JPS63237840A - Surface machining control device - Google Patents

Surface machining control device

Info

Publication number
JPS63237840A
JPS63237840A JP6838487A JP6838487A JPS63237840A JP S63237840 A JPS63237840 A JP S63237840A JP 6838487 A JP6838487 A JP 6838487A JP 6838487 A JP6838487 A JP 6838487A JP S63237840 A JPS63237840 A JP S63237840A
Authority
JP
Japan
Prior art keywords
machining
data
tool
input
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6838487A
Other languages
Japanese (ja)
Other versions
JPH0694101B2 (en
Inventor
Shoichi Odagiri
小田切 祥一
Kenji Kubota
窪田 憲治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Seiki Co Ltd
Original Assignee
Hitachi Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Seiki Co Ltd filed Critical Hitachi Seiki Co Ltd
Priority to JP6838487A priority Critical patent/JPH0694101B2/en
Publication of JPS63237840A publication Critical patent/JPS63237840A/en
Publication of JPH0694101B2 publication Critical patent/JPH0694101B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To prevent a tool from breaking, by measuring respectively a matrix division, divisionally formed on the basis of an input data, while storing in memory the ruggedness distribution of a machining surface and distributively displaying its height being classified by a machining size thus controlling a route of feeding a machining tool. CONSTITUTION:If a machining tool diameter D and workpiece dimensions XA, YA are input from an input 3, the machining original point and a number of machining blocks Xi, Yi are determined, and if a measuring robe 2 is moved, a device measures by an instruction of a CPU1 the ruggedness height H of a machining surface in every divided block of matrix shape to be stored in a memory file 5b. Next, the device, whose arithmetic processing part 6 displays a cutting size of a Z-axis is an output part as the number of cutting times while stores the size in a memory file 5c as the cutting position distribution being classified by the height, controls the route of a machining tool being based on this distribution when a machining program memory 5a is executed. In this way, the device, preventing the machining tool from breaking, enables an overload on a driving motor to be avoided and the efficient machining to be performed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はNC工作機械の制御装置に関し、特に面加工の
際加工平面上の凹凸によるうねり状態を計測し、高い山
から順に加工を行う面加工制御装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a control device for an NC machine tool, and in particular, during surface machining, it measures the undulation state due to unevenness on the machining plane, and controls the surface to be machined in order from the highest peak. It relates to a processing control device.

〔従来の技術〕[Conventional technology]

工具と被加工物であるワークの間の相対移動をNG加ニ
ブログラムに従い研削乃至切削加工作業を行うN0面加
工装置において、従来はワーク加工面上に凹凸のうねり
があっても特別の段取り等は取らずに画一的に同一手順
で加工が行われていた。一般的に加工面の凹凸のうねり
を正確に測定することは加工現場では困難であり、ワー
クの加工面の凹凸は無視されてNG加ニブログラムに編
集入力された削り加工量のままで、研削乃至は切削加工
作業が行われていた。上記のように加工作業現場におい
ては、加工工具の加工能力即ち1回の研削乃至は切削の
切込量は、該加工工具によって決まっており、この値を
NG加ニブログラムに入力しワークの最も高い位置から
順に、全加工面に対して加工を実行させるものであった
Conventionally, in N0 surface machining equipment that performs grinding or cutting operations according to a NG program with respect to the relative movement between the tool and the workpiece, no special setup is required even if there are uneven undulations on the workpiece machining surface. Processing was performed uniformly using the same procedure without removing the material. Generally, it is difficult to accurately measure the waviness of the unevenness of the machined surface at the processing site, and the unevenness of the machined surface of the workpiece is ignored and the cutting amount edited and input to the NG Niprogram is used as is. cutting work was being carried out. As mentioned above, at the machining work site, the machining capacity of the machining tool, that is, the depth of cut for one grinding or cutting, is determined by the machining tool. Machining was performed on all machining surfaces in order from the position.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし上記のような手順によって行われる、NCプログ
ラムを用いた面加工工程には改善を要する点があった。
However, the surface machining process using an NC program, which is performed according to the above procedure, has some points that require improvement.

第1には加ニブログラムに入力される加工工具の移動軌
跡は、加工する面会ての移動であり、亮い所でない所も
工具の加工移動を実行させるが、実際には、加工を行な
わないので能率が悪かった。また1回の工具移動で加工
を能率よく実行しようとすると1回の切込量の限界を起
し、実際の研削乃至は切削の面加工においては途中にあ
る凸部の山の高い部分に当った加工工具が、急激に負荷
を受ける為破損する事態を生じていた。
First, the movement trajectory of the machining tool that is input to the Kani program is the movement of the machining tool in the face of machining, and although the machining movement of the tool is executed even in areas that are not bright, in reality, machining is not performed. It was inefficient. In addition, if you try to perform machining efficiently with one tool movement, there will be a limit to the depth of cut in one time, and in actual grinding or cutting surface machining, it will hit the high part of the convex part in the middle. The machining tools were subject to sudden loads, which caused them to break.

特にセラミックス等の加工においては、このような問題
を生じていた。第2には上記のような過負荷状態のくり
返しにより該主軸軸受等の劣化を促す虞れがあった。第
3には過負荷等の原因によって加工工具の破損を生じる
ことによる作業中断が、工程を乱す原因の1つになって
いた。
Particularly in the processing of ceramics, etc., such problems have arisen. Second, there is a risk that the main shaft bearing will deteriorate due to repeated overload conditions as described above. Thirdly, work interruptions due to breakage of machining tools due to causes such as overloading have become one of the causes of disrupting the process.

本発明の目的は、上記問題点を解決して加工工具の破損
を防止して工具寿命の延長を図り、合せて主軸軸受への
過負荷を防止して、加工工具の破損による工程の乱れを
抑止することにある。
The purpose of the present invention is to solve the above-mentioned problems, prevent damage to machining tools and extend tool life, and also prevent overload on the main shaft bearing to prevent process disruption due to damage to machining tools. The purpose is to deter.

〔問題点を解決する為の手段〕[Means for solving problems]

上記問題点を解決する為の手段は、面加工するNC工作
機械において、現在加工するワーク面についてワークと
加工工具のデータを入力する入力部と、入力データに基
づいてワーク面の凹凸をマトリクス状に計測する計測手
段と、前記入力データに基づいてワーク面をマトリクス
状に区分すると共に計測されたデータを総括して演算を
行う演算処理部と、演算結果に基づく凹凸高さ加工寸法
別マトリクス分布データ、加工工具切込量データ。
The means to solve the above problems is to provide an input section for inputting workpiece and processing tool data for the workpiece surface currently being machined in an NC machine tool that performs surface machining, and to create a matrix shape for unevenness on the workpiece surface based on the input data. a calculation processing unit that divides the work surface into a matrix based on the input data and performs calculations on the measured data as a whole, and a matrix distribution by unevenness height and machining size based on the calculation results. data, processing tool depth of cut data.

加工原点位置データを記憶する記憶手段と、記憶された
データを画面に表示する出力部とを備えることである。
The present invention is to include a storage means for storing machining origin position data and an output section for displaying the stored data on a screen.

〔作用〕[Effect]

上記手段を用いることにより入力部より入力されたデー
タに基づいて、区分は作成されたマトリクス夫々を計測
し、加工面上面の凹凸のうねり状態の分布を記憶し、凹
凸の高さを加工寸法別に出力部の画面に分布表示して、
その分布状況に合わせて加工工具の送り経路を制御する
ものである。
Based on the data input from the input unit by using the above means, the classification measures each of the created matrices, stores the distribution of the undulation state of the unevenness on the upper surface of the machined surface, and calculates the height of the unevenness by processing dimension. Display the distribution on the screen of the output section,
The feed path of the machining tool is controlled according to the distribution situation.

〔実施例〕〔Example〕

以°下本発明の実施例を図面を参照して詳細に説明する
。第1図は本発明による面加工制御装置の一実施例を示
すブロック図であって、中央処理装置(以後、cpuと
呼称する)1と、加工平面の凹凸のうねりの高さを計測
する計測器2aを備えた計測手段2と、加工工具寸法や
ワーク寸法等のデータを入力するキーボード等の入力部
3とデータを出力表示するCRTディスプレイ等の出力
部4と、加ニブログラムメモリ5a以外に計測手段2に
よって計測された各種のデータを記憶する記憶手段5と
、各種データを総括して演算を行う演算処理部6とによ
って概ね構成されている。
Embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a block diagram showing an embodiment of the surface machining control device according to the present invention, which includes a central processing unit (hereinafter referred to as CPU) 1 and a device for measuring the height of the undulation of the irregularities on the machining plane. 2a, an input section 3 such as a keyboard for inputting data such as machining tool dimensions and workpiece dimensions, an output section 4 such as a CRT display for outputting and displaying data, and a non-program memory 5a. It is generally constituted by a storage means 5 that stores various data measured by the measuring means 2, and an arithmetic processing section 6 that collectively performs calculations on the various data.

計測手段2はX軸、Y軸、Z軸の3軸即ち3次元に移動
可能に駆動され、計測器2aはワーク平面上の凹凸の高
さを非接触で精密に測定することが出来る。、又測定結
果はA/D変換されて、そのまま計測データとして記憶
手段5に拡納されたり、演算処理部6に送出される。第
4図は本実施例による装置の外観斜視図を示すもので、
以下構成各部の動作方向は図に示す方向をX方向、Y方
向。
The measuring means 2 is driven to be movable in three axes, that is, the X-axis, Y-axis, and Z-axis, that is, in three dimensions, and the measuring instrument 2a can accurately measure the height of irregularities on the workpiece plane without contact. Also, the measurement results are A/D converted and stored as measurement data in the storage means 5 or sent to the arithmetic processing section 6. FIG. 4 shows an external perspective view of the device according to this embodiment.
The operating directions of each component below are the X direction and the Y direction shown in the figure.

Z方向と定める。入力部3はキーボードやテープリーグ
を備えて、出力部4はCRTディスプレイを中心に他の
出力手段も可能に拡張性を有している。
Define it as the Z direction. The input section 3 is equipped with a keyboard and tape league, and the output section 4 is expandable to include a CRT display as well as other output means.

記憶手段5は面加工のプログラムを格納した加ニブログ
ラムメモリファイル5aと、計測手段2が計測したデー
タを格納した計測データメモリファイル5bと、高さ別
切削位置分布メモリファイル5Cと、ワーク形状メモリ
ファイル5dと加工工具であるカッタの位置決めメモリ
ファイル5eとを備えており、第3図は上記高さ別切削
位置分布メモリファイル5Cの内容を出力部4のCRT
ディスプレイに表示した時の図である。図において(イ
)はワーク平面の凹凸部のうち最も高い凸部のある位置
をX、Y、2軸の座標で示したもので、第1回目の切削
加工で加工される位置座標であり、同様に第2回目、第
3回目の切削加工で加工される位置座標を示したものが
(0)と(ハ)の図である。
The storage means 5 includes a machine program memory file 5a that stores a surface machining program, a measurement data memory file 5b that stores data measured by the measurement means 2, a height-based cutting position distribution memory file 5C, and a workpiece shape. It is equipped with a memory file 5d and a positioning memory file 5e for a cutter, which is a processing tool, and FIG.
It is a diagram when displayed on a display. In the figure, (a) shows the position of the highest convex part among the concave and convex parts on the workpiece plane in terms of X, Y, and two-axis coordinates, which are the position coordinates processed in the first cutting process. Similarly, figures (0) and (c) show the position coordinates processed in the second and third cutting operations.

演算処理部6については動作手順を参照しつつ詳細に説
明する。
The arithmetic processing unit 6 will be explained in detail with reference to the operating procedure.

第2図は本実施例の動作手順を示したもので、以下フロ
ー図に従って本実施例の動作を説明する。
FIG. 2 shows the operating procedure of this embodiment, and the operation of this embodiment will be explained below according to the flowchart.

■番目〜■番目迄は計測手順と加工準備手順を示したフ
ロー図で、■番目は入力部3よりキーボードによって加
工工具の直径りが入力される。−いま加工方向をY、行
をX、・・・Xn  (X方向)に加工する場合には、
入力する加工工具の寸法はX軸方向には加工工具の直径
りを値DIとして入力し、Y軸方向には直径りに02を
マイナスした値D2を入力する。入力する加工工具の直
径りは公表値でよく、θ2は夫々切削加工に際しての削
り重ね分を見越した寸法である。
The flowcharts from ■th to ■th are flowcharts showing the measurement procedure and machining preparation procedure. -When processing in the current direction of Y and the rows of X,...Xn (X direction),
Regarding the dimensions of the machining tool to be input, the diameter of the machining tool is input as a value DI in the X-axis direction, and the value D2, which is the diameter minus 02, is input in the Y-axis direction. The diameter of the machining tool to be input may be a published value, and θ2 is a dimension that takes into account the amount of overlapping during cutting.

次にワークの寸法Xa、Yaが入力されることにより、
■番目の加工原点Xo、Yoの決定と■番目の加ニブロ
ック数X!、Ylが決定される。
Next, by inputting the dimensions Xa and Ya of the workpiece,
Determination of ■th machining origin Xo, Yo and ■th machining block number X! , Yl are determined.

尚Y方向に加工する時には、Dにθ、をマイナスした値
D1として入力しY軸方には直径りを値D+として入力
する。
When machining in the Y direction, the value D1 is inputted by subtracting θ from D, and the diameter is inputted as the value D+ in the Y-axis direction.

加ニブロック数X、、Y、は加工するワーク面をX軸、
Y軸にマトリクス状に区分けをしたブロック数であり、
該Xt個X’y’i個の各々についての凹凸のデータ即
ち2軸データの計測が行われる。
The number of machining blocks X,,Y, is the workpiece surface to be machined on the
It is the number of blocks divided into a matrix on the Y axis,
Measurement of unevenness data, that is, biaxial data, for each of the Xt and X'y'i pieces is performed.

計測プローブ2aの移動によって計測が開始される。計
測手段2の計測プローブ2aは、Y軸を1段掃引してX
軸方向へ計測する方法で、X、個×Y、個にマトリクス
状に区分されたブロック毎にCPUIの命令によって、
凹凸の高さを測定しく■番目)、記憶手段5の計測デー
タメモリファイル5bにX1個×Y1個のブロック別の
凹凸の高さ寸法HOr HIImKを格納する。
Measurement is started by moving the measurement probe 2a. The measurement probe 2a of the measurement means 2 sweeps the Y axis one step and
By the method of measuring in the axial direction, each block divided into a matrix of X pieces x Y pieces is measured by a CPU command,
The height of the unevenness is measured (■th), and the height dimension HOr HIImK of the unevenness for each block of X1×Y1 is stored in the measurement data memory file 5b of the storage means 5.

演算処理部6は上記の計測データと加工工具の最適な切
削切込量αをメモリファイルから読み出して、■番目、
■番目の演算を行い、■番目のマトリクスの全ブロック
についてのZ軸の切削寸法を、切削回数27として出力
部4のCRTディスプレイに表示するとともに、全ブロ
ックについて1回目からn回目迄の切削回数毎に加ニブ
ロックにフラグを立てて記憶手段5の高さ別切削位1分
布メモリファイル5Cに格納する。
The arithmetic processing unit 6 reads the above measurement data and the optimum cutting depth α of the processing tool from the memory file, and calculates the ■th,
The ■th calculation is performed, and the Z-axis cutting dimensions for all blocks of the ■th matrix are displayed on the CRT display of the output unit 4 as the number of cuttings 27, and the number of cuttings from the first to the nth time for all blocks is displayed. Each time, a flag is set on the cutting block and stored in the memory file 5C of the cutting position 1 distribution by height of the storage means 5.

上記高さ別切削位置分布メモリファイル5Cの3ペ一ジ
分(Z+ 、Zz、Z3)の内容を表示した見本が第3
図の(イ)、(II)l(ハ)の図である。
The sample displaying the contents of three pages (Z+, Zz, Z3) of the above-mentioned height-based cutting position distribution memory file 5C is the third sample.
(A), (II) and (C) of the figure.

以上の手順で加工するワーク平面の加工段取は完了し、
高さ別切削位置分布メモリファイル5Cは加ニブログラ
ムメモリ5aの実行時に逐次参照されて加工が行われる
。[相]番目で直径りの加工工具は加工原点Xs 、Y
oにセットされ、計測と同様にY軸を1段加工してX軸
の加工を行う。■番目〜@番目ではY軸、X軸の最初の
ブロックに切込量αを要する凸部がある時の加工工具の
移動順序を示したものである。加工工具の移動は高さ別
切削位置分布メモリファイル5Cのデータを加ニブログ
ラムメモリ5aの実行時に参照することにより、加工工
具の送りの早さは加ニブロックの1つ手前のブロック塩
は早送りで、切削加工は加工送りに選択されて能率良(
行われる。
The machining setup for the workpiece plane to be machined is completed with the above steps,
The height-based cutting position distribution memory file 5C is sequentially referenced during execution of the cutting program memory 5a to perform machining. [Phase]th diameter machining tool has machining origin Xs, Y
o is set, and the Y-axis is machined in one step and the X-axis is machined in the same way as the measurement. 2-th to @-th show the movement order of the machining tool when there is a convex portion requiring a depth of cut α in the first block of the Y-axis and the X-axis. The movement of the machining tool is performed by referring to the data in the height-based cutting position distribution memory file 5C when executing the machine program memory 5a. With rapid traverse, the cutting process is selected as machining feed, making it efficient (
It will be done.

上記のような動作手順によってワークの面加工が行われ
、加ニブロックの近傍迄は早送りで送られ、加ニブロッ
クのみが加工送りなので加工速度にロスが生じないと同
時に、加工工具にとって最適な切削量が得られるので加
工工具の破損はなくなる。
The surface of the workpiece is machined using the above operating procedure, and the workpiece is fed in rapid traverse up to the vicinity of the cutting block, and only the cutting block is fed, so there is no loss in machining speed, and at the same time, it is optimal for the processing tool. Since the amount of cutting can be obtained, there will be no damage to the machining tool.

本発明は上記実施例に限定されるものではな〈実施にあ
たっては応用され、種々の実施態様をとり得るものであ
る。本実施例では切削加工を例にしたが、研削加工によ
る面加工にも同様に適用されるし、計測手段を別の専用
計測機で行っても良い。
The present invention is not limited to the above embodiments, but may be applied in practice and may take various embodiments. In this embodiment, cutting is taken as an example, but the present invention is similarly applied to surface machining by grinding, and the measuring means may be performed using a separate dedicated measuring machine.

〔発明の効果〕〔Effect of the invention〕

以上に説明したように本発明により、第1には加工工具
は切込量不適合による破損はなくなり、工具寿命は延長
されるとともに、該面加工制御装置の駆動モータへの過
負荷を防止する。第2には工具破損等による工程の中断
・乱れはなくなり、工具の送り速度の選択によって加工
時間の合理的設定が可能となる効果を生じる。
As explained above, according to the present invention, firstly, the machining tool is not damaged due to mismatched depth of cut, the tool life is extended, and overload on the drive motor of the surface machining control device is prevented. Second, there is no interruption or disturbance in the process due to tool breakage, etc., and the machining time can be set rationally by selecting the feed rate of the tool.

【図面の簡単な説明】[Brief explanation of the drawing]

−第1図は本発明の実施例のブロック図で、第20は実
施例の動作手順を示すフロー図であり、第3図は記憶手
段に格納したメモリファイルの内容を示した図で、第4
図は本発明の実施例の外観斜視図を示したものである。 図中に符した記号は以下のものを示す。 1・・・中央処理袋π   2・・・計測手段2a・・
・計測器     3・・・入力部4・・・出力部  
    5・・・記憶手段5a・・・加ニブログラムメ
モリファイル5b・・・計測データメモリファイル 5C・・・高さ別切削位置分布メモリファイル6・・・
演算処理部 第3図
- Fig. 1 is a block diagram of an embodiment of the present invention, Fig. 20 is a flow diagram showing the operating procedure of the embodiment, Fig. 3 is a diagram showing the contents of a memory file stored in the storage means; 4
The figure shows an external perspective view of an embodiment of the present invention. Symbols in the figure indicate the following. 1... Central processing bag π 2... Measuring means 2a...
・Measuring instrument 3...Input section 4...Output section
5...Storage means 5a...Cannibal program memory file 5b...Measurement data memory file 5C...Height-based cutting position distribution memory file 6...
Arithmetic processing unit Fig. 3

Claims (1)

【特許請求の範囲】[Claims] 面加工するNC工作機械において、現在加工するワーク
面についてワークと加工工具のデータを入力する入力部
と、入力データに基づいてワーク面の凹凸をマトリクス
状に計測する計測手段と、前記入力データに基づいてワ
ーク面をマトリクス状に区分すると共に計測されたデー
タを総括して演算を行う演算処理部と、演算結果に基づ
く凹凸高さ加工寸法別マトリクス分布データ、加工工具
切込量データ、加工原点位置データを記憶する記憶手段
と、記憶されたデータを画面に表示する出力部とを備え
たことを特徴とする面加工制御装置。
An NC machine tool for surface machining includes an input unit for inputting workpiece and machining tool data regarding a workpiece surface currently being machined, a measuring means for measuring irregularities of the workpiece surface in a matrix based on the input data, and a measuring means for measuring the irregularities of the workpiece surface in a matrix based on the input data. A calculation processing unit that divides the work surface into a matrix based on the data and performs calculations on the measured data as a whole, and matrix distribution data by unevenness height machining dimension, processing tool depth of cut data, and processing origin based on the calculation results. A surface machining control device comprising: a storage means for storing position data; and an output section for displaying the stored data on a screen.
JP6838487A 1987-03-23 1987-03-23 Surface processing control device Expired - Lifetime JPH0694101B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6838487A JPH0694101B2 (en) 1987-03-23 1987-03-23 Surface processing control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6838487A JPH0694101B2 (en) 1987-03-23 1987-03-23 Surface processing control device

Publications (2)

Publication Number Publication Date
JPS63237840A true JPS63237840A (en) 1988-10-04
JPH0694101B2 JPH0694101B2 (en) 1994-11-24

Family

ID=13372175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6838487A Expired - Lifetime JPH0694101B2 (en) 1987-03-23 1987-03-23 Surface processing control device

Country Status (1)

Country Link
JP (1) JPH0694101B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010125646A1 (en) * 2009-04-28 2010-11-04 三菱電機株式会社 Work measuring method, electric discharging method, and electric discharging apparatus
DE102017119837A1 (en) 2016-09-30 2018-04-05 Komatsu Ltd. Processing system, method for manufacturing a machined article, apparatus for correcting a machining program, method for generating a corrected machining program and apparatus for controlling a machine tool
DE102017120465A1 (en) 2016-10-03 2018-04-05 Komatsu Ltd. Processing system, method for manufacturing a machined article, apparatus for correcting a machining program, method for generating a corrected machining program and apparatus for controlling a machine tool

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010125646A1 (en) * 2009-04-28 2010-11-04 三菱電機株式会社 Work measuring method, electric discharging method, and electric discharging apparatus
JP5230803B2 (en) * 2009-04-28 2013-07-10 三菱電機株式会社 Workpiece measuring method, electric discharge machining method, and electric discharge machining apparatus
US8907244B2 (en) 2009-04-28 2014-12-09 Mitsubishi Electric Corporation Work measuring method, electric discharge machining method, and electric discharge machining apparatus
DE102017119837A1 (en) 2016-09-30 2018-04-05 Komatsu Ltd. Processing system, method for manufacturing a machined article, apparatus for correcting a machining program, method for generating a corrected machining program and apparatus for controlling a machine tool
DE102017119837B4 (en) 2016-09-30 2023-08-03 Komatsu Ltd. Machining system, method of manufacturing a machined article, apparatus for correcting a machining program, method of generating a corrected machining program, and apparatus for controlling a machine tool
DE102017120465A1 (en) 2016-10-03 2018-04-05 Komatsu Ltd. Processing system, method for manufacturing a machined article, apparatus for correcting a machining program, method for generating a corrected machining program and apparatus for controlling a machine tool

Also Published As

Publication number Publication date
JPH0694101B2 (en) 1994-11-24

Similar Documents

Publication Publication Date Title
US11947332B2 (en) CAD data-based automatic operation device of machining center
US7058473B2 (en) Method and device for generation of machining program
JPH11179633A (en) Method and device for inputting and displaying structure information of machining system
KR930010590B1 (en) Tool profile automatic graphic display system
KR20050026545A (en) Tool selection method for machine tool control device, and numerically controlled lathe
EP0510204A1 (en) Method of evaluating operating accuracy in numerically controlled machine
JPS63237840A (en) Surface machining control device
JPH11224116A (en) Working information display method and device for machine tool
JP4639058B2 (en) Threading machine
JPH0457007B2 (en)
JP2002304203A (en) Nc machine tool and machining method
JPH10143213A (en) Multi-surface working machine and multi-surface working method
JP2885228B2 (en) Wire electric discharge machining method and apparatus
EP0301105A1 (en) Programming device for lathe
EP0413889B1 (en) Wire-type electrical discharge machining method and apparatus
JPH10118889A (en) Method for determining cutting condition
WO2022050254A1 (en) Waveform display device
JPS61241043A (en) Creation system of machining data
JPH08150540A (en) Interference preventing device for machine tool
JPS61257740A (en) Tool selection system
JPS61256407A (en) Numerical controller
KR100372367B1 (en) Controlling unit for machining plurality of areas of work
JPH1165633A (en) Numerical control apparatus
KR0155014B1 (en) Numerical control apparatus
KR0155739B1 (en) Tool position indication method for nc machine and modified nc machine