconducting wire and method of manufacturing the same
JP2571789B2 (en) Superconducting material and its manufacturing method
US5248656A (en) Method of making superconductor wires, or capillaries
JPS63288943A (en) Production of superconducting material
JPH013015A (en) Superconducting materials and their manufacturing methods
JP2590131B2 (en) Superconducting material
JPS63299018A (en) Manufacture of superconductive material
JPS63257125A (en) Manufacture of superconductive wire
JP2651018B2 (en) High magnetic field magnet
JPH027309A (en) Manufacture of oxide type superconductive wire
JPH01159363A (en) Production of superconducting material
JPH02221125A (en) Oxide superconductor and its production
JPS63274027A (en) Manufacture of superconductive material
JP2828631B2 (en) Manufacturing method of superconducting material
JPH0465319A (en) Production of oxide superconducting material
JPS63239153A (en) Production of superconductive material
Poeppel et al. Recent improvements in bulk properties of ceramic superconductors
JPS63285158A (en) Production of superconductive material
JPS63265853A (en) Production of superconductive material
JPH01163922A (en) Manufacture of linear superconductive material
JPS63265854A (en) Production of superconductive material
JPH01279512A (en) Manufacture of linear superconductive material
JPS63307618A (en) Manufacture of superconductive wire
JPH013009A (en) Superconducting materials and their manufacturing methods