JPS63236938A - Method for detecting water immersion of optical fiber cable connection part - Google Patents

Method for detecting water immersion of optical fiber cable connection part

Info

Publication number
JPS63236938A
JPS63236938A JP7040387A JP7040387A JPS63236938A JP S63236938 A JPS63236938 A JP S63236938A JP 7040387 A JP7040387 A JP 7040387A JP 7040387 A JP7040387 A JP 7040387A JP S63236938 A JPS63236938 A JP S63236938A
Authority
JP
Japan
Prior art keywords
optical fiber
monitoring
water
water immersion
cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7040387A
Other languages
Japanese (ja)
Inventor
Kazuhiro Noguchi
一博 野口
Sunao Uesugi
上杉 直
Kazunobu Suzuki
和宣 鈴木
Seigo Konno
紺野 誠吾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP7040387A priority Critical patent/JPS63236938A/en
Publication of JPS63236938A publication Critical patent/JPS63236938A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/042Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point by using materials which expand, contract, disintegrate, or decompose in contact with a fluid
    • G01M3/045Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point by using materials which expand, contract, disintegrate, or decompose in contact with a fluid with electrical detection means
    • G01M3/047Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point by using materials which expand, contract, disintegrate, or decompose in contact with a fluid with electrical detection means with photo-electrical detection means, e.g. using optical fibres

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Examining Or Testing Airtightness (AREA)
  • Mechanical Coupling Of Light Guides (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

PURPOSE:To quickly detect the water immersion of a connection box by providing a branch part to an optical fiber for monitoring and inserting it into the connection box for a transmission line, and entering a light pulse from its end part and measuring the light intensity of a reflected pulse from the branch part. CONSTITUTION:The optical fiber 22 for monitoring is made to penetrate the optical fiber cable transmission line 23 and an optical fiber 25 for water immersion detection which is branched from the optical fiber 22 for monitoring is positioned in the connection box 24. Then the light pulse is entered into one end of the transmission line 23 to detect difference in reflected light intensity between the glass of the optical fiber for water immersion detection and air, and the glass and water. Namely, Fresnel reflection 31 is caused in the absence of water, but Fresnel reflection 34 is caused in case of water immersion while the reflected light intensity decreases, so the water immersion is easily detected to take a proper countermeasure to prevention against the breaking of the optical fiber due to deterioration in its strength.

Description

【発明の詳細な説明】 この発明は光ファイバケーブル接続部の浸水検出法に関
し、更に詳しくは光ファイバケーブルの接続部等の浸水
を検出し、浸水による光ファイバの強度劣化、およびそ
れに起因するファイバの破断ならびに浸水に伴なう水素
発生による光ファイバの伝送損失増加現象の発生を未然
に防止するための技術に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for detecting water intrusion in an optical fiber cable connection section, and more specifically, to detect water intrusion in an optical fiber cable connection section, etc., and to detect deterioration in the strength of an optical fiber due to water intrusion and to prevent fiber damage due to water intrusion. This invention relates to technology for preventing the occurrence of increased transmission loss in optical fibers due to hydrogen generation due to breakage and flooding of optical fibers.

〈発明の技術的背景〉 光ファイバケーブル伝送路において、光ファイバケー°
ブル又はその接続面内で内部の光ファイバに曲げ、張力
等の応力が加わった状態で浸水がおきろと、光ファイバ
表面に微小な傷があっても、それが水分によって加速さ
れ、ファイバの機械的強度が劣化し、ファイバの破断に
至る可能性がある。また、浸水によってケーブル接続面
内部の金属の腐食が起ると水素ガスが発生し、ケーブル
内部が水素ガスで満たされる。この水素ガスはファイバ
内部に侵入してファイバ損失増加の原因となるほか、フ
ァイバ内に水酸基を形成して回復不能の損失増加を引き
起こす。したがって、ケーブル内に浸水があった場合に
は、これをいち早く検知することが、こうした破断や損
失増加を防止する上で重要である。このような問題の対
策として従来は、ケーブルを気密化して、一端から窒素
ガスを圧入してケーブルの内圧を高め、外部からの浸水
を防止するとともに、万一、ケーブルあるいは接続部の
破損によって気密が破れた場合、ケーブル内圧低下によ
ってこれを検知し、ケーブルの内圧分布から、その破損
位置を推定する方式が採用されている。ケーブルに破損
が生じたときの破損位置とケーブルの内圧゛分布との関
係を示すと、第7図のごとき特性図が得られる。
<Technical Background of the Invention> In an optical fiber cable transmission line, an optical fiber cable
If water enters the optical fiber under stress such as bending or tension on the fiber or its connection surface, even if there is a minute scratch on the surface of the optical fiber, the moisture will accelerate it and damage the fiber's mechanical properties. The fiber strength may deteriorate and the fiber may break. Furthermore, when metal inside the cable connection surface corrodes due to water intrusion, hydrogen gas is generated and the inside of the cable is filled with hydrogen gas. This hydrogen gas not only invades the inside of the fiber and causes an increase in fiber loss, but also forms hydroxyl groups in the fiber, causing an irrecoverable increase in loss. Therefore, if water has entered the cable, it is important to detect it as soon as possible in order to prevent breakage and increased loss. Conventionally, as a countermeasure to this problem, the cable was made airtight and nitrogen gas was injected from one end to increase the internal pressure of the cable to prevent water from entering from the outside. If the cable breaks, this is detected by a drop in the cable's internal pressure, and the location of the break is estimated from the cable's internal pressure distribution. When the relationship between the breakage position and the cable's internal pressure distribution when the cable is damaged, a characteristic diagram as shown in FIG. 7 is obtained.

第7図中の矢印11で示した位置がケーブルの破損位置
であり、ここからガスが漏洩している。実線12がケー
ブル内圧分布を示す。
The position indicated by the arrow 11 in FIG. 7 is the cable breakage position, from which gas is leaking. A solid line 12 indicates the cable internal pressure distribution.

一般にケーブル内圧はケーブル破損位置に向かって直線
的に減少するのがわかる。したがって、ケーブル接線面
ごとに圧力センサを設置して、各接続面内の圧力を測定
すれば、ケーブル破損位置を推定することができる。
It can be seen that the cable internal pressure generally decreases linearly toward the cable breakage position. Therefore, by installing a pressure sensor on each cable tangential surface and measuring the pressure within each connection surface, the cable breakage position can be estimated.

〈発明が解決しようとする問題点〉 ところが、この方法はケーブルの破損を検知するもので
あって、ケーブル又はケーブルの接続面内の浸水を直接
検出するものではない。
<Problems to be Solved by the Invention> However, this method detects damage to the cable, and does not directly detect water intrusion within the cable or the connection surface of the cable.

また、ケーブルの細径化、光ファイバケーブル伝送路を
長尺化した場合、圧入するガスの圧力がケーブル全体に
行き渡るのに長時同梁する。さらにまた、破損が生じて
から圧力低下が検知されるまでの時間が長くなり、その
検知が遅れることに問題がある。
Furthermore, when the diameter of the cable is made smaller or the length of the optical fiber cable transmission line is made longer, the pressure of the injected gas spreads over the entire cable, but the beam remains the same for a long time. Furthermore, there is a problem in that the time from the occurrence of damage until the pressure drop is detected is long, resulting in a delay in detection.

この発明は、このようなケーブルの破断検出法の欠点を
除去し、長尺な光ファイバケーブル伝送路内の接線面に
対して、それらの中における浸水の有無を監視すること
によって、光ファイバケーブルの破断を未然に防止する
ための光ファイバケーブル接続部浸水検出法を提供しよ
うとするものである。
The present invention eliminates the drawbacks of such cable breakage detection methods, and monitors the tangential surfaces within a long optical fiber cable transmission line for the presence or absence of water intrusion. The purpose of the present invention is to provide a method for detecting water intrusion in optical fiber cable connections to prevent breakage of fiber optic cables.

く問題点を解決するための手段〉 以上の目的を達成するためのこの発明にかかる光ファイ
バケーブル接続部の浸水検出法は、監視用光ファイバを
光ファイバケーブル伝送路中を貫通させ、かつ当該光フ
ァイバケーブル伝送路中に設けた少くとも一部の接続部
筺体内に前記監視用光ファイバから分岐した少くとも一
本の浸水検出用光ファイバを設け、当該浸水検出用光フ
ァイバの端面が前記接続部筺体内に位置するように配す
ると共に、前記光ファイバケーブル伝送路の一端又は両
端部から前記監視用光ファイバに光パルスを入射せしめ
、この時浸水検出用光ファイバ端面で反射し前記監視用
光ファイバの入射端部に戻る反射光パルスの光強度を測
定し、得られた反射光パルスの光強度から浸水検出用光
ファイバが設けられた接続部筺体内部における浸水の有
無を検出することを特徴とするものである。
Means for Solving the Problems> In order to achieve the above object, the method for detecting water intrusion in an optical fiber cable connection section according to the present invention is to penetrate a monitoring optical fiber through an optical fiber cable transmission line and At least one optical fiber for water immersion detection branched from the monitoring optical fiber is provided in at least a part of the connection part housing provided in the optical fiber cable transmission line, and the end face of the optical fiber for water immersion detection is The connecting portion is arranged to be located inside the housing, and a light pulse is made to enter the monitoring optical fiber from one end or both ends of the optical fiber cable transmission path, and is reflected by the end face of the water immersion detection optical fiber to cause the monitoring measuring the light intensity of the reflected light pulse returning to the input end of the optical fiber for use in water detection, and detecting the presence or absence of water intrusion inside the connection part housing in which the optical fiber for water intrusion detection is installed from the light intensity of the obtained reflected light pulse. It is characterized by:

く作   用〉 以上説明したようにこの発明の光ファイバケーブル接続
部の浸水検出法は、光ファイバケーブル接続部函体内に
おいて光ファイバケーブル伝送路中を貫通させた監視用
光ファイバに分岐した浸水検出用光ファイバを設け、前
記光ファイバケーブル伝送路の一端から(又は両端から
でもよい)監視用光ファイバに光パルスを入射させた時
に、監視用光ファイバ端面におけるガラスと空気および
ガラスと水の界面における反射光強度の違いを検出する
ことによって接続部の浸水あるいは油等の浸入を検出し
、浸水による光ファイバの機械的強度の劣化およびそれ
に起因する光ファイバの破断、浸水に伴なう水素発生に
よる光ファイバの伝送損失の増加を未然に防止できる。
Function> As explained above, the method for detecting water intrusion in an optical fiber cable connection part of the present invention detects water intrusion branched into a monitoring optical fiber that is passed through an optical fiber cable transmission path in an optical fiber cable connection part box. When an optical fiber for monitoring is provided and a light pulse is incident on the monitoring optical fiber from one end (or both ends may be sufficient) of the optical fiber cable transmission line, the interface between glass and air and glass and water at the end face of the optical fiber for monitoring. By detecting the difference in the intensity of reflected light at the connection point, it is possible to detect the ingress of water or oil into the connection part, and to prevent the deterioration of the mechanical strength of the optical fiber due to water intrusion, the resulting breakage of the optical fiber, and the generation of hydrogen due to water intrusion. It is possible to prevent an increase in optical fiber transmission loss due to

く実 施 例〉 次に、図面を用いてこの発明の代表的な実施例について
説明する。
Embodiments Next, typical embodiments of the present invention will be described with reference to the drawings.

(実施例1) 第1図は光ファイバケーブル伝送路に本発明の光ファイ
バケーブル接続部の浸水検出法を実施するために監視用
光ファイバ、浸水検出用光ファイバおよび光パルス試験
器を配したときの状態を示す配置構成図である。
(Example 1) Figure 1 shows an optical fiber for monitoring, an optical fiber for detecting water intrusion, and an optical pulse tester arranged in an optical fiber cable transmission line in order to carry out the method of detecting water intrusion of an optical fiber cable connection part of the present invention. FIG.

図中、21は光パルス試験語、22は監視用光ファイバ
、24はケーブル接線面、25ば監視用光ファイバから
奮起した浸水検出用光ファイバであり、 第2図は、上述したケーブル接続面24内における監視
用光ファイバ22と浸水検出用光ファイバ25の配置状
態を示す模式図であり、第2図中の26は監視用光ファ
イバ22中を導波される光の一部を浸水検出用光ファイ
バ25に導くための光分岐を示す。また、浸水検出用光
ファイバ25の端面ばケーブル接続面24内のなるべく
最下部に位置するように露出させ、かつ端面が浸水検出
用光ファイバ25の中心軸に対直角にカットしたもので
ある。
In the figure, 21 is a light pulse test word, 22 is a monitoring optical fiber, 24 is a cable tangential surface, and 25 is an optical fiber for detecting water intrusion that is energized from the monitoring optical fiber. 26 is a schematic diagram showing the arrangement of the monitoring optical fiber 22 and the water immersion detection optical fiber 25 in the monitoring optical fiber 22, and 26 in FIG. 2 shows an optical branch for guiding to an optical fiber 25. In addition, the end face of the optical fiber 25 for water immersion detection is exposed so as to be located as low as possible in the cable connection surface 24, and the end face is cut perpendicular to the central axis of the optical fiber 25 for water immersion detection.

本実施例の光ファイバケーブル接続部の浸水検出法を実
施するときは、第1図および第2図に示す構成にしたが
って、光ファイバケーブル伝送路23中に監視用光ファ
イバ22を貫通させ、ケーブル接続面24内に位置する
監視用光ファイバケーブル22の分岐26に上述した浸
水検出用光ファイバ25を接続した後、ケーブルの端部
を光パルス試験語21に接続し、通常光パルス試験を行
い、監視用光ファイバ22および浸水検出用光ファイバ
25端面からの反射光強度を測定すればよい。
When carrying out the method of detecting water immersion in the optical fiber cable connection part of this embodiment, the monitoring optical fiber 22 is passed through the optical fiber cable transmission path 23 according to the configuration shown in FIG. 1 and FIG. After connecting the above-described optical fiber 25 for water immersion detection to the branch 26 of the monitoring optical fiber cable 22 located in the connection surface 24, the end of the cable is connected to the optical pulse test wire 21, and a normal optical pulse test is performed. , the intensity of reflected light from the end faces of the monitoring optical fiber 22 and the water immersion detection optical fiber 25 may be measured.

参考のため、上述した構成(第1図)で浸水がない場合
の光パルス試験した結果を示すと、時間対反射光強度の
関係は第3図のごとき特性曲線となった。ただし、第3
図の特性曲線図は光ファイバ長(光パルス試験器21端
からの)対光信号レベル(8)に変換されて表わされた
特性曲線図である。
For reference, the results of a light pulse test with the above-mentioned configuration (FIG. 1) in the absence of water intrusion are shown, and the relationship between time and reflected light intensity has a characteristic curve as shown in FIG. 3. However, the third
The characteristic curve diagram in the figure is a characteristic curve diagram converted into an optical fiber length (from the end of the optical pulse tester 21) versus optical signal level (8).

第3図の特性曲線に現われている光信号のビーク31は
、浸水検知ファイバ25の端面でのフレネル反射によっ
て生じろものであり、浸水検知ファイバ1本につき1個
のフレネル反射ビークが生じる。、また、ビーク32は
監視ファイバ22の終端のフレネル反射によって生じろ
ビークである。また、各ビークの間の区間で、一定の傾
斜で減衰する光信号成分33は監視ファイバ22中を光
パルスが透過する際にファイバ中の材質の不均一さ等に
起因して発生するレーリー後方散乱光信号である。
The optical signal peak 31 appearing in the characteristic curve of FIG. 3 is caused by Fresnel reflection at the end face of the water immersion detection fiber 25, and one Fresnel reflection peak is generated for each water immersion detection fiber. , and the beak 32 is a beak caused by Fresnel reflection at the end of the monitoring fiber 22. In addition, the optical signal component 33 that attenuates with a constant slope in the section between each beak is behind the Rayleigh that occurs due to non-uniformity of the material in the fiber when the optical pulse passes through the monitoring fiber 22. This is a scattered light signal.

−aに屈折率n、の媒質中を進行する光が屈折率n2の
媒質中に進入する場合、その界面において光の反射が生
じろ。この時、光の進入方向が界面に対して垂直であれ
ば、その反射率Rは、 R= ((n、 −n2)/ (n、−n2)+2と表
される。波長1.3−あるいは1.54帯の光に対する
空気、水および石英ガラスの屈折率はそれぞれ1.00
 、1.33 、1.47である。したがって、石英ガ
ラスと空気との界面における波長1.3Am〜1.5−
帯の光の反射率は3.6%であり、石英ガラスと水との
界面における波長1.3声〜1.5−帯の光の反射率は
0.25%である。すなわち、石英ガラスの界面が空気
から水に変わった場合、その界面での反射光のビーク3
1が11.5dB?l!け減少する。
- When light traveling through a medium with a refractive index of n and enters a medium with a refractive index of n2, reflection of the light will occur at the interface. At this time, if the direction of light incidence is perpendicular to the interface, the reflectance R is expressed as R= ((n, -n2)/(n, -n2)+2. Wavelength 1.3- Alternatively, the refractive index of air, water, and quartz glass for light in the 1.54 band is 1.00 each.
, 1.33, 1.47. Therefore, the wavelength at the interface between silica glass and air is 1.3 Am~1.5-
The reflectance of light in the band is 3.6%, and the reflectance of light in the 1.3 to 1.5 wavelength band at the interface between the quartz glass and water is 0.25%. In other words, when the interface of quartz glass changes from air to water, the peak 3 of the reflected light at that interface
1 is 11.5dB? l! decreases.

第1図の接続′@z4のいずれか1個あるいは数個に浸
水し、浸水検知ファイバ25の先端が水中に没した場合
を考える。この場合、監視ファイバ22に対してパルス
試験を行うと、第4図に示されるような光信号波形が1
1!測される。第4図中の波形で31は浸水のない接続
面の検知ファイバ25からのフレネル反射を示し、34
は浸水の発生した接続面の検知ファイバ25からのフレ
ネル反射を示す。すなわち、検知ファイバ25の端面が
水没することによって、この端面でのフレネル反射光強
度が、上記の理由によって減少するため、これがパルス
試験による光信号波形のフレネル反射光強度の減少とし
て観測される。したがって、フレネル反射パルス31の
大幅な減少を監視することによって接続面内の浸水を検
知することができる。
Consider a case where one or more of the connections '@z4 in FIG. 1 is flooded with water, and the tip of the water immersion detection fiber 25 is submerged in the water. In this case, when a pulse test is performed on the monitoring fiber 22, the optical signal waveform as shown in FIG.
1! be measured. In the waveforms in FIG. 4, 31 indicates Fresnel reflection from the detection fiber 25 on the connection surface without water intrusion, and 34
shows Fresnel reflection from the detection fiber 25 at the connection surface where water has occurred. That is, when the end face of the detection fiber 25 is submerged in water, the Fresnel reflected light intensity at this end face decreases for the above-mentioned reason, and this is observed as a decrease in the Fresnel reflected light intensity of the optical signal waveform in the pulse test. Therefore, by monitoring a significant decrease in the Fresnel reflection pulses 31, water ingress within the connection plane can be detected.

本実施例では、各接続面ごとに光分岐26が押入され、
監視ファイバ22を導波する光の一部が検知ファイバ2
5に漏洩するため、この漏洩分が監視ファイバ22の損
失となる。この損失の大きさcr、(dB)は、ファイ
バ22から浸水検出用ファイバ25に分岐される光の割
合をaとした場合、 crX= 10 jog、。(1/(1a))と表わさ
れる。aが十分小さければ(a<0.1)αは近似的に
、 α=4.343Xa と表わされる。したがって、例えばaを0.05とすれ
ばα8は約0.22dBとなる。一方、監視用ファイバ
をコア径50−1比屈折率差1%のグレーデッドインデ
ックス型ファイバと仮定し、パルス試験の際に監視用フ
ァイバに入射する光パルスの幅を1ρSとすれば、上記
分岐比aが0.05の時、浸水検知ファイバ25からの
フレネル反射パルス光の強度レベルは、浸水のない場合
で、監視ファイバ22のレーリー後方散乱光信号に比較
して約13dB大きくなる。従って、このフレネル反射
成分は、十分レーリー後方散乱光に対して大きい強度を
有しており、検知可能である。
In this embodiment, an optical branch 26 is inserted into each connection surface,
A part of the light guided through the monitoring fiber 22 is transmitted to the detection fiber 2.
5, this leakage amount becomes a loss in the monitoring fiber 22. The magnitude of this loss cr, (dB) is crX=10 jog, where a is the proportion of light branched from the fiber 22 to the water immersion detection fiber 25. It is expressed as (1/(1a)). If a is sufficiently small (a<0.1), α can be approximately expressed as α=4.343Xa. Therefore, for example, if a is 0.05, α8 will be approximately 0.22 dB. On the other hand, assuming that the monitoring fiber is a graded index fiber with a core diameter of 50-1 and a relative refractive index difference of 1%, and the width of the optical pulse incident on the monitoring fiber during a pulse test is 1ρS, the above branching When the ratio a is 0.05, the intensity level of the Fresnel reflected pulsed light from the water immersion detection fiber 25 is approximately 13 dB larger than the Rayleigh backscattered light signal of the monitoring fiber 22 in the absence of water immersion. Therefore, this Fresnel reflection component has a sufficiently large intensity relative to the Rayleigh backscattered light and can be detected.

上記実施例においては、光ファイバケーブル伝送路の一
端においてのみ監視を行うことを前提としているが、光
ファイバケーブル伝送路が長尺の場合、一端からでは伝
送路全体を監視できない場合が起こり得る。
In the above embodiments, it is assumed that monitoring is performed only at one end of the optical fiber cable transmission line, but if the optical fiber cable transmission line is long, it may not be possible to monitor the entire transmission line from one end.

このような場合は、次の実施例2のようにする。In such a case, the following Embodiment 2 will be used.

(′、t!施例2) すなわち、第5図に示すように、光ファイバケーブル伝
送路23の両端にそれぞれ光パルス試験@1121,2
1を接続し、光ファイバケーブル伝送#I23中を貫通
させた接線面24中の監視用光ファイバ22から分岐さ
せた浸水検出用光ファイバ25から近い側の光パルス試
験器21によって、放射した光パルスのフレネル反射パ
ルスが検出可能となるように接続したものである。
(', t! Example 2) That is, as shown in FIG.
The light emitted by the optical pulse tester 21 on the side closer to the water immersion detection optical fiber 25 branched from the monitoring optical fiber 22 in the tangential surface 24 connected to the optical fiber cable transmission #I 23 The connection is such that the Fresnel reflected pulse of the pulse can be detected.

この実施例2によれば、おのおのの光パルス試験u21
を用いて、光ファイバケーブル伝送路23の中間点まで
の検出を行うことによって伝送路全体に対する検知が可
能となる。したがって、罰記実施例1に比べて適用可能
な光ファイバケーブル伝送路長が2倍となる。さらに、
第6図に、両端から監視を行う第3の実施例を示す。た
だし、第6図は光ファイバケーブル伝送路の一端からそ
の中間点までを示したものであり、他端も同様な配置に
なっているものとする。
According to this Example 2, each optical pulse test u21
By performing detection up to the midpoint of the optical fiber cable transmission line 23 using the above, it becomes possible to detect the entire transmission line. Therefore, the applicable optical fiber cable transmission path length is doubled compared to the first embodiment. moreover,
FIG. 6 shows a third embodiment in which monitoring is performed from both ends. However, FIG. 6 shows the optical fiber cable transmission line from one end to its midpoint, and it is assumed that the other end has a similar arrangement.

この実施例においては、光ファイバケーブル伝送路中の
接続面内の一部あるいはすべてにおいて、互いに接続方
向の異なる2本の浸水検出用光ファイバ25を接続して
いる。この実施例3によれば、接続面内の浸水検知ファ
イバ25から光信号を入力し、他の接続面の位置でこれ
を受信することによって接続箱のある位置同志で通話を
行うことができろ点に利点がある。この利点は、ケーブ
ルの保守作業等において特に有益である。
In this embodiment, two optical fibers 25 for water immersion detection having different connection directions are connected in part or all of the connection plane in the optical fiber cable transmission path. According to this third embodiment, by inputting an optical signal from the water immersion detection fiber 25 in the connection plane and receiving it at another connection plane position, it is possible to make a call between the positions of the connection box. There are advantages in this point. This advantage is particularly useful in cable maintenance work and the like.

なお、本発明は空気と水との屈折率の違いによって浸水
を検知することを特徴とするものであるから、接続面内
に侵入する水以外の液体についても、その屈折率が概ね
1.25以上であれば侵入の検知が可能であろ。従って
、本発明によって、接続面内に侵入する油分等の検出も
可能である。
Note that since the present invention is characterized by detecting water intrusion based on the difference in refractive index between air and water, the refractive index of liquid other than water that enters the connection surface is approximately 1.25. If this is the case, it should be possible to detect an intrusion. Therefore, according to the present invention, it is also possible to detect oil or the like that enters the connection surface.

〈発明の効果〉 以上の説明から明らかなごとく、この発明にかかる光フ
ァイバケーブル接続部の浸水検出法によれば長尺の光フ
ァイバケーブル伝送路の接続部の浸水を伝送路の端部か
ら直接監視することが可能となるから、浸水をいち早く
検知し、光ファイバの強度劣化に伴う破断あるいは、水
素発生に伴う光ファイバの伝送損失増加が生じる以前に
適切な処置を講することが可能となる。
<Effects of the Invention> As is clear from the above description, according to the method for detecting water intrusion at the connection portion of an optical fiber cable according to the present invention, water intrusion at the connection portion of a long optical fiber cable transmission line can be detected directly from the end of the transmission line. Since it is possible to monitor water intrusion, it is possible to detect water intrusion quickly and take appropriate measures before the optical fiber breaks due to strength deterioration or the optical fiber transmission loss increases due to hydrogen generation. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の光ファイバケーブル接続部の浸水検
出法の第1の実施例の実施態様を示す説明図、第2図は
第1図に示す実施例中のケーブル接続西向の監視用光フ
ァイバおよび浸水検出用光ファイバの配置状態を示す模
式図、第3図はケーブル接続部に浸水がないときの監視
用光ファイバおよび浸水検出用光ファイバ端からの光パ
ルスの反射ピークの状態を示す特性曲線図、第4図はケ
ーブル接続部に浸水があるときの監視用光ファイバおよ
び浸水検出用光ファイバ端からの光パルスの反射ピーク
の状態を示す特性曲線図、第5図はこの発明の光ファイ
バケーブル接続部の浸水検出法の第2の実施例の実施態
様を示す説明図、第6図はこの発明の光ファイバケーブ
ル接続部の浸水検出法の第3の実施例の実施態様を示す
説明図、第7図は従来の光ファイバケーブル内浸水防止
対策を講じた光ファイバケーブル破損時のケーブル内圧
分布の変化を示す特性曲線図である。 図     中、 21・・・光パルス試験器、 22・・・監視用光ファイバ、 23・・・光ファイバケーブル伝送路、24・・・ケー
ブル接線面、 25・・・浸水検出用光ファイバ、 26・・・光分岐、 31・・・浸水検出用光ファイバ端面でのフレネル反射
、 32・・監視用光ファイバ端面でのフレネル反射。 特  許  出  願 人 日本電信電話株式会社 代    理    人
FIG. 1 is an explanatory diagram showing a first embodiment of the method for detecting water intrusion in an optical fiber cable connection part of the present invention, and FIG. 2 is a westward monitoring light for cable connection in the embodiment shown in FIG. A schematic diagram showing the arrangement of fibers and optical fibers for water immersion detection. Figure 3 shows the state of the reflection peak of optical pulses from the ends of the monitoring optical fiber and the optical fiber for water immersion detection when there is no water seepage in the cable connection section. FIG. 4 is a characteristic curve diagram showing the state of the reflection peak of optical pulses from the ends of the monitoring optical fiber and the water intrusion detection optical fiber when there is water intrusion in the cable connection part, and FIG. 5 is the characteristic curve diagram of the present invention. An explanatory diagram showing an embodiment of the second embodiment of the method for detecting water intrusion in an optical fiber cable connection part, and FIG. 6 shows an embodiment of the third embodiment of the method for detecting water intrusion in an optical fiber cable connection part of the present invention. The explanatory diagram, FIG. 7, is a characteristic curve diagram showing a change in the cable internal pressure distribution when an optical fiber cable is broken, with conventional measures taken to prevent water from entering inside the optical fiber cable. In the figure, 21... Optical pulse tester, 22... Optical fiber for monitoring, 23... Optical fiber cable transmission line, 24... Cable tangential surface, 25... Optical fiber for water immersion detection, 26 ...Light branching, 31...Fresnel reflection at the end face of the optical fiber for water immersion detection, 32...Fresnel reflection at the end face of the monitoring optical fiber. Patent applicant: Agent of Nippon Telegraph and Telephone Corporation

Claims (1)

【特許請求の範囲】[Claims] 監視用光ファイバを光ファイバケーブル伝送路中を貫通
させ、かつ当該光ファイバケーブル伝送路中に設けた少
くとも一部の接続部筺体内に前記監視用光ファイバから
分岐した少くとも一本の浸水検出用光ファイバを設け、
当該浸水検出用光ファイバの端面が前記接続部筺体内に
位置するように配すると共に、前記光ファイバケーブル
伝送路の一端又は両端部から前記監視用光ファイバに光
パルスを入射せしめ、この時浸水検出用光ファイバ端面
で反射し前記監視用光ファイバの入射端部に戻る反射光
パルスの光強度を測定し、得られた反射光パルスの光強
度から浸水検出用光ファイバが設けられた接続部筺体内
部における浸水の有無を検出することを特徴とする光フ
ァイバケーブル接続部の浸水検出法。
A monitoring optical fiber is passed through an optical fiber cable transmission line, and at least one branched from the monitoring optical fiber is flooded into at least a part of the connection part housing provided in the optical fiber cable transmission line. A detection optical fiber is provided,
The end face of the optical fiber for detecting water intrusion is arranged so as to be located inside the connection part housing, and a light pulse is made to enter the monitoring optical fiber from one end or both ends of the optical fiber cable transmission path, and at this time, water intrusion is detected. A connection section provided with a water immersion detection optical fiber, which measures the light intensity of a reflected light pulse that is reflected at the end face of the detection optical fiber and returns to the input end of the monitoring optical fiber, and determines the light intensity of the obtained reflected light pulse. A method for detecting water intrusion in an optical fiber cable connection part, characterized by detecting the presence or absence of water intrusion inside a housing.
JP7040387A 1987-03-26 1987-03-26 Method for detecting water immersion of optical fiber cable connection part Pending JPS63236938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7040387A JPS63236938A (en) 1987-03-26 1987-03-26 Method for detecting water immersion of optical fiber cable connection part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7040387A JPS63236938A (en) 1987-03-26 1987-03-26 Method for detecting water immersion of optical fiber cable connection part

Publications (1)

Publication Number Publication Date
JPS63236938A true JPS63236938A (en) 1988-10-03

Family

ID=13430458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7040387A Pending JPS63236938A (en) 1987-03-26 1987-03-26 Method for detecting water immersion of optical fiber cable connection part

Country Status (1)

Country Link
JP (1) JPS63236938A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007278870A (en) * 2006-04-07 2007-10-25 Ntt Infranet Co Ltd Liquid detection element, liquid detection sensor, liquid detection system, and liquid detection method
JP2008014698A (en) * 2006-07-04 2008-01-24 Shinkosha:Kk Monitoring system by otdr
JP2009243930A (en) * 2008-03-28 2009-10-22 Furukawa Electric Co Ltd:The Water level detection system
JP2009258073A (en) * 2008-03-25 2009-11-05 Central Res Inst Of Electric Power Ind Method and apparatus for detecting water of optical fiber composite overhead ground wire
JP2011247627A (en) * 2010-05-24 2011-12-08 Kurabo Ind Ltd Optical probe and spectrometry device
JPWO2020158033A1 (en) * 2019-01-29 2021-11-11 日本電信電話株式会社 Optical pulse test device and optical pulse test method
CN114486124A (en) * 2021-12-30 2022-05-13 中国电信股份有限公司 Optical cable joint box detection system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007278870A (en) * 2006-04-07 2007-10-25 Ntt Infranet Co Ltd Liquid detection element, liquid detection sensor, liquid detection system, and liquid detection method
JP2008014698A (en) * 2006-07-04 2008-01-24 Shinkosha:Kk Monitoring system by otdr
JP2009258073A (en) * 2008-03-25 2009-11-05 Central Res Inst Of Electric Power Ind Method and apparatus for detecting water of optical fiber composite overhead ground wire
JP2009243930A (en) * 2008-03-28 2009-10-22 Furukawa Electric Co Ltd:The Water level detection system
JP2011247627A (en) * 2010-05-24 2011-12-08 Kurabo Ind Ltd Optical probe and spectrometry device
JPWO2020158033A1 (en) * 2019-01-29 2021-11-11 日本電信電話株式会社 Optical pulse test device and optical pulse test method
US11754465B2 (en) 2019-01-29 2023-09-12 Nippon Telegraph And Telephone Corporation Optical pulse testing device and optical pulse testing method
CN114486124A (en) * 2021-12-30 2022-05-13 中国电信股份有限公司 Optical cable joint box detection system
CN114486124B (en) * 2021-12-30 2023-12-22 中国电信股份有限公司 Optical cable splice box detecting system

Similar Documents

Publication Publication Date Title
US7257280B1 (en) Method and apparatus for monitoring the security of an optical cablelink during installation
US7469101B1 (en) Optoelectronic marker for determining ownership of fiber optic cable
US6946646B2 (en) Method of evaluating fiber PMD using polarization optical time domain reflectometry
WO2007005277A1 (en) Method of evaluating fiber pmd using composite potdr trace
JPS63236938A (en) Method for detecting water immersion of optical fiber cable connection part
KR20000002619A (en) Optical line monitor of optical transmission system including light amplifier
CN111740775B (en) Method for improving event blind area performance of optical time domain reflectometer and application
JP4728412B2 (en) OTDR measuring instrument, optical communication line monitoring system, and optical communication line monitoring method
JP4548841B2 (en) Optical fiber splice loss judgment method
US5226102A (en) Light-reflection method for transmission-loss measurements in optical fiber lightguides
JPH02176535A (en) Optical line monitoring device
JP2007225468A (en) State determination method of optical fiber
JP7331959B2 (en) Apparatus and method for detecting immersion in optical fiber
JP4964809B2 (en) Optical filter presence / absence confirmation method and optical filter existence confirmation device
JPS6157567B2 (en)
JPH05281087A (en) Light loss cause searching method
JP2705186B2 (en) Water immersion detection fiber
JP2806400B2 (en) Optical fiber break detection method
CA1137787A (en) Method and apparatus for optical fiber fault location
JP2883948B2 (en) Fault locating method for branch optical fiber line
中村篤志 A Study on Optical Fiber Testing Technique Based on Backscattered Power of Higher-Order Mode
Ilouno et al. Investigation of optical return loss (back-reflection) in optical fiber transmission links
JPH0791934A (en) Method for inspecting connector for optical fiber
CN110730033A (en) Optical fiber OTDR blind zone eliminator and blind zone eliminating method thereof
US8749769B2 (en) Media stress analysis system and method