JPH02176535A - Optical line monitoring device - Google Patents

Optical line monitoring device

Info

Publication number
JPH02176535A
JPH02176535A JP33405788A JP33405788A JPH02176535A JP H02176535 A JPH02176535 A JP H02176535A JP 33405788 A JP33405788 A JP 33405788A JP 33405788 A JP33405788 A JP 33405788A JP H02176535 A JPH02176535 A JP H02176535A
Authority
JP
Japan
Prior art keywords
light
wavelength
optical fiber
line
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33405788A
Other languages
Japanese (ja)
Inventor
Takao Shioda
塩田 孝夫
Koichi Takahashi
浩一 高橋
Fumio Wada
和田 史生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP33405788A priority Critical patent/JPH02176535A/en
Publication of JPH02176535A publication Critical patent/JPH02176535A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE:To confirm a loss in overall length of an optical fiber line and to execute preventive maintenance monitoring by executing an optical time domain reflectometry (OTDR) measurement by light beams of two wavelength. CONSTITUTION:Pulse light beams of wavelength lambda1, lambda2 are generated from light sources 1, 2, driven 3, coupled 4, and thereafter, made incident on a fiber line to be measured 6 through a branch device 5. Subsequently, a reaction light returned to the line 6 passes through the branch device 5 and led to a demultiplexer 7, demultiplexed to wavelength lambda1, lambda2, and sent to light receivers 8, 9. Outputs of these light receivers 8, 9 are sent to a signal processing circuit 10, and a time variation of a reflected light output is derived. Accordingly, a minute loss variation can be measured by a light beam from the light source 1, and monitoring extending over the overall length of the line 6 can be executed by a light beam from the light source 2.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は、光フアイバ線路の状態を遠方から監視する
ための光線路監視装置に関する。
The present invention relates to an optical line monitoring device for monitoring the condition of an optical fiber line from a distance.

【従来の技術1 光フアイバ線路の状態を遠方から監視するため、従来よ
り、0TDR(0ptical  Time−Doma
inRef lectmetry )法による監視装置
が広く用いられている。これは、被測定光ファイバ線路
の一端に光パルスを入射し、その一端に戻ってくる反射
光を検出し、反射光出力の時間変化を捉えることにより
、線路長さ方向各位型での後方散乱光のレベルを知ろう
とするもので、これにより光フアイバ線路の各位置での
損失の測定、結合状態の監視ができる。 【発明が解決しようとする課題】 しかしながら、従来の0TDR法による光フアイバ線路
の監視は、単に通信状態の品位の確認、あるいは線路の
損失の確認だけにとどまるものであって、線路状態が今
後どのように変化するがの予防保全は難しいという問題
がある。すなわち、通常の0TDR法では損失変化を高
感度に測定することができないため、地盤沈下あるいは
管路の崩壊等による線路にかかる側圧の変化、光ファイ
バの捩れなどに起因する微小な変化は測定できないから
である。 この発明は、線路状態の監視を遠方から行なうことがで
きるとともに、線路保全を予防的に行なうための高感度
の監視をも行なうことができる、光線路監視装置を提供
することを目的とする。
[Prior art 1] In order to monitor the condition of optical fiber lines from a distance, 0TDR (0 optical time-doma) has conventionally been used.
Monitoring devices based on the inReflectmetry method are widely used. This method involves injecting a light pulse into one end of the optical fiber line to be measured, detecting the reflected light that returns to that end, and capturing the time change in the output of the reflected light. This method attempts to determine the light level, and this allows measurement of loss at each location of the optical fiber line and monitoring of the coupling state. [Problems to be Solved by the Invention] However, monitoring of optical fiber lines using the conventional 0TDR method is limited to simply checking the quality of the communication state or checking the loss of the line, and it is difficult to determine what the line condition will be in the future. The problem is that it is difficult to perform preventive maintenance as things change. In other words, the normal 0TDR method cannot measure loss changes with high sensitivity, so it cannot measure minute changes caused by changes in lateral pressure on the line due to ground subsidence or collapse of conduits, twisting of optical fibers, etc. It is from. SUMMARY OF THE INVENTION An object of the present invention is to provide an optical line monitoring device that can monitor the line condition from a distance and also perform highly sensitive monitoring for preventive line maintenance.

【課題を解決するための手段】[Means to solve the problem]

上記目的を達成するため、この発明による光線路監視装
置においては、波長の異なる光パルスを発生し、被測定
光ファイバ線路に入射する第1、第2の光源と、該被測
定光ファイバ線路中を伝搬してきた反射光を、上記波長
ごとに受光する受光器と、該波長ごとの反射光出力の時
間変化を計測する回路とが備えられ、上記第1の光源か
らの光の波長を、単一モード光ファイバのセカンドモー
ドの遮断波長よりも短波長側で且つその近傍の波長とし
、第2の光源からの光の波長を遮断波長から離れた波長
としたことが特徴となっている。
In order to achieve the above object, the optical line monitoring device according to the present invention includes a first and a second light source that generate optical pulses of different wavelengths and enter the optical fiber line to be measured; The light receiver is equipped with a light receiver that receives the reflected light that has propagated at each of the wavelengths, and a circuit that measures time changes in the output of the reflected light for each of the wavelengths. It is characterized in that the wavelength is shorter than and near the cutoff wavelength of the second mode of the one-mode optical fiber, and the wavelength of the light from the second light source is set away from the cutoff wavelength.

【作  用】 単一モード光フ・rイバの遮断波長より短波長側ではセ
カンドモードはクラッドにはみ出して伝播しており、遮
断波長の近傍の波長では少しの曲がりでも放射損失は大
きく現われる。 これに対し、遮断波長から離れた波長では、放射損失は
小さく、そのため長距離からの後方散乱光を測定できる
。 そこで、これら2つの波長の光パルスを発生する第1、
第2の光源を用い、これらの光の反射光をoTDR法に
より測定すれば、第1の光源からの光により微小な損失
変化の測定ができ、これにより地磐沈下あるいは管路の
崩壊等による線路にかかる側圧の変化、光ファイバの捩
れなどが検出でき、線路の予防保全が可能となる。 他方、この第1の光源からの光による測定は上記のよう
に非常に高感度であるため、途中に少しでも損失増大要
因が存在するとそれより遠方に関する測定ができなくな
る。そこで、第2の光源からの光を用いることにより長
距離の光フアイバ線路全長での監視を行なうこととして
いる。 このように2波長の光源を用いて0TDR測定を行なう
ことにより、高感度な測定による予防保全的な線路の監
視と、長距離測定による全長での通信状態の品位の確認
等との両方を行なうことができる。
[Function] On the shorter wavelength side than the cutoff wavelength of a single mode optical fiber, the second mode propagates out into the cladding, and at wavelengths near the cutoff wavelength, even a slight bend causes a large radiation loss. On the other hand, at wavelengths far from the cutoff wavelength, the radiation loss is small, so backscattered light from a long distance can be measured. Therefore, the first, which generates optical pulses of these two wavelengths,
By using the second light source and measuring the reflected light of these lights using the oTDR method, it is possible to measure minute loss changes due to the light from the first light source, and this can be used to detect small changes in loss due to land subsidence or collapse of pipelines, etc. Changes in lateral pressure applied to the track, twists in optical fibers, etc. can be detected, making preventive maintenance of the track possible. On the other hand, since the measurement using the light from the first light source has extremely high sensitivity as described above, if there is even a slight loss increasing factor along the way, it becomes impossible to measure at a further distance. Therefore, the entire length of the long-distance optical fiber line is monitored by using the light from the second light source. By performing 0TDR measurements using a two-wavelength light source in this way, it is possible to both monitor the line for preventive maintenance through highly sensitive measurements, and to confirm the quality of the communication status over the entire length through long-distance measurements. be able to.

【実 施 例】【Example】

つぎにこの発明の一実施例について図面を参照しながら
説明する。第1図はこの発明の一実施例にかかる光線路
監視装置20を示すもので、発振波長の異なる2つのレ
ーザダイオード1.2が備えられており、これらはパル
ス駆動回路3によってパルス駆動されて、パルス光を発
生する。これらの波長λ1、λ2のパルス光は結合器4
により結合されて波長多重化された後、分岐器5を介し
て被測定光ファイバ6の一端に入射される。なお、この
ように波長λ1、^2のパルス光を波長多重するために
は結合器4以外に回折格子、ジオデシックレンズ等も用
いることができる。 そして、この被測定光ファイバ線路6の一端に戻ってく
る反射光は分岐器5を経て、回折格子などの分波器7に
導かれ、波長λ1と、λ2の光に分波され、それぞれ受
光器8.9に送られる。これら受光器8.9の出力は信
号処理回路10に送られ、反射光出力の時間変化が求め
られる。制御回路11はパルス駆動回路3や信号処理回
路10にタイミング信号等の制御信号を送る。 このような2波長^1、λ2の光パルスを用いた0TD
Rの構成により、被測定光ファイバ線路6のレイリー散
乱による後方散乱光の測定を行なう。この実施例では、
被測定光ファイバ線路6として、外径125μm、コア
径10μm、比屈折率差0.28%の単一モード光ファ
イバをシリコーンコートして外径400μmとしたもの
を用いた。この単一モード光ファイバの場合、セカンド
モードの遮断波長は1.18−であった。そこで、第1
のレーザダイオード1の発振波長を0.9μm、第2の
レーザダイオード2の発振波長を0,85μmとした。 この0,9μmの波長は遮断波長より短波長側で且つそ
の近傍であるため、曲げによる損失が大きく現われる。 そのため、レーザダ・fオード1からのこの波長のパル
スレーザにより、0.9μmの波長でのレイリー散乱に
よる損失変化を0TDR法により捉えることによって被
測定光ファイバ線路6でのわずかなひずみの変化をも高
感度に検出することができた。たとえば、被測定光ファ
イバ線路6を形成する上記の単一モード光ファイバ(長
さ200m)を直径300Mにコイル状に巻いて束ね、
これに側圧を加えたところ2dB以上の損失変化が現れ
、これの検出ができた。また、この単一モード光ファイ
バを1/16ピツチで捩りを加えた(長さ5m当り22
.5°の捩りを与えた)ところ、1.6dBの損失変化
が現われ、これの検出もできた。他方、第2のレーザダ
イオード2からの波長0.85μmのパルスレーザの場
合、遮断波長から離れた波長であるため、放射損失は大
きくは現われず、通常の0TDR法と同様に被測定光フ
ァイバ線路6である単一モード光ファイバの損失の大き
な変化のみを検出することができた。 なお、一般に用いられている波長1.3μm用単−単一
ド光ファイバでは、遮断波長は1.1μm〜1.2μm
程度の波長にあり、この波長より短波長側で且つ0.8
μmよりも長い波長域で曲げによる損失が大きく現われ
るので、高感度な障害点検出を行なうための波長(上記
の実施例ではレーザダイオード1の発振波長)はこの範
囲とする必要がある。他方、もう一方の波長(上記の実
施例ではレーザダイオード2の発振波長)は通常の0T
DRと同様に被測定光ファイバ線路全長での大きな損失
のみを捉えようとするものであるから、上記の第1の波
長よりは遮断波長から離れた波長とし、曲げによる損失
がより小さい波長域に設定する必要がある。上記の実施
例では遮断波長よりも短波長側に設定したが、長波長側
に設定することもできる。また、遮断波長は被測定光フ
ァイバ線路6をなす単一モード光ファイバにより多少異
なるため、これに応じて用いる2つの波長を変化させる
ことが望ましい。 第2図は、この第1図の光線路監視装置2oを電話局2
1に設置した例を示すものである。この図に示すように
電話局21では外部に布設された光フアイバ線路22が
分配回路パネル24を介して中継系23に接続されてい
るので、これに光線路監視装置20を結合させる。
Next, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows an optical path monitoring device 20 according to an embodiment of the present invention, which is equipped with two laser diodes 1.2 having different oscillation wavelengths, which are pulse-driven by a pulse drive circuit 3. , generates pulsed light. These pulsed lights of wavelengths λ1 and λ2 are sent to the coupler 4.
After being combined and wavelength-multiplexed, the signals are input to one end of the optical fiber 6 to be measured via the splitter 5. In addition to the coupler 4, a diffraction grating, a geodesic lens, etc. can also be used in order to wavelength-multiplex the pulsed lights of wavelengths λ1 and ^2 in this way. The reflected light returning to one end of the optical fiber line 6 to be measured passes through a splitter 5 and is guided to a splitter 7 such as a diffraction grating, where it is split into light with wavelengths λ1 and λ2, and each is received. Sent to vessel 8.9. The outputs of these light receivers 8, 9 are sent to a signal processing circuit 10, and a time change in reflected light output is determined. The control circuit 11 sends control signals such as timing signals to the pulse drive circuit 3 and the signal processing circuit 10. 0TD using such optical pulses with two wavelengths ^1 and λ2
With the configuration R, backscattered light due to Rayleigh scattering of the optical fiber line 6 to be measured is measured. In this example,
As the optical fiber line 6 to be measured, a single mode optical fiber having an outer diameter of 125 μm, a core diameter of 10 μm, and a relative refractive index difference of 0.28% was coated with silicone to have an outer diameter of 400 μm. In the case of this single mode optical fiber, the second mode cutoff wavelength was 1.18-. Therefore, the first
The oscillation wavelength of the second laser diode 1 was 0.9 μm, and the oscillation wavelength of the second laser diode 2 was 0.85 μm. Since this wavelength of 0.9 μm is on the shorter wavelength side than the cutoff wavelength and in the vicinity thereof, a large loss due to bending appears. Therefore, by using the pulsed laser of this wavelength from the laser da-fode 1 to capture the loss change due to Rayleigh scattering at a wavelength of 0.9 μm using the 0TDR method, we can also detect slight changes in strain in the optical fiber line 6 to be measured. It was possible to detect with high sensitivity. For example, the single mode optical fibers (length 200 m) forming the optical fiber line 6 to be measured are wound into a coil shape with a diameter of 300 m and bundled,
When lateral pressure was applied to this, a loss change of 2 dB or more appeared, which could be detected. In addition, this single mode optical fiber was twisted at 1/16 pitch (22 twists per 5 m length).
.. When a 5° twist was applied), a loss change of 1.6 dB appeared, and this could be detected. On the other hand, in the case of a pulse laser with a wavelength of 0.85 μm from the second laser diode 2, the wavelength is far from the cutoff wavelength, so the radiation loss does not appear large, and the optical fiber line under test is We were able to detect only a large change in the loss of the single mode optical fiber, which is 6. In addition, the cutoff wavelength is 1.1 μm to 1.2 μm in commonly used single-single doped optical fiber for wavelength 1.3 μm.
On the shorter wavelength side than this wavelength and 0.8
Since the loss due to bending is large in a wavelength range longer than μm, the wavelength (the oscillation wavelength of the laser diode 1 in the above embodiment) for detecting a fault point with high sensitivity needs to be within this range. On the other hand, the other wavelength (the oscillation wavelength of laser diode 2 in the above embodiment) is the normal 0T.
Similar to DR, since it is intended to capture only the large loss over the entire length of the optical fiber line under test, the wavelength is set farther from the cutoff wavelength than the first wavelength above, and the wavelength range where the loss due to bending is smaller is set. Must be set. In the embodiments described above, the cutoff wavelength was set to the shorter wavelength side, but it can also be set to the longer wavelength side. Further, since the cutoff wavelength differs somewhat depending on the single mode optical fiber forming the optical fiber line 6 to be measured, it is desirable to change the two wavelengths used accordingly. FIG. 2 shows the optical line monitoring device 2o of FIG.
This shows an example of the installation in 1. As shown in this figure, in a telephone office 21, an optical fiber line 22 laid outside is connected to a relay system 23 via a distribution circuit panel 24, and an optical line monitoring device 20 is coupled to this.

【発明の効果】【Effect of the invention】

この発明の光線路監視装置によれば、2波長の光による
0TDR測定を行なうことにより、光フアイバ線路全長
での損失確認に加えて、非常に高感度な障害点探索がで
き、予防保全的な監視が可能である。
According to the optical line monitoring device of the present invention, by performing 0TDR measurement using light of two wavelengths, in addition to confirming loss along the entire length of the optical fiber line, it is possible to search for fault points with extremely high sensitivity, and to perform preventive maintenance. Monitoring is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例にかがる光線路監視装置を
示すブロック図、第2図は第1図の光線路監視装置を電
話局内に設置した例を示すブロック図である。 1.2・・・光源、3・・・パルス駆動回路、4・・・
結合器、5・・・分岐器、6・・・被測定光ファイバ線
路、7・・・分波器、8.9・・・受光器、1o・・・
信号処理回路、11・・・制御回路、20・・・光線路
監視装置、21・・・電話局、22・・・光フアイバ線
路、23・・・中継系、24・・・分配回路パネル。
FIG. 1 is a block diagram showing an optical line monitoring device according to an embodiment of the present invention, and FIG. 2 is a block diagram showing an example in which the optical line monitoring device of FIG. 1 is installed in a telephone office. 1.2...Light source, 3...Pulse drive circuit, 4...
Coupler, 5... Brancher, 6... Optical fiber line to be measured, 7... Brancher, 8.9... Light receiver, 1o...
Signal processing circuit, 11... Control circuit, 20... Optical line monitoring device, 21... Telephone office, 22... Optical fiber line, 23... Relay system, 24... Distribution circuit panel.

Claims (1)

【特許請求の範囲】[Claims] (1)波長の異なる光パルスを発生し、被測定光ファイ
バ線路に入射する第1、第2の光源と、該被測定光ファ
イバ線路中を伝搬してきた反射光を、上記波長ごとに受
光する受光器と、該波長ごとの反射光出力の時間変化を
計測する回路とを有し、上記第1の光源からの光の波長
を、単一モード光ファイバのセカンドモードの遮断波長
よりも短波長側で且つその近傍の波長とし、第2の光源
からの光の波長を遮断波長から離れた波長としたことを
特徴とする光線路監視装置。
(1) First and second light sources that generate optical pulses with different wavelengths and enter the optical fiber line to be measured, and receive reflected light that has propagated through the optical fiber line to be measured for each of the wavelengths mentioned above. It has a light receiver and a circuit that measures the time change of the reflected light output for each wavelength, and the wavelength of the light from the first light source is set to a wavelength shorter than the cutoff wavelength of the second mode of the single mode optical fiber. An optical path monitoring device characterized in that the wavelength of the light from the second light source is set to a wavelength far from the cutoff wavelength.
JP33405788A 1988-12-28 1988-12-28 Optical line monitoring device Pending JPH02176535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33405788A JPH02176535A (en) 1988-12-28 1988-12-28 Optical line monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33405788A JPH02176535A (en) 1988-12-28 1988-12-28 Optical line monitoring device

Publications (1)

Publication Number Publication Date
JPH02176535A true JPH02176535A (en) 1990-07-09

Family

ID=18273026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33405788A Pending JPH02176535A (en) 1988-12-28 1988-12-28 Optical line monitoring device

Country Status (1)

Country Link
JP (1) JPH02176535A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0619657A1 (en) * 1993-04-08 1994-10-12 Koninklijke KPN N.V. Optical circuit for measuring the reflection sensitivity of an optical transmission system
JP2007139433A (en) * 2005-11-15 2007-06-07 Yokogawa Electric Corp Optical fiber measurement device
JP2009216626A (en) * 2008-03-12 2009-09-24 National Taiwan Univ Of Science & Technology Fracture point detection system of passive optical line network
JP2012506171A (en) * 2008-10-17 2012-03-08 エクスフォ インコーポレイティッド Method and apparatus for deriving optical path and wavelength dependent reflective element parameters in an optical network using dual wavelength OTDR

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0619657A1 (en) * 1993-04-08 1994-10-12 Koninklijke KPN N.V. Optical circuit for measuring the reflection sensitivity of an optical transmission system
NL9300618A (en) * 1993-04-08 1994-11-01 Nederland Ptt Optical circuit for a measuring system for measuring the reflectivity of an optical transmission system.
US5455671A (en) * 1993-04-08 1995-10-03 Koninklijke Ptt Nederland N.V. Optical circuit for a measuring system for measuring the reflection sensitivity of an optical transmission system
JP2007139433A (en) * 2005-11-15 2007-06-07 Yokogawa Electric Corp Optical fiber measurement device
JP2009216626A (en) * 2008-03-12 2009-09-24 National Taiwan Univ Of Science & Technology Fracture point detection system of passive optical line network
JP2012506171A (en) * 2008-10-17 2012-03-08 エクスフォ インコーポレイティッド Method and apparatus for deriving optical path and wavelength dependent reflective element parameters in an optical network using dual wavelength OTDR
US8687957B2 (en) 2008-10-17 2014-04-01 Exfo Inc. Method and apparatus for deriving parameters of optical paths in optical networks using two-wavelength OTDR and a wavelength-dependent reflective element

Similar Documents

Publication Publication Date Title
KR100715589B1 (en) Apparatus and method for monitoring a structure using a counter-propagating signal method for locating events
US7310134B2 (en) Device and method of optical fiber condition monitoring in optical networks
JPH0658840A (en) System and method for inspecting optical fiber
CN104935379B (en) Optical fiber online monitoring system
US20090154870A1 (en) Optical Fiber Sensor Connected To Optical Fiber Communication Line
EA035577B1 (en) Reflectometric vibration measurement system and relative method for monitoring multiphase flows
CN114747159A (en) Method and apparatus for detecting the behavior of an optical link in an optical network
US6630992B1 (en) Method and device for executing control and monitoring measurements in optical transmission paths
Nakamura et al. High-sensitivity detection of fiber bends: 1-μm-band mode-detection OTDR
Toge et al. Recent research and development of optical fiber monitoring in communication systems
KR20020026863A (en) Intrinsic securing of fibre optic communication links
WO2020245893A1 (en) Determination device and determination method
JP2009229134A (en) Optical sensor system
CN108957209A (en) A kind of broken string automatic detection device of telecommunication optical fiber optical cable production
JPH03150442A (en) Optical fault point locating device
JPH02176535A (en) Optical line monitoring device
US12068779B2 (en) Fibre-optic measurement system, method of adaptation of the communication optical fibre into a measurement system, and fibre-optic measurement and communication system
JP2007232439A (en) Optical fiber ring interference type sensor
JP4694959B2 (en) Optical line test method and test system
JPH02187641A (en) Method of monitoring state of optical fiber line
Maneke et al. Measurement of Signal Losses in Optical Fibre Cables under Vibration using Optical Time–Domain Reflectometer (OTDR)
Nazarova et al. New Methodology of Defect State Control in Backbone Unidirectional Fiber-Optic Communication Lines
Tang et al. Distributed optical fiber fusion sensing system based on dual light source and pulse precision delay technology
Bogachkov et al. Detection Methods of Faults in Passive Optical Networks
Takahashi et al. Link Insertion Loss Measurement of Deployed PON