JPS63237588A - Laser resonator - Google Patents

Laser resonator

Info

Publication number
JPS63237588A
JPS63237588A JP62070493A JP7049387A JPS63237588A JP S63237588 A JPS63237588 A JP S63237588A JP 62070493 A JP62070493 A JP 62070493A JP 7049387 A JP7049387 A JP 7049387A JP S63237588 A JPS63237588 A JP S63237588A
Authority
JP
Japan
Prior art keywords
reflection mirror
mirror
total reflection
curvature
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62070493A
Other languages
Japanese (ja)
Inventor
Shigenori Yagi
重典 八木
Kimiharu Yasui
公治 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62070493A priority Critical patent/JPS63237588A/en
Publication of JPS63237588A publication Critical patent/JPS63237588A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising three or more reflectors

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Lasers (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To output a pulse laser beam whose beam diameter is varied very little during an oscillation period and whose mode is excellent by a method wherein an intermediate mirror is provided between a total reflection mirror and a partial reflection mirror and the curvature of the intermediate mirror is varied. CONSTITUTION:A total reflection mirror 10 and a partial reflection mirror 13 are provided on the same side of the reflecting surface of an intermediate mirror 11 so as to facilitate resonance of a laser beam 15a in a discharge tube. In this arrangement, if the curvature (or focal length) of the intermediate mirror 11 (or an intermediate lens) provided between the total reflection mirror 10 and the partial reflection mirror 13 is periodically varied between non-oscillation and oscillation, a laser pulse output can be obtained. With this constitution, a pulse laser with a stable beam mode can be obtained easily.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、パルスレーザ光を出力するレーザ共振器に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a laser resonator that outputs pulsed laser light.

【従来の技術] 第6図は例えば、「レーザ研究」第14巻(1988年
8月)第671頁〜第676頁の「可変曲率ミラー共振
器によるCO。レーザーのパルス化法」(杉浦昌巳他著
)に開示されたレーザパルス光を出力する従来のレーザ
共振器の一例を示す構成図である。
[Prior art] Figure 6 shows, for example, "CO using a variable curvature mirror resonator. Laser pulsing method" from "Laser Research" Vol. 14 (August 1988), pages 671 to 676, published by Masami Sugiura. FIG. 2 is a configuration diagram showing an example of a conventional laser resonator that outputs a laser pulsed light disclosed in A. et al.

図において、(1)はレーザ共振器の放電管であり、本
例における放雷管(1)は、内径10mm、肉厚1mm
5長さ1mのパイレックスガラスよりなる水冷二重゛答
方式である。この放電管(1)内に■方向からCo  
:N  :H−1:2ニアの混合ガスを管内2  2 
  e 気圧が22Torr、流量が毎分370cm”になるよ
うに流しておいて、さらに電極間隙に5011zの全波
整流非平滑の波高値5.2kVを印加し、電流20mA
を流して有効長900mmのグロー放電を発生させる。
In the figure, (1) is the discharge tube of the laser resonator, and the detonator (1) in this example has an inner diameter of 10 mm and a wall thickness of 1 mm.
5. It is a water-cooled double-response system made of Pyrex glass with a length of 1 m. Co is introduced into this discharge tube (1) from the ■ direction.
:N :H-1:2 near mixed gas in the pipe 2 2
e) The air pressure was 22 Torr and the flow rate was 370 cm/min, and then a full-wave rectified non-smooth wave peak value of 5.2 kV was applied to the electrode gap, and a current of 20 mA was applied.
to generate a glow discharge with an effective length of 900 mm.

このようにすると、径が5關でCW出力5Wを得た。In this way, a CW output of 5 W was obtained with 5 diameters.

なお、(2)は波長10.6μmにおける反射率が70
%であるレーザ光を出力するZn5e平面の部分反射ミ
ラー、(3)はユニモルフ素子によって曲率可変の全反
射ミラーである。この曲率可変の全反射ミラー(3)は
、直径20+nm、厚さ0.2zmのチタン酸ジルコン
酸鉛PZT−5の円形の片面に銀電極を蒸着し、。
Note that (2) has a reflectance of 70 at a wavelength of 10.6 μm.
(3) is a total reflection mirror whose curvature is variable by a unimorph element. This total reflection mirror (3) with variable curvature has a silver electrode deposited on one side of a circular PZT-5 lead zirconate titanate with a diameter of 20+ nm and a thickness of 0.2 zm.

裏面に直径27關厚さ0.3mmの真鍮円板を中心を合
わせて圧着したもので、真鍮円板の表面を研磨してミラ
ーとしたものである。いまPZTに交流電圧を印加する
と径方向に振動し、直径かわずかに伸縮する。これに電
極を接着するとこの振動はたわみ振動になるので、曲率
可変の全反射ミラー(3)として使用できる。ユニモル
フ素子はT D KのUN 27B 、P 38A 2
、共振周波数は3,8±0.IKtlzである。なお(
4)は冷却水の入口部、(5)は真空ポンプの吸引部で
ある。
A brass disk with a diameter of 27 mm and a thickness of 0.3 mm is crimped onto the back side, with the center aligned, and the surface of the brass disk is polished to form a mirror. Now, when an AC voltage is applied to PZT, it vibrates in the radial direction and expands and contracts slightly in diameter. When an electrode is attached to this, this vibration becomes a flexural vibration, so it can be used as a total reflection mirror (3) with variable curvature. The unimorph elements are TDK's UN 27B and P 38A 2.
, the resonant frequency is 3,8±0. It's IKtlz. In addition(
4) is the inlet of the cooling water, and (5) is the suction part of the vacuum pump.

第7図は第6図の原理的説明図である。<6)は曲率可
変の全反射ミラー(3)の曲率を変化させる曲率変化素
子、(7)は@方向に照射されるレーザ光、(8)はレ
ーザ媒質、Lは全反射ミラー(3)と部分反射ミラー(
2)の間隔を示している。なお、Rt 、 R2はそれ
ぞれ全反射ミラー(3)及び部分反射ミラー(2)の曲
率半径である。
FIG. 7 is a diagram explaining the principle of FIG. 6. <6) is a curvature changing element that changes the curvature of the total reflection mirror (3) with variable curvature, (7) is the laser beam irradiated in the @ direction, (8) is the laser medium, and L is the total reflection mirror (3). and partially reflective mirror (
2) shows the interval. Note that Rt and R2 are the radii of curvature of the total reflection mirror (3) and the partial reflection mirror (2), respectively.

次に動作について説明する。レーザ共振器内で共振し、
レーザ媒質(8)に蓄えられたエネルギーは、全反射ミ
ラー(3)と部分反射ミラー(2)で構成されたレーザ
共振器が発振可能状態になると、レーザ光(7)となっ
てレーザ共振器の外部口方向(凸面または平面)の状態
と、発振可能な曲率半径R1を振動させて変化させると
、発振不可能な状態から発振可能な状態に移行したとき
にパルス的なレーザ光が射出される。このレーザ光のパ
ルス幅は約10μsであり、ピーク出力は連続的な発振
の場合に比べ最高約30倍となる。
Next, the operation will be explained. resonates within the laser resonator,
When the laser resonator composed of the total reflection mirror (3) and the partial reflection mirror (2) becomes ready for oscillation, the energy stored in the laser medium (8) becomes a laser beam (7) and is emitted into the laser resonator. By vibrating and changing the state of the external opening direction (convex or flat surface) and the radius of curvature R1 that allows oscillation, a pulsed laser beam is emitted when the state changes from a state in which oscillation is not possible to a state in which oscillation is possible. Ru. The pulse width of this laser light is about 10 μs, and the peak output is about 30 times higher than that of continuous oscillation.

第8図はたとえばL=1.8mで R2w oa mの
場合に、1/R1の変化とTEMo。ビームのモード半
径W(全反射ミラー(3)の場合のTEM  と一ムの
モード半径WをW 、部分反射ミラー(2)の場合のT
EM  ビームのモード半径Wをw2とする)との関係
を示した線図である。
FIG. 8 shows, for example, the change in 1/R1 and TEMo when L=1.8m and R2w oa m. The mode radius of the beam W (TEM in the case of total reflection mirror (3) and the mode radius W of one beam is W, and T in the case of partial reflection mirror (2)
2 is a diagram showing the relationship between the mode radius W of the EM beam and the mode radius W2 of the EM beam.

[発明が解決しようとする問題店コ 上記のように構成された従来のレーザ共振器によれば、
全反射ミラー(3)の曲率半径R1を平面(1/R1−
0)を中心に振ると、発振ビームのTEM  モードの
ビーム半径W、W2が発振の期間に大きく変化し、この
ためモードが不安定となる。また発振ビームのポインテ
ィング(方向性)に対する安定性を確保するにはW≦5
m11の条件が必要であるが、この場合は曲率半径R1
の曲率の変化を大きくしなければならず、曲率変化の手
段に実用的なものが得にくいという問題があった。
[Problem to be solved by the invention] According to the conventional laser resonator configured as described above,
The radius of curvature R1 of the total reflection mirror (3) is a plane (1/R1-
0), the beam radii W and W2 of the TEM mode of the oscillation beam change greatly during the oscillation period, which causes the mode to become unstable. In addition, to ensure stability against pointing (directivity) of the oscillation beam, W≦5
The condition of m11 is required, but in this case, the radius of curvature R1
The problem is that it is difficult to obtain a practical means for changing the curvature.

本発明上記のような問題点を解決するためになされたも
ので、発振期間のビーム径変化が少なくモードの良好な
パルスレーザビームを出力できるレーザ共振器を得るこ
とを目的とする。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to obtain a laser resonator that can output a pulsed laser beam with a good mode and less change in beam diameter during the oscillation period.

[問題点を解決するための手段] 本発明は上記の目的を達成するためになされたもので、
全反射ミラーと部分反射ミラーの中間に中間ミラー(ま
たは中間レンズ)を配置し、この中間ミラー(または中
間レンズの)曲率を変化させるようにしたレーザ共振器
を提供するものである。
[Means for solving the problems] The present invention has been made to achieve the above objects, and
The present invention provides a laser resonator in which an intermediate mirror (or intermediate lens) is disposed between a total reflection mirror and a partial reflection mirror, and the curvature of the intermediate mirror (or intermediate lens) is changed.

[作用] 全反射ミラーと部分反射ミラーの中間におかれた中間ミ
ラー(または中間レンズ)の曲率(または焦点距離)を
、非発振と発振の間で周期的に変化させパルスレーザ光
を出力する。
[Operation] The curvature (or focal length) of the intermediate mirror (or intermediate lens) placed between the total reflection mirror and the partial reflection mirror is periodically changed between non-oscillation and oscillation to output pulsed laser light. .

[実施例] 第1図は本発明の実施例を示す原理的説明図である。(
lO)は平面形状の全反射ミラー、(11)は曲率可変
の凹面ミラーよりなる中間ミラー、(12)は中間ミラ
ー(11)の背面に設けられ、中間ミラー(11)の曲
率を変化させるピエゾ素子のような曲率変化素子、(1
3)はレーザ光を出力する凹面形状の部分反射ミラーで
ある。本実施例では、全反射ミラー(10)と部分反射
ミラー(13)は、中間ミラー(11)の反射面の同一
側で放電管内のレーザ光(15a)が放電管内で共振で
きる位置に配置されている。また(14)はレーザ媒質
、(15)はO方向に照射されるレーザ光である。Ll
は曲率可変の中間ミラー(11)と部分反射ミラー(1
3)との間隔、L2は中間ミラー(11)と全反射ミラ
ー(10)との間隔である。なお中間ミラー(11)の
曲率半径はRMで、中間ミラー(11)は曲率変化素子
(12)により、の付近で曲率が変化するようになって
いる。
[Embodiment] FIG. 1 is a principle explanatory diagram showing an embodiment of the present invention. (
lO) is a planar total reflection mirror, (11) is an intermediate mirror made of a concave mirror with variable curvature, and (12) is a piezoelectric element provided on the back surface of intermediate mirror (11) to change the curvature of intermediate mirror (11). A curvature-changing element such as (1
3) is a concave partially reflecting mirror that outputs laser light. In this embodiment, the total reflection mirror (10) and the partial reflection mirror (13) are arranged on the same side of the reflection surface of the intermediate mirror (11) at a position where the laser beam (15a) inside the discharge tube can resonate within the discharge tube. ing. Further, (14) is a laser medium, and (15) is a laser beam irradiated in the O direction. Ll
is an intermediate mirror (11) with variable curvature and a partially reflective mirror (1
3), L2 is the distance between the intermediate mirror (11) and the total reflection mirror (10). The radius of curvature of the intermediate mirror (11) is RM, and the curvature of the intermediate mirror (11) changes in the vicinity of by a curvature changing element (12).

上記のように構成した本発明のレーザ共振器によれば、
曲率半径がRM≦RMoのときは非発振となり、RM>
 RNoのときは発振となる。すなわち、曲率半径をR
Moの近くで周期的に変化させることによってレーザの
パルス出力を得ることができる。
According to the laser resonator of the present invention configured as described above,
When the radius of curvature is RM≦RMo, there is no oscillation, and RM>
When RNo, oscillation occurs. That is, the radius of curvature is R
The pulse output of the laser can be obtained by changing it periodically near Mo.

第2図は1 / R)、の変化に対するTEMo。モー
ドのビーム半径w (TR: (1)における半径をw
 1、P R: (2)における半径をw、MR+(5
)における半径をWMとする)の関係を計算した結果を
示す線図である。第2図の関係を算出する計算では、L
1=L2m1.8 mSR1−oam。
Figure 2 shows TEMo versus change in 1/R). Mode beam radius w (TR: Radius at (1) w
1, P R: The radius in (2) is w, MR + (5
) is a diagram illustrating the results of calculating the relationship between WM and WM. In the calculation to calculate the relationship shown in Figure 2, L
1=L2m1.8 mSR1-oam.

R−20mとした。第2図は曲率のわずかな変化への変
化)でも非発振域から発振域へ変化し、かつ、発振域に
おいては、非発振域との境界の極く狭い範囲を除けばW
 とMUMの変化は小さい、即ち出力されるビームのモ
ードの変化は小さいことを示している。さらにこの場合
、非発振域から発振域へ移行するとき、Wlの変化は大
きく′なり、W とWMの変化は小さくなる。
It was set as R-20m. Figure 2 shows that even a slight change in curvature changes from the non-oscillating region to the oscillating region, and in the oscillating region, except for a very narrow area at the boundary with the non-oscillating region, W
This shows that the changes in and MUM are small, that is, the changes in the mode of the output beam are small. Furthermore, in this case, when transitioning from the non-oscillation region to the oscillation region, the change in Wl becomes large, and the changes in W and WM become small.

第3図は本発明の他の実施例を示す原理的説明図である
。本実施例では、Wlのほぼ3倍の開口直径(6mm)
を有するアパーチャ(20)、W2のはぼ3倍の開口直
径(12mm)を有するアパーチャ(21)及びWMの
ほぼ3倍の開口直径を有するアパーチャ(23)をそれ
ぞれ全反射ミラー(10)、部分反射ミラー(13)、
中間ミラー(11)の前面に設けたちのである。従って
発振域でも1 / RM−024mより大であればアパ
ーチャ(21)、 (23)における共振器損失が大と
なり、1 / RM−0,24m−1より小であればア
パーチャ(20)における共振器損失が大となる。従っ
てたとえば1 / R−0,24m ”の位置で最も効
率よくレーザエネルギーを放出することになる。即ち、
出力されるビームのモード変化が極めて小さいパルス発
振が可能となる。第3図では(22)で示した破線が模
式的に示したそのときのビームのモードである。
FIG. 3 is a principle explanatory diagram showing another embodiment of the present invention. In this example, the opening diameter (6 mm) is approximately three times that of Wl.
an aperture (20) having an aperture diameter (12 mm) approximately three times that of W2, an aperture (23) having an aperture diameter approximately three times that of WM, and a total reflection mirror (10), respectively. reflective mirror (13),
It is provided in front of the intermediate mirror (11). Therefore, even in the oscillation range, if it is larger than 1/RM-024m, the resonator loss in the apertures (21) and (23) will be large, and if it is smaller than 1/RM-0,24m-1, the resonance in the aperture (20) will be large. Equipment loss will be large. Therefore, for example, the laser energy will be emitted most efficiently at a position of 1/R-0.24 m. That is,
Pulse oscillation with extremely small mode changes in the output beam becomes possible. In FIG. 3, the broken line (22) schematically shows the beam mode at that time.

第4図は本発明に係るミラー曲率半径装置の一例を示す
要部拡大断面図である。本発明においては中間ミラー(
11)の曲率半径を変化させる範囲が小さくても良好な
パルス発振が可能であるから、[1−早変化素子は実用
的なもので構成できる。すなわち、ピエゾ(圧電)素子
によって曲率変化素子(12)を作り、この曲率半径素
子(12)をホルダ(30)に収納する。曲率変化素子
(12)に対し電源(31)で周期的に変動する電圧を
供給すると、曲率変化素子(12)による背圧を受けて
中間ミラーク11)の曲率半径が変化しレーザ共振器の
状態が非発振域から発振域へ周期的に変化する。
FIG. 4 is an enlarged sectional view of essential parts showing an example of the mirror curvature radius device according to the present invention. In the present invention, the intermediate mirror (
Since good pulse oscillation is possible even if the range in which the radius of curvature is changed in 11) is small, the [1- rapid change element can be constructed from a practical element. That is, a curvature change element (12) is made of a piezo (piezoelectric) element, and this curvature radius element (12) is housed in a holder (30). When a periodically varying voltage is supplied to the curvature change element (12) by the power supply (31), the radius of curvature of the intermediate mirror 11) changes due to the back pressure from the curvature change element (12), changing the state of the laser resonator. changes periodically from the non-oscillating region to the oscillating region.

上記第1図、第2図の説明では部分反射ミラー(13)
を凹面、反射ミラー(10)を平面とし、Ll−L2と
したが、本発明はこれに限定するものではなく、上記以
外のレーザ共振器構成であっても、式[1]の関係を満
す付近で中間ミラーの曲率を変化する構造であればいか
なるものであってもよい。
In the explanation of FIGS. 1 and 2 above, the partial reflection mirror (13)
is a concave surface, and the reflecting mirror (10) is a flat surface, and Ll-L2 is used. However, the present invention is not limited to this, and even laser resonator configurations other than the above can satisfy the relationship of formula [1]. Any structure may be used as long as it changes the curvature of the intermediate mirror in the vicinity of the mirror.

さらに光学的には凹面鏡は凸レンズに置換可能であるこ
とを考えれば、本発明は第5図に示すように全反射ミラ
ー(10)と部分反射ミラー(13)の中間に焦点距離
可変の凸レンズよりなる中間レンズ(40)を設けたレ
ーザ共振器であってもよい。この場合中間レンズ(40
)の焦点距離fMは、となる。
Furthermore, considering that the concave mirror can be optically replaced with a convex lens, the present invention provides a variable focal length convex lens between the total reflection mirror (10) and the partial reflection mirror (13) as shown in FIG. It may also be a laser resonator provided with an intermediate lens (40). In this case, the intermediate lens (40
The focal length fM of ) is as follows.

−の式となる。The formula is −.

〔発明の効果] 以上の説明から明らかなように、本発明によれば、全反
射ミラー(10)と部分反射ミラー(13)の中間に曲
率可変のミラー(もしくはレンズ)を設け、その曲率を
周期的に変化させるようにしたので、ビームモードが安
定なパルスレーザを容易に得ることができるという顕著
な効果がある。
[Effects of the Invention] As is clear from the above description, according to the present invention, a variable curvature mirror (or lens) is provided between the total reflection mirror (10) and the partial reflection mirror (13), and the curvature is changed. Since it is changed periodically, there is a remarkable effect that a pulsed laser with a stable beam mode can be easily obtained.

【図面の簡単な説明】 第1図は本発明の実施例を示す原理的説明図、第2図は
本発明実施例の作用を説明する線図、第3図は本発明の
他の実施例を示す原理的説明図、第4図は本発明の実施
例を示す要部拡大断面図、第5図は本発明の別の実施例
を示す原理的説明図、第6図は従来のレーザ共振器の一
例を示す構成図、第7図は第6図の原理的説明図、第8
図は従来のレーザ共振器の作用の一例を示す線図である
。 (lO)・・・全反射ミラー、(11)・・・曲率可変
の中間ミラー、(12)・・・曲率変化素子、(13)
・・・部分反射ミラー、(14)・・・レーザ媒質、(
15)・・・レーザ光、(40)・・・焦点距離可変の
中間レンズ。 なお、各図中、同一符号は同−又は相当部分を示すもの
とする。 o                 Vl     
            。
[BRIEF DESCRIPTION OF THE DRAWINGS] Fig. 1 is a principle explanatory diagram showing an embodiment of the present invention, Fig. 2 is a diagram explaining the operation of the embodiment of the present invention, and Fig. 3 is another embodiment of the present invention. FIG. 4 is an enlarged sectional view of the main part showing an embodiment of the present invention. FIG. 5 is a principle explanatory diagram showing another embodiment of the present invention. FIG. 6 is a conventional laser resonance diagram. A configuration diagram showing an example of the device, Fig. 7 is a diagram explaining the principle of Fig. 6, Fig. 8
The figure is a diagram showing an example of the operation of a conventional laser resonator. (lO)... Total reflection mirror, (11)... Intermediate mirror with variable curvature, (12)... Curvature changing element, (13)
... Partial reflection mirror, (14) ... Laser medium, (
15)...Laser light, (40)...Intermediate lens with variable focal length. In each figure, the same reference numerals indicate the same or corresponding parts. o Vl
.

Claims (7)

【特許請求の範囲】[Claims] (1)全反射ミラーレーザ光を出力する部分反射ミラー
及び前記全反射ミラーと部分反射ミラーの間に置かれた
曲率半径が変化する中間ミラーを備えたレーザ共振器。
(1) Total reflection mirror A laser resonator comprising a partial reflection mirror that outputs a laser beam, and an intermediate mirror with a changing radius of curvature placed between the total reflection mirror and the partial reflection mirror.
(2)中間ミラーの曲率半径R_Mが R_M≒2[L_2(R_1−L_1)]/(R_1−
L_1−L_2)(ただし、全反射ミラー、中間ミラー
の各曲率半径をR_1、R_M、全反射ミラーと中間ミ
ラーの距離をL_2、全反射ミラーと全反射ミラーの距
離をL_1とする)である特許請求の範囲第1項記載の
レーザ共振器。
(2) The radius of curvature R_M of the intermediate mirror is R_M≒2[L_2(R_1-L_1)]/(R_1-
L_1-L_2) (However, the radius of curvature of the total reflection mirror and the intermediate mirror is R_1 and R_M, the distance between the total reflection mirror and the intermediate mirror is L_2, and the distance between the total reflection mirror and the total reflection mirror is L_1). A laser resonator according to claim 1.
(3)中間ミラーの背面に曲率変化素子としてピエゾ素
子を設けた特許請求の範囲第1項または第2項記載のレ
ーザ共振器。
(3) A laser resonator according to claim 1 or 2, wherein a piezo element is provided as a curvature changing element on the back surface of the intermediate mirror.
(4)全反射ミラー、部分反射ミラー、中間ミラーの全
面にアパーチャを設けた特許請求の範囲第1項乃至第3
項のいずれかに記載のレーザ共振器。
(4) Claims 1 to 3 in which an aperture is provided on the entire surface of the total reflection mirror, partial reflection mirror, and intermediate mirror.
The laser resonator according to any of paragraphs.
(5)全反射ミラー、レーザ光を出力する部分反射ミラ
ー及び前記全反射ミラーと部分反射ミラーの間に置かれ
、焦点距離が変化する中間レンズを備えたレーザ共振器
(5) A laser resonator that includes a total reflection mirror, a partial reflection mirror that outputs laser light, and an intermediate lens that is placed between the total reflection mirror and the partial reflection mirror and whose focal length changes.
(6)中間レンズ焦点距離f_Mが f_M≒[L_2(R_1−R_2)]/(R_1−L
_1−L_2)(ただし全反射ミラー、部分反射ミラー
の各曲率半径をR_1、R_2、全反射ミラーと中間レ
ンズの距離をL_2、中間レンズと全反射ミラーの距離
をL_1とする)である特許請求の範囲第5項記載のレ
ーザ共振器。
(6) The intermediate lens focal length f_M is f_M≒[L_2(R_1-R_2)]/(R_1-L
_1-L_2) (However, the radius of curvature of the total reflection mirror and the partial reflection mirror is R_1, R_2, the distance between the total reflection mirror and the intermediate lens is L_2, and the distance between the intermediate lens and the total reflection mirror is L_1). The laser resonator according to item 5.
(7)全反射ミラー、部分反射ミラー又は中間レンズの
前面にアパーチャを設けた特許請求の範囲第5項または
第6項記載のレーザ共振器。
(7) The laser resonator according to claim 5 or 6, wherein an aperture is provided on the front surface of the total reflection mirror, the partial reflection mirror, or the intermediate lens.
JP62070493A 1987-03-26 1987-03-26 Laser resonator Pending JPS63237588A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62070493A JPS63237588A (en) 1987-03-26 1987-03-26 Laser resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62070493A JPS63237588A (en) 1987-03-26 1987-03-26 Laser resonator

Publications (1)

Publication Number Publication Date
JPS63237588A true JPS63237588A (en) 1988-10-04

Family

ID=13433101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62070493A Pending JPS63237588A (en) 1987-03-26 1987-03-26 Laser resonator

Country Status (1)

Country Link
JP (1) JPS63237588A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6781682B1 (en) 2000-01-17 2004-08-24 Agency Of Industrial Science And Technology, Ministry Of International Trade & Industry Optical apparatus, optical apparatus adjustment method, and storage medium recorded with a processing program that executes said adjustment method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6781682B1 (en) 2000-01-17 2004-08-24 Agency Of Industrial Science And Technology, Ministry Of International Trade & Industry Optical apparatus, optical apparatus adjustment method, and storage medium recorded with a processing program that executes said adjustment method
US6879388B2 (en) 2000-01-17 2005-04-12 Agency Of Industrial Science & Technology, Ministry Of International Trade & Industry Optical apparatus, optical apparatus adjustment method, and storage medium recorded with a processing program that executes said adjustment method

Similar Documents

Publication Publication Date Title
US4847851A (en) Butt-coupled single transverse mode diode pumped laser
US5561550A (en) Wavelength conversion device including an unstable optical resonator with concave mirrors
JPH05505701A (en) gas laser
US6625194B1 (en) Laser beam generation apparatus
US5231643A (en) Optical frequency converter of bulk resonator structure
JPS63237588A (en) Laser resonator
JP2002055369A (en) Laser beam generating device
JPH05121803A (en) Semiconductor excitation solid-state laser
US5077745A (en) Mode-locked solid-state ring laser
JPH10150238A (en) Optical parametric oscillator and its designing method
JPS605578A (en) Output coupling mirror
JPH11177165A (en) Light excitation method for solid state laser
KR100360474B1 (en) Second harmonic generator
JPS62176180A (en) Solid state laser oscillator
KR100366699B1 (en) Apparatus for generating second harmonic having internal resonance type
SU556688A1 (en) Laser with internal ultrasound modulation of radiation intensity
JPH0745887A (en) Solid-state laser device, laser machining apparatus and coating method for optical fiber
JPH06350173A (en) Polarized beam and longitudinal mode control element and solid-state laser device
JPH0362581A (en) Solid-state laser equipment
JPH0637373A (en) Semiconductor laser-excited solid state laser
JPS63160293A (en) Dye laser device
JPH0645669A (en) End face excitation type solid laser
JPH05102567A (en) Solid-state laser oscillation system
JPH03178179A (en) Gas laser oscillation equipment
JPH08201862A (en) Higher harmonic laser beam generating apparatus