JPS63238454A - Foreign matter inspecting apparatus - Google Patents

Foreign matter inspecting apparatus

Info

Publication number
JPS63238454A
JPS63238454A JP7153687A JP7153687A JPS63238454A JP S63238454 A JPS63238454 A JP S63238454A JP 7153687 A JP7153687 A JP 7153687A JP 7153687 A JP7153687 A JP 7153687A JP S63238454 A JPS63238454 A JP S63238454A
Authority
JP
Japan
Prior art keywords
substrate
foreign matter
pellicle
pellicle film
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7153687A
Other languages
Japanese (ja)
Other versions
JPH0623695B2 (en
Inventor
Shoichi Horiuchi
堀内 昭一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62071536A priority Critical patent/JPH0623695B2/en
Publication of JPS63238454A publication Critical patent/JPS63238454A/en
Publication of JPH0623695B2 publication Critical patent/JPH0623695B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/94Investigating contamination, e.g. dust

Abstract

PURPOSE:To detect the presence of the foreign matter on a substrate with high accuracy, by transmitting laser beam through a pellicle to perform scanning on a substrate and preliminarily measuring the transmissivity of the pellicle when the scattering beam therefrom is detected to calibrate a measured detection value. CONSTITUTION:A pellicle 1 is provided to each of two frames 2, 3 under tension and said frames are mounted on the upper and under surfaces of a substrate 4. Laser beam 7a is transmitted through the pellicle 1 from a laser beam source 5 through a mirror 6 to perform the scanning on the scanning lines Y1, Y2 of the upper surface of the substrate 4. In the same way, the laser beam 8a is transmitted through the film from the opposite side to perform scanning on the upper surface of the substrate 4 and, further, laser beams 9a, 10a are transmitted through the pellicle 1 from mutually opposite sides to perform scanning on the under surface of the substrate 4. The scattering beams from the substrate 4 are transmitted through the pellicle 1 to be received by photoelectric elements 11-14 and foreign matter is detected from the change of the scattering beams. At this time, the transmissivity of the pellicle is preliminarily measured and the detected value of the substrate 4 is calibrated on the basis of said transmissivity. Since the detection value is calibrated, foreign matter can be detected with high reliability even when the thickness of the pellicle 1 is non-uniform.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は異物検査装置に係り、特にペリクル膜を装着し
た状態のレティクルまたはマスクなどの基板表面に付着
した異物の有無を検査するのに好適な異物検査装置に関
するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a foreign matter inspection device, and is particularly suitable for inspecting the presence or absence of foreign matter adhering to the surface of a substrate such as a reticle or mask with a pellicle film attached. This invention relates to a foreign matter inspection device.

〔従来の技術〕[Conventional technology]

従来の装置は、特開昭59−82727号公報に記載の
ように、ペリクル装着状態で基板上の異物を検出するの
に有効なものであった。しかし、ペリクルの種類あるい
は膜厚のばらつきによる透過率の相異を補償する点につ
いては配慮されていなかった。なお、この種の装置に関
連するものには特開昭59−82726号公報もある。
Conventional devices, as described in Japanese Unexamined Patent Publication No. 59-82727, have been effective in detecting foreign matter on a substrate with a pellicle attached. However, no consideration was given to compensating for differences in transmittance due to variations in pellicle type or film thickness. Note that there is also Japanese Patent Application Laid-Open No. 59-82726 related to this type of device.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、ペリクルの種類あるいは膜厚のばらつ
きによる透過率の相異が補償されておらず、精度につい
て問題があった。
The above-mentioned conventional technology does not compensate for differences in transmittance due to variations in pellicle type or film thickness, and has a problem with accuracy.

本発明の目的は、ペリクルの種類あるいは膜厚のばらつ
きによる透過率の違いを補償し、高精度に異物の有無を
検査することができる異物検査装置を提供することにあ
る。
An object of the present invention is to provide a foreign matter inspection device that can compensate for differences in transmittance due to variations in pellicle type or film thickness and can inspect the presence of foreign matter with high accuracy.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、ペリクル膜を装着したレティクルあるいは
マスク等の基板を検査す乞前に、金属材料で構成された
ペリクル膜の枠あるいは基板上に形成された凹部あるい
は凸部にペリクル膜を通してレーザ光を照射して散乱光
を検出し、ペリクル膜の透過率の違いによる検出値の違
いを自動校正できるようにするとともに、露光波長領域
の短波長レーザを用いることにより透過率の低下を改善
するようにして達成するようにした。
The above purpose is to pass a laser beam through the pellicle film into the frame of the pellicle film made of metal material or into the concave or convex portions formed on the substrate before inspecting a substrate such as a reticle or mask on which the pellicle film is attached. irradiation and detect the scattered light to automatically calibrate differences in detected values due to differences in the transmittance of the pellicle film, as well as improve the decrease in transmittance by using a short wavelength laser in the exposure wavelength range. I tried to achieve it.

〔作用〕[Effect]

基板上の異物の付着の有無を検査する場合、ペリクル膜
を通してレーザ光を照射して異物からの散乱光を受光し
て異物を検査するようにしているが、ペリクル膜の種類
あるいは膜厚の違いによりレーザ光の透過率が違うので
、あらかじめペリクル膜の透過率を測定して、それによ
り基板上の異物の検出値を校正するようにしたので、高
精度で異物の有無を検査できる。
When inspecting the presence or absence of foreign matter on a substrate, a laser beam is irradiated through a pellicle film and the scattered light from the foreign matter is received to detect the foreign matter, but there are differences in the type or thickness of the pellicle film. Since the transmittance of the laser beam differs depending on the type of test, the transmittance of the pellicle film is measured in advance and the detected value of foreign matter on the substrate is calibrated using this measurement, so the presence or absence of foreign matter can be detected with high precision.

〔実施例〕〔Example〕

以下本発明を第1図〜第6図に示した実施例を用いて詳
細に説明する。
The present invention will be explained in detail below using the embodiments shown in FIGS. 1 to 6.

第1図は本発明の異物検査装置の検出系の一実施例を示
す構成図で、第1図はペリクル装着状態の基板にレーザ
光を照射し、基板上に付着した異物を検出する装置の検
出系の構成を示している。
FIG. 1 is a configuration diagram showing an embodiment of the detection system of the foreign matter inspection device of the present invention. The configuration of the detection system is shown.

第1図において、レティクルあるいはマスク等の基板4
の上面及び下面にペリクル膜(厚さ0.8基板4から数
mm〜10mm前後離して装着される。
In FIG. 1, a substrate 4 such as a reticle or a mask is shown.
A pellicle film (having a thickness of 0.8 mm is attached to the upper and lower surfaces of the substrate 4 at a distance of several mm to about 10 mm).

ここで、ペリクル膜1を用いる目的は、基板4の表面に
ごみなどの異物が付着するのを防止することと、露光の
転写ぼけによりペリクル膜1上に付着した微小異物が露
光上無害となる効果があることるよるが(ただし、同サ
イズの異物でも基板4に付着している場合は有害である
)、基板4の洗浄の不適あるいはペリクル膜1の内面に
付着している異物の落下などがあり、基板4への異物付
着の問題は以前として残っている。このことがペリクル
膜1の装着後においても基板4の異物検査を必要とする
ゆえんである。そこで図に示す如く、レーザ光源5から
発するレーザ光をガルバノミラ−6に導き、レーザ光を
7aを中心として7b〜7cの範囲に走査し、基板4の
上面でYlおよびYzの線上を走査するようにする。さ
らに同一光源5から発するレーザ光を通常の光学手段で
反対側に導き、レーザ光を8aの方向(7aとは180
度異なる方向)から基板4の上面に照射し、上記と同様
の手段で走査する。また、基板4の下面側についてもレ
ーザ光を9a及び10a方向からそれぞれ照射し、上記
と同様の手段で下面で走査する。ここでレーザ光7a、
9aは走査領域全体の半分のYL 、Yzから内側の領
域の走査を分担し、8a、10aはYt 、Yzから手
前側半分の領域の走査を分担する。
Here, the purpose of using the pellicle film 1 is to prevent foreign matter such as dust from adhering to the surface of the substrate 4, and to make minute foreign matter adhering to the pellicle film 1 harmless during exposure due to transfer blur during exposure. Although it may be effective (however, it may be harmful if foreign particles of the same size are attached to the substrate 4), cleaning of the substrate 4 may be inadequate, or foreign particles attached to the inner surface of the pellicle membrane 1 may fall. However, the problem of foreign matter adhering to the substrate 4 still remains. This is why it is necessary to inspect the substrate 4 for foreign substances even after the pellicle film 1 is attached. Therefore, as shown in the figure, the laser beam emitted from the laser light source 5 is guided to the galvanometer mirror 6, and the laser beam is scanned in the range of 7b to 7c with 7a as the center, and scans on the line Yl and Yz on the upper surface of the substrate 4. Make it. Furthermore, the laser beam emitted from the same light source 5 is guided to the opposite side by ordinary optical means, and the laser beam is directed in the direction of 8a (7a is 180
The upper surface of the substrate 4 is irradiated from different directions) and scanned by the same means as described above. Further, the lower surface side of the substrate 4 is also irradiated with laser light from the directions 9a and 10a, respectively, and the lower surface is scanned by the same means as described above. Here, the laser beam 7a,
9a is responsible for scanning the inner half of the entire scanning area from YL and Yz, and 8a and 10a is responsible for scanning the front half of the area from Yt and Yz.

一方、受光系は上面側のYl側を走査する過程で異物か
ら発生する散乱光11aを受光するための光電素子11
を配置し、Y2側を走査する過程で異物から発生する散
乱光12aを受光するための光電素子12を配置する。
On the other hand, the light receiving system includes a photoelectric element 11 for receiving scattered light 11a generated from a foreign object in the process of scanning the Yl side on the upper surface side.
and a photoelectric element 12 for receiving scattered light 12a generated from a foreign object during the scanning process on the Y2 side.

下面側の受光系についても上記と同様にYl側の散乱光
13aを光電素子13で受光し、Yl側の散乱光14a
を光電素子14で受光するように構成する。ここでレー
ザ光を基板4の上面及び下面にそれぞれ2方向から走査
し、さらに2個づつの光電素子で受光する如く構成する
理由は、ペリクル膜1の枠2及び3の影響を受けずに基
板4上の走査領域を広くとるためである。
Regarding the light receiving system on the lower surface side, the photoelectric element 13 receives the scattered light 13a on the Yl side in the same way as above, and the scattered light 14a on the Yl side is received by the photoelectric element 13.
The photoelectric element 14 is configured to receive the light. Here, the reason why the laser beam is scanned from two directions each on the upper surface and the lower surface of the substrate 4 and is configured to be received by two photoelectric elements each is that the laser beam is scanned from two directions on the upper surface and the lower surface of the substrate 4, and the laser beam is received by two photoelectric elements each. This is to widen the scanning area above 4.

以上の如く構成した検出系において、レーザ光源5は露
光波長とほぼ同波長の短波長レーザを発するものを用い
ている。ここで短波長レーザを用いる理由は次の通りで
ある。
In the detection system configured as described above, the laser light source 5 is one that emits a short wavelength laser having approximately the same wavelength as the exposure wavelength. The reason for using a short wavelength laser here is as follows.

従来の異物検査装置はべりタルのない状態のレティクル
等の異物検査を目的としており、レーザ光源はもつとも
一般的なHe −N eレーザ(波長662.8  n
m)が用いられていた。しかし本発明が目的としている
ペリクル装着状態の基板上の異物検査においては、レー
ザ光はペリクル膜1を透過して基板4上に照射し、さら
にペリクル膜1を透過した散乱光を受光しなければなら
ないため、レーザ光のペリクル膜1に対する透過率の良
否及びばらつきが異物検出能力を左右量ることになる。
The purpose of conventional foreign object inspection equipment is to inspect foreign objects such as reticles without beads, and the laser light source is a general He-Ne laser (wavelength: 662.8 nm).
m) was used. However, in inspecting foreign objects on a substrate with a pellicle attached, which is the object of the present invention, the laser beam must pass through the pellicle film 1 and irradiate the substrate 4, and the scattered light transmitted through the pellicle film 1 must be received. Therefore, the quality and dispersion of the transmittance of the laser beam through the pellicle film 1 determines the ability to detect foreign objects.

すなわち、ペリクル膜1は露光波長域(現在露光波長は
主に436nmが用いられており、露光波長域は一般に
350〜450nmである)で、光透過率が最も良くな
るように製造され、品質も均一化されているが、従来の
異物検査で使用しているレーザ波長(662,8nm 
)は露光波長域から外れているため、ペリクル膜1の透
過率が悪く、さらに品質の不均一さから透過率にばらつ
きもあり、異物検査に問題が生じていた。さらにこの波
長の相違していることが次に述べる問題点にもつながっ
ている。すなわち、基板4に付着している異物のうち、
露光波長で透明なものはウェハ上に転写されないため露
光上は無害であるから、レティクル及びマスクの異物検
査においては、このような異物は異物なしと判定するか
、有りとしても露光上無害と判定することがプロセスニ
ーズにマツチしていることになる。しかるに従来装置で
は露光波長と大きく異なる波長を用いているため、異物
の性質が様々であることも基因し、必ずしも両者の結果
が同一とはならず、露光上有害な異物を逆に異物検査で
は見逃す結果となり、異物検査本来の目的を果さなくな
る場合が生じていた。以上の問題が生ずる原因は上記説
明でも明らかな如く、異物検査装置のレーザ波長が露光
波長と太きく異なっていることにある。そこで本発明の
第1のポイントは、上記した如く異物検査装置のレーザ
波長を露光波長とほぼ同波長の短波長レーザ(例えば波
長442nmのHe−Cdレーザを用いる。)とするこ
とで上記問題点を解決するようにしたことにある。
That is, the pellicle film 1 is manufactured to have the best light transmittance in the exposure wavelength range (currently, the exposure wavelength is mainly 436 nm, and the exposure wavelength range is generally 350 to 450 nm), and the quality is also high. However, the laser wavelength (662.8 nm) used in conventional foreign object inspection is
) is out of the exposure wavelength range, so the transmittance of the pellicle film 1 is poor, and the transmittance also varies due to non-uniform quality, causing problems in foreign matter inspection. Furthermore, this difference in wavelength also leads to the problem described below. That is, among the foreign substances attached to the substrate 4,
Items that are transparent at the exposure wavelength are not transferred onto the wafer and are therefore harmless from the exposure point of view, so when inspecting reticles and masks for foreign objects, such foreign objects are determined to be absent, or even if present, are determined to be harmless from the exposure point of view. matching the process needs. However, since conventional equipment uses a wavelength that is significantly different from the exposure wavelength, the properties of the foreign particles vary, and the results are not necessarily the same. There have been cases where the result has been overlooked, and the original purpose of the foreign body inspection has not been achieved. As is clear from the above explanation, the cause of the above problem is that the laser wavelength of the foreign object inspection device is significantly different from the exposure wavelength. Therefore, the first point of the present invention is to solve the above problem by using a short wavelength laser (for example, a He-Cd laser with a wavelength of 442 nm) that is almost the same wavelength as the exposure wavelength as the laser wavelength of the foreign matter inspection device as described above. The reason is that we tried to solve the problem.

第2図及び第3図は本発明の第2のポイントを説明する
ための一実施例を示すもので、第2図は検出方式の説明
図で、第1図の検出系の一部を代表例として示しである
。また、第3図は第2図の枠2及び3を断面した状態の
第2図の捕捉説明図である。実施例の具体的な説明の前
に本発明の第2のポイントの必要性と解決方法について
説明する。
Figures 2 and 3 show an embodiment for explaining the second point of the present invention. Figure 2 is an explanatory diagram of the detection method, and is representative of a part of the detection system in Figure 1. Shown as an example. Further, FIG. 3 is an explanatory view of the capture in FIG. 2 with frames 2 and 3 in FIG. 2 cut away. Before giving a detailed explanation of the embodiments, the necessity and solution of the second point of the present invention will be explained.

ペリクル膜1の透過率のばらつきが異物検出能力を左右
することは上記本発明の第1のポイントの説明で明らか
にしたが、この透過率のばらつきのもう一つの原因にペ
リクル膜1の種類と膜厚の違いがある。現在市販されて
いるペリクルは多種類に及び使用頻度の高いものを大別
すると3種類程度となる。すなわち、レティクル用の膜
厚0.9μmのもの、レティクル用の膜厚2.9μmの
ものに特殊コーティングしたもの、さらにマスク用の膜
厚2.9μmのものである。これらの3種類について透
過率を測定すると、それぞれ10〜20%の違いがあり
、このままでは同一の異物に対して感度が異なり、異物
サイズの判定に問題が生ずる。さらにペリクル膜↓の種
類によっては膜厚ばらつきが±0.2μm と大きいも
のがあり、上記と同様の問題が生ずる。
It was made clear in the explanation of the first point of the present invention that the variation in the transmittance of the pellicle membrane 1 affects the foreign object detection ability, but another reason for the variation in transmittance is the type of the pellicle membrane 1. There are differences in film thickness. There are many types of pellicles currently on the market, and there are approximately three types of pellicles that are frequently used. That is, there is a film thickness of 0.9 μm for reticles, a film thickness of 2.9 μm for reticles coated with a special coating, and a film thickness of 2.9 μm for masks. When measuring the transmittance of these three types, there is a difference of 10 to 20%, and if this is done, the sensitivity will be different for the same foreign matter, causing a problem in determining the size of the foreign matter. Furthermore, depending on the type of pellicle film ↓, the film thickness variation may be as large as ±0.2 μm, causing the same problem as above.

以上述べた問題を解決する唯一の方法は、異物検査の前
に被検査対象であるペリクル装着状態の基板を用い、異
物検査と等価な方法で基準散乱光を発する対象にレーザ
光を照射し、その散乱光を受光し、この値をもとに装置
を自動校正することである。以下第2図及び第3図の実
施例をもとに具体的な手段を説明する。
The only way to solve the above-mentioned problems is to use a board with a pellicle attached, which is the target to be inspected, and irradiate a laser beam onto the target that emits the reference scattered light using a method equivalent to foreign matter inspection. The purpose is to receive the scattered light and automatically calibrate the device based on this value. Specific means will be explained below based on the embodiments shown in FIGS. 2 and 3.

レーザビーム7dをY1’  の位置まで走査し、ペリ
クル膜1の枠2に照射すると、第3図に示す如く枠2で
散乱光11bが発生し、光電素子11で受光される。こ
の散乱光11bの強度は、枠2の材質、形状とも一定の
ため、ペリクル膜1の透過率が一定ならば一定となる。
When the laser beam 7d is scanned to the position Y1' and irradiated onto the frame 2 of the pellicle film 1, scattered light 11b is generated in the frame 2 as shown in FIG. 3, and is received by the photoelectric element 11. Since the intensity of the scattered light 11b is constant for both the material and shape of the frame 2, it is constant if the transmittance of the pellicle film 1 is constant.

したがって、あらかじめ基準となるペリクルについて散
乱光11bの強度を求めておけば、ペリクル膜1の透過
率の違いによる散乱光強度の違いを校正できることにな
る。さらに第3図に示す如く基板4の下面側のペリクル
膜1′についてもレーザビーム9dを照射し、枠3から
散乱光13bを用い上記同様にペリクル膜1′の透過率
の違いによる散乱光強度の違いを校正することができる
Therefore, by determining the intensity of the scattered light 11b for the reference pellicle in advance, it is possible to calibrate the difference in the scattered light intensity due to the difference in transmittance of the pellicle film 1. Furthermore, as shown in FIG. 3, the pellicle film 1' on the lower surface side of the substrate 4 is also irradiated with the laser beam 9d, and the scattered light intensity is determined by the difference in transmittance of the pellicle film 1' using the scattered light 13b from the frame 3. Differences can be calibrated.

第4図、第5図に他の実施例を示す。第4図は第2図同
様のペリクル膜付基板を示すもので、基板4に凸部43
が設けられている。第5図は枠2及び3を断面した凸部
43部分の側面図である。
Other embodiments are shown in FIGS. 4 and 5. FIG. 4 shows a substrate with a pellicle film similar to that shown in FIG.
is provided. FIG. 5 is a side view of the convex portion 43 sectioned through the frames 2 and 3.

レーザビーム7eを凸部43に照射すると凸部43で散
乱光が発生し、その一部の散乱光11cが光電素子11
で受光される。この散乱光11cは凸部43の形状を一
定にしておけば、上記実施例と同様に一定強度の散乱光
とすることができる。
When the laser beam 7e is irradiated onto the convex portion 43, scattered light is generated at the convex portion 43, and a part of the scattered light 11c is transmitted to the photoelectric element 11.
The light is received by If the shape of the convex portion 43 is kept constant, this scattered light 11c can be made to have a constant intensity as in the above embodiment.

したがってあらかじめ基準となるペリクルについて散乱
光強度を求めておけば、ペリクル膜1の透過率が異なり
、散乱光11cの散乱光強度が異なってもその違いは上
記光の基準値に合わせることができ、校正が可能となる
。下側のペリクル膜1′についてもレーザビーム9eを
透明な基板4を通して凸部43に照射し、これから発す
る散乱光13cを得ることができるから、この散乱光1
3cを用いて上記と同様にペリクル膜1′の透過率の違
いによる散乱光強度の違いを校正することができる。
Therefore, if the scattered light intensity is determined in advance for a reference pellicle, even if the transmittance of the pellicle film 1 is different and the scattered light intensity of the scattered light 11c is different, the difference can be adjusted to the reference value of the light. Calibration becomes possible. Also for the lower pellicle film 1', the laser beam 9e is irradiated onto the convex portion 43 through the transparent substrate 4, and the scattered light 13c emitted from this can be obtained.
3c can be used to calibrate the difference in scattered light intensity due to the difference in transmittance of the pellicle film 1' in the same way as described above.

第6図は本発明の異物検査装置の検出回路の一実施例を
示す主要構成のブロック図である。第6図において、光
電素子11,12,13.14のアナログ信号は電気増
幅器19,20,21゜22を経てマルチプレクサ23
に入力する。マルチプレクサ23はガルバノミラ−制御
装置34から発するゲート信号(図示せず)と、基板4
を第1図のX軸方向に移動するステージの制御系(図示
せず)から発するゲート信号で動作し、基板4の上面走
査で光電素子11あるいは12を、下面走査で光電素子
13あるいは14のいずれか一つの光電素子からの信号
を通すように動作し、その出力はコンパレータ24に入
力する。コンパレータ24ではしきい値発生回路25の
出力と比較し、しきい値以上の信号を有効とし、A/D
変換器26を経て演算処理装置27に入力する。ここで
光電素子11,12,13,14に印加する電圧は高圧
電[15,16,17,1Bからそtl、fれ供給され
、その電圧は電圧制御回路28,29゜30.31で決
められ、制御指令は演算処理装置27から発せられる。
FIG. 6 is a block diagram of the main configuration of an embodiment of the detection circuit of the foreign object inspection apparatus of the present invention. In FIG. 6, the analog signals of the photoelectric elements 11, 12, 13, 14 are passed through electrical amplifiers 19, 20, 21° 22 to a multiplexer 23.
Enter. The multiplexer 23 receives a gate signal (not shown) from a galvano mirror controller 34 and a gate signal from the substrate 4.
is operated by a gate signal issued from a control system (not shown) of a stage that moves in the X-axis direction in FIG. It operates to pass a signal from one of the photoelectric elements, and its output is input to the comparator 24. The comparator 24 compares the output of the threshold generation circuit 25 and considers the signal above the threshold as valid.
The signal is inputted to an arithmetic processing unit 27 via a converter 26. Here, the voltage applied to the photoelectric elements 11, 12, 13, 14 is supplied from high-voltage electricity [15, 16, 17, 1B], and the voltage is determined by the voltage control circuit 28, 29, 30, 31. A control command is issued from the arithmetic processing unit 27.

一方、レーザビーム(図示せず)を第1図の基板4のY
軸方向に走査するガルバノミラ−6は、ガルバノミラ−
駆動装置33で駆動され、制御はガルバノミラ−制御装
置34で行われる。
On the other hand, a laser beam (not shown) is applied to Y of the substrate 4 in FIG.
The galvanometer mirror 6 that scans in the axial direction is a galvanometer mirror that scans in the axial direction.
It is driven by a drive device 33 and controlled by a galvanometer mirror control device 34.

以上のように構成した実施例の動作を次に説明する。基
板4に装置の校正標準となるペリクル膜1.1′を装着
し、レーザビームを7d、9dの如くペリクル膜1,1
′の枠2,3に照射して得られた散乱光11b及び13
bをペリクル膜1及び1′を通して検出し、その散乱光
強度を演算処理装置27に入力して記憶する。一方、異
物検査装置は上記ペリクル膜1及び1′を装置した状態
で基板4上に付着させた異物と等価な標準粒子79′ (主にポリスチレンラテックスを用いる)A校正されて
いる。次に、校正されるべき未知のペリクル膜を装着し
た被検体基板を検査するが、まず、上記の要領でペリク
ル膜の枠2,3にレーザビームを7d、9dの如く照射
し、ペリクル膜を通して散乱光11b及び13bを検出
し、上記校正用ペリクル膜での散乱光強度と比較し、上
記散乱光強度と同一となるように演算処理装置27より
補正値を電圧制御回路28,29,30,31へ入力し
、光電素子11,12,13.14の感度を補正する。
The operation of the embodiment configured as above will be explained next. A pellicle film 1.1' that serves as a calibration standard for the device is attached to the substrate 4, and the laser beam is applied to the pellicle films 1 and 1 as shown in 7d and 9d.
Scattered lights 11b and 13 obtained by irradiating frames 2 and 3 of '
b is detected through the pellicle films 1 and 1', and the intensity of the scattered light is input to the arithmetic processing unit 27 and stored. On the other hand, the foreign matter inspection device is calibrated with standard particles 79' (mainly using polystyrene latex) A equivalent to the foreign matter deposited on the substrate 4 with the pellicle films 1 and 1' installed. Next, the test substrate equipped with the unknown pellicle film to be calibrated is inspected. First, the frames 2 and 3 of the pellicle film are irradiated with a laser beam as shown in 7d and 9d in the manner described above, and the laser beam is passed through the pellicle film. The scattered lights 11b and 13b are detected and compared with the scattered light intensity at the calibration pellicle film, and a correction value is provided by the arithmetic processing unit 27 so as to be the same as the above-mentioned scattered light intensity. 31 to correct the sensitivity of the photoelectric elements 11, 12, 13, and 14.

この後、基板4上にレーザビームを走査し、異物からの
散乱光を検出すれば、ペリクル膜による感度の違いは上
記の通り校正されているので、正確に異物の検出とサイ
ズの判定をすることができる。
After this, if the laser beam is scanned over the substrate 4 and the scattered light from the foreign object is detected, the difference in sensitivity due to the pellicle film has been calibrated as described above, so the foreign object can be accurately detected and its size determined. be able to.

他の実施例に示す方法は1校正のための散乱光を得る対
象に第4図に示す基板4上の凸部43を用いる方法であ
り、上記と同様の動作で同等の効果を達成することがで
きる。
The method shown in the other embodiment is a method in which a convex portion 43 on the substrate 4 shown in FIG. Can be done.

さらにこの方法によれば1校正対象となるペリ天 クル膜を通して散乱光が得られる別手段を用い5同等の
効果が得られることは云うまでもない。
Furthermore, according to this method, it is needless to say that an effect equivalent to 5 can be obtained by using another means of obtaining scattered light through the periphery film to be calibrated.

〔発明の効果〕〔Effect of the invention〕

以上説明した本発明によれば、ペリクルの膜厚不均一あ
るいは品質のばらつき等に基因するレーザ光の透過率の
違いが異物検査毎にそれぞれ校正されるため、ペリクル
膜の蒸着状態において上記誤差要因が存在しても、常に
一定の感度で異物の検出ができるようになり、誤差要因
が全くない、信頼性の高い装置を提供できるという効果
がある。
According to the present invention described above, differences in laser light transmittance due to non-uniform film thickness or quality variations of the pellicle are calibrated for each foreign object inspection, so that the above-mentioned error factors are determined in the vapor deposition state of the pellicle film. Even if foreign matter is present, foreign matter can always be detected with a constant sensitivity, and there is an effect that a highly reliable device with no error factors can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の異物検査装置の検出系の一実施例を示
す構成図、第2図、第4図はそれぞれレーザ照射状態の
一実施例を示す説明図、第3図。 第5図はそれぞれ第2図、第4図の部分断面図、第6図
は本発明の異物検査装置の検出回路の一実施例を示す主
要構成のブロック図である。 1.1′・・・ペリクル膜、2,3・・・枠、4・・・
基板、5・・・レーザ光源、6・・・ガルバノミラ−1
11〜14・・・光電素子、15〜18・・・高圧電源
、19〜22・・・電圧増幅器、23・・・マルチプレ
クサ、24・・・コンパレータ、25・・・しきい値発
生回路、26・・・A/D変換器、27・・・演算処理
装置、28〜31・・・電圧制御回路、33・・・ガル
バノミラ−駆動率 1  国 δ l 、Nリクル繰 2.5・・・秤 第 2 口 第 3 口 Y改 1′・・公りフル喚 第S 口
FIG. 1 is a configuration diagram showing an embodiment of a detection system of a foreign object inspection apparatus according to the present invention, FIGS. 2 and 4 are explanatory diagrams showing an embodiment of a laser irradiation state, and FIG. FIG. 5 is a partial sectional view of FIGS. 2 and 4, respectively, and FIG. 6 is a block diagram of the main components showing an embodiment of the detection circuit of the foreign object inspection apparatus of the present invention. 1.1'... Pellicle membrane, 2,3... Frame, 4...
Substrate, 5... Laser light source, 6... Galvano mirror 1
11-14... Photoelectric element, 15-18... High voltage power supply, 19-22... Voltage amplifier, 23... Multiplexer, 24... Comparator, 25... Threshold generation circuit, 26 ...A/D converter, 27... Arithmetic processing unit, 28-31... Voltage control circuit, 33... Galvano mirror drive rate 1 country δ l, N recycle 2.5... scale 2nd mouth 3rd mouth Y modified 1'... public full summons S mouth

Claims (1)

【特許請求の範囲】 1、枠にペリクル膜を形成した異物付着防止手段を基板
に装着した状態で前記ペリクル膜を透過して前記基板上
に光ビームを走査して前記基板上に付着した異物からの
散乱光に基づいて前記異物を検出する装置において、前
記光ビームを前記ペリクル膜を透過して前記ペリクル膜
を形成した枠に照射し、前記枠から発する散乱光を前記
ペリクル膜を通して検出し、前記ペリクル膜の前記光ビ
ームの透過率の違いを求めて前記基板上に付着した異物
の検出値を校正する構成としたことを特徴とする異物検
査装置。 2、前記光ビームの波長が露光波長の近傍にある特許請
求の範囲第1項記載の異物検査装置。 3、枠にペリクル膜を形成した異物付着防止手段を基板
に装着した状態で前記ペリクル膜を透過して前記基板上
に光ビームを走査して前記基板上に付着した異物からの
散乱光に基づいて前記異物を検出する装置において、前
記光ビームを前記ペリクル膜を透過して前記基板上に設
けてある凹部あるいは凸部に照射し、前記凹部あるいは
凸部から発する散乱光を前記ペリクル膜を通して検出し
、前記ペリクル膜の前記光ビームの透過率の違いを求め
て前記基板上に付着した異物の検出値を校正する構成と
したことを特徴とする異物検査装置。 4、前記光ビームの波長が露光波長の近傍にある特許請
求の範囲第3項記載の異物検査装置。
[Scope of Claims] 1. With a foreign matter adhesion prevention means in which a pellicle film is formed on a frame attached to a substrate, a light beam is transmitted through the pellicle film and scanned onto the substrate to remove foreign matter adhering to the substrate. In the apparatus for detecting the foreign object based on scattered light from the pellicle film, the light beam is transmitted through the pellicle film and irradiated onto a frame on which the pellicle film is formed, and the scattered light emitted from the frame is detected through the pellicle film. . A foreign matter inspection apparatus, characterized in that the foreign matter inspection apparatus is configured to calibrate a detected value of foreign matter adhering to the substrate by determining a difference in the transmittance of the light beam of the pellicle film. 2. The foreign matter inspection device according to claim 1, wherein the wavelength of the light beam is close to the exposure wavelength. 3. With a foreign matter adhesion prevention means in which a pellicle film is formed on the frame attached to the substrate, a light beam is transmitted through the pellicle film and scanned onto the substrate, and based on the scattered light from the foreign matter adhering to the substrate. In the device for detecting foreign objects, the light beam is transmitted through the pellicle film and irradiated onto a recess or a protrusion provided on the substrate, and scattered light emitted from the recess or protrusion is detected through the pellicle film. A foreign matter inspection apparatus characterized in that the detection value of foreign matter adhering to the substrate is calibrated by determining the difference in the transmittance of the light beam of the pellicle film. 4. The foreign matter inspection device according to claim 3, wherein the wavelength of the light beam is close to the exposure wavelength.
JP62071536A 1987-03-27 1987-03-27 Foreign matter inspection method Expired - Lifetime JPH0623695B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62071536A JPH0623695B2 (en) 1987-03-27 1987-03-27 Foreign matter inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62071536A JPH0623695B2 (en) 1987-03-27 1987-03-27 Foreign matter inspection method

Publications (2)

Publication Number Publication Date
JPS63238454A true JPS63238454A (en) 1988-10-04
JPH0623695B2 JPH0623695B2 (en) 1994-03-30

Family

ID=13463559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62071536A Expired - Lifetime JPH0623695B2 (en) 1987-03-27 1987-03-27 Foreign matter inspection method

Country Status (1)

Country Link
JP (1) JPH0623695B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60237347A (en) * 1984-05-11 1985-11-26 Nippon Kogaku Kk <Nikon> Apparatus for inspecting foreign matter
JPS61162737A (en) * 1985-01-11 1986-07-23 Hitachi Ltd Checking method of performance for foreign matter inspection device
JPS62261033A (en) * 1986-05-06 1987-11-13 Mitsubishi Electric Corp Light transmission factor measuring apparatus for pericle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60237347A (en) * 1984-05-11 1985-11-26 Nippon Kogaku Kk <Nikon> Apparatus for inspecting foreign matter
JPS61162737A (en) * 1985-01-11 1986-07-23 Hitachi Ltd Checking method of performance for foreign matter inspection device
JPS62261033A (en) * 1986-05-06 1987-11-13 Mitsubishi Electric Corp Light transmission factor measuring apparatus for pericle

Also Published As

Publication number Publication date
JPH0623695B2 (en) 1994-03-30

Similar Documents

Publication Publication Date Title
JP3183046B2 (en) Foreign particle inspection apparatus and method for manufacturing semiconductor device using the same
JP3253177B2 (en) Surface condition inspection device
JPH0815169A (en) Foreign matter inspection apparatus and manufacture of semiconductor device using the same
US5717198A (en) Pellicle reflectivity monitoring system having means for compensating for portions of light reflected by the pellicle
JPH0792096A (en) Foreign matter inspection device, and manufacture of exposing device and device with it
JPH0518889A (en) Method and device for inspecting foreign matter
JPH056929A (en) Method and apparatus for foreign body inspection on wafer
JPS61260632A (en) Foreign matter detector
JPS63238454A (en) Foreign matter inspecting apparatus
JPS6345541A (en) Method and instrument for inspection
JPH11201743A (en) Method for inspecting foreign matter and defect, and its device
JPS63193041A (en) Apparatus for inspecting foreign matter
JPH04291347A (en) Mask protective device
JPS63103951A (en) Dust inspection device
JPH07128250A (en) Foreign matter inspection device for photomask for manufacturing semiconductor device
JPH01185434A (en) Inspection of foreign matter on mask for x-ray exposure
JP3159271B2 (en) Foreign matter inspection method and apparatus
JPH03153255A (en) Photomask and manufacture of semiconductor device
JPS62134647A (en) Foreign matter checking device
JPH03217843A (en) Foreign matter inspecting device
JP2830430B2 (en) Foreign matter inspection device
JPH02216034A (en) Method for apparatus for detecting foreign matter and dust
JP3099451B2 (en) Foreign matter inspection device
JP2709946B2 (en) Foreign matter inspection method and foreign matter inspection device
US5675409A (en) Plate holder for a surface inspection system