JPS63236642A - Glass woven fabric-reinforced copper-clad laminated board - Google Patents

Glass woven fabric-reinforced copper-clad laminated board

Info

Publication number
JPS63236642A
JPS63236642A JP7040687A JP7040687A JPS63236642A JP S63236642 A JPS63236642 A JP S63236642A JP 7040687 A JP7040687 A JP 7040687A JP 7040687 A JP7040687 A JP 7040687A JP S63236642 A JPS63236642 A JP S63236642A
Authority
JP
Japan
Prior art keywords
glass woven
woven fabric
copper
clad laminate
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7040687A
Other languages
Japanese (ja)
Inventor
大森 信夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP7040687A priority Critical patent/JPS63236642A/en
Publication of JPS63236642A publication Critical patent/JPS63236642A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は超高周波用のガラス織布補強銅張積層板に係り
、特に誘電特性を改善したものに関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a glass woven reinforced copper-clad laminate for ultra-high frequencies, and particularly to one with improved dielectric properties.

[従来の技術] マイクロストリップライン等の超高周波用平面回路には
、誘電体であるテフロン基板を銅箔でサンドイッチ構造
としたテフロン銅張積層板が使用されている。このテフ
ロン銅張積層板のテフロン基板中に、銅箔とテフロン基
板の熱膨張係数の差による反りを防いで、面方向(面に
沿う方向)の強度を向上させるために、1〜数枚のガラ
ス織布が積層されて埋め込まれている。
[Prior Art] A Teflon copper-clad laminate, which has a dielectric Teflon substrate sandwiched with copper foil, is used in ultra-high frequency planar circuits such as microstrip lines. In order to prevent warping due to the difference in thermal expansion coefficients between the copper foil and the Teflon substrate and improve strength in the plane direction (direction along the plane), one to several layers are added to the Teflon substrate of this Teflon copper-clad laminate. Glass woven fabric is laminated and embedded.

ところが、ガラスの誘電率εg、誘電正接tan6gは
、理科年表によれば表1に示すように、テフロンのそれ
らに比べて非常に大きいため、ガラス織布補強銅張積層
板としての総合誘電特性を大きく左右することとなる。
However, the dielectric constant εg and dielectric dissipation tangent tan6g of glass are much larger than those of Teflon, as shown in Table 1 according to the Science Chronology, so the overall dielectric properties of glass woven fabric reinforced copper-clad laminates are poor. This will greatly influence the

表1 材料の誘電特性 特に、織布のたで糸とよこ糸の持数が異なると、ガラス
織布の布目の方向で誘電特性が異なる。−例を表2に示
す。
Table 1 Dielectric properties of materials In particular, when the number of warp and weft yarns in a woven fabric differs, the dielectric properties differ in the direction of the grain of the glass woven fabric. - Examples are shown in Table 2.

従来、ガラス織布が総合誘電特性を大きく左右すること
や、ガラス織布の布目の方向で誘電特性が異なることは
全く考慮されることなく、ガラス絹布をテフロン基板中
に積層していた。このため、ガラス織布の布目方向でI
H1f特性が異なっていた。
In the past, glass silk cloth was laminated on a Teflon substrate without any consideration being given to the fact that the glass woven fabric greatly influences the overall dielectric properties and that the dielectric properties differ depending on the grain direction of the glass woven fabric. For this reason, I
The H1f characteristics were different.

ところで、超高周波平面回路用のガラス織布補強銅張積
層板においては、ガラス織布の布目方向により誘電特性
、特に誘電率が異なると、次のような問題が出て来る。
By the way, in glass woven fabric-reinforced copper-clad laminates for ultra-high frequency planar circuits, the following problem arises when the dielectric properties, particularly the dielectric constant, vary depending on the grain direction of the glass woven fabric.

■ 共振器を形成する場合には、共振器寸法が布目方向
で異なることとなり、これを無視すると、共振器の共振
周波数が仕様から外れ、機器の性能を発揮できない。
■ When forming a resonator, the dimensions of the resonator will differ depending on the grain direction, and if this is ignored, the resonant frequency of the resonator will deviate from the specifications and the performance of the device will not be achieved.

■ 誘電特性を同一にするためには、ストリップライン
の幅を布目方向で異ならせなければならず、設計が煩雑
となる。
■ In order to make the dielectric properties the same, the width of the stripline must be varied in the grain direction, making the design complicated.

■ テフロン積層板は高価であることから、限られた基
板面積で経済的に活用するためには、布目方向にとられ
れないことが必要となる。
■ Since Teflon laminates are expensive, in order to make economical use of the limited board area, it is necessary that they not be placed in the grain direction.

[発明が解決しようとする問題点コ 上記したように従来のガラス織布補強銅張積層板では、
ガラス織布の布目方向により誘電特性が異なるので、平
面回路の設計が煩雑となるばかりか、高価な積層板の経
済的な有効利用が図れないという欠点があった。
[Problems to be solved by the invention] As mentioned above, in the conventional glass woven reinforced copper clad laminate,
Since dielectric properties differ depending on the grain direction of the glass woven fabric, the design of the planar circuit is complicated, and the expensive laminates cannot be used economically.

本発明の目的は、前記した従来技術の欠点を解消し、設
計性、経済性を大幅に増加させることができる新規なガ
ラス織布補強銅張積層板を提供することにある。
An object of the present invention is to provide a novel glass woven fabric-reinforced copper-clad laminate that eliminates the drawbacks of the prior art described above and can significantly increase design efficiency and economic efficiency.

U問題点を解決するための手段] 本発明のガラス織布補強銅張積層板は、テフロン基板の
表裏に銅箔を張設すると共に、テフロン基板中に補強用
のガラス織布を基板の厚さ方向に積層したサンドインチ
構造をしている。
Means for Solving Problem U] The glass woven fabric-reinforced copper-clad laminate of the present invention has copper foil stretched on the front and back sides of a Teflon substrate, and a reinforcing glass woven fabric inside the Teflon substrate to increase the thickness of the substrate. It has a sand inch structure with layers stacked in the horizontal direction.

積層した上下のガラス絹布が支配的となる銅張積層板の
誘電特性が、銅張積層板の面方向のいずれの方向におい
てもほぼ等しくなるように、上下のガラス織布はずらし
て積層される。
The upper and lower glass woven fabrics are staggered and laminated so that the dielectric properties of the copper-clad laminate, which are dominated by the glass silk fabrics on the upper and lower laminated layers, are approximately equal in all directions in the plane of the copper-clad laminate. .

[作 用] 上下のガラス織布をずらすと、厚さ方向のガラス糸の積
層数や積層状態が変化して、銅張積層板の誘電特性が変
わる。このため、上下のガラス絹布のずれを適当に調整
すると面方向の誘電特性がほぼ等しくなる。
[Function] When the upper and lower glass woven fabrics are shifted, the number of laminated glass threads in the thickness direction and the laminated state change, and the dielectric properties of the copper-clad laminate change. Therefore, by appropriately adjusting the misalignment between the upper and lower glass silk cloths, the dielectric properties in the plane direction become approximately equal.

[実施例] 本発明の実施例を第1図〜第2図に基づいて説明すれば
以下の通りである。
[Example] An example of the present invention will be described below based on FIGS. 1 and 2.

第1図は本発明のガラス織布補強銅張積層板例を示す。FIG. 1 shows an example of a glass woven fabric-reinforced copper-clad laminate of the present invention.

1は誘電体であるテフロン基板であり、この基板の表裏
に接地導体及び平面回路となる銅箔2,2が張設され、
超高周波用マイクロストリップ形分布定数回路に供され
る銅張積層板10が構成される。
1 is a Teflon board which is a dielectric material, and copper foils 2, 2 which serve as a ground conductor and a planar circuit are stretched on the front and back sides of this board,
A copper-clad laminate 10 is constructed to be used in a microstrip type distributed constant circuit for ultra-high frequencies.

この銅張積層板10のテフロン基板1中には、たて糸3
とよこ糸4から成る補強用のガラス織布5が基板1の厚
さ方向に積層されるが、その上下に積層されるガラス織
布5の形状9組合せにあたっては、次の点が考慮されて
いる。
In the Teflon substrate 1 of this copper-clad laminate 10, there are warp threads 3.
A reinforcing glass woven fabric 5 made of weft threads 4 is laminated in the thickness direction of the substrate 1, and the following points are taken into consideration when combining the shapes 9 of the glass woven fabrics 5 that are laminated above and below. .

■ ガラス織布の織り方が、平織、綾織、朱子織等にあ
っては、たて糸およびよこ糸の番手、持数を等しくする
こと。
■ If the weave of the glass woven fabric is plain weave, twill weave, satin weave, etc., the warp and weft yarn count and number should be the same.

■ 上記織布を複数枚テフロン基板1中に積層すること
(2) Laminating a plurality of sheets of the above-mentioned woven fabric in the Teflon substrate 1;

第1図は、第2図に示すような番手、持数が等しいたて
糸3.よこ糸4により平織りされたガラス織布5で補強
され、上下に3枚積層されたガラス織布5の織り目がず
らされているものを示す。
Figure 1 shows three warp yarns with the same count and number of threads as shown in Figure 2. The glass fabric 5 is reinforced with a plain weave glass fabric 5 using weft threads 4, and the weave of the three glass fabrics 5 stacked one on top of the other is staggered.

そのずらし方は次の通りである。The method of shifting is as follows.

第2図に示すガラス織布5を上層のものとすると、中層
のガラス織布と下層のガラス織布とで、たて、よこの辺
がそれぞれ糸幅の2倍の長さを持つ上層の矩形織り目1
1を埋める。中層交点12が上層の織り目11の左上隅
に来るように、中層のたて糸13とよこ糸14を上層に
対して1糸幅分だけX、Y方向にずらす。また下層の交
点15が上層の織り目11の右下隅に来るように、下層
のたて糸23とよこ糸24を2糸幅分だけX、Y方向に
ずらす。
Assuming that the glass woven fabric 5 shown in Fig. 2 is the upper layer, the middle layer glass woven fabric and the lower layer glass woven fabric form a rectangular upper layer with vertical and horizontal sides each having a length twice the yarn width. Weave 1
Fill in 1. The warp yarns 13 and weft yarns 14 of the intermediate layer are shifted by one yarn width in the X and Y directions with respect to the upper layer so that the intersection point 12 of the intermediate layer is located at the upper left corner of the texture 11 of the upper layer. Further, the warp yarns 23 and weft yarns 24 of the lower layer are shifted in the X and Y directions by two yarn widths so that the intersection point 15 of the lower layer is located at the lower right corner of the weave 11 of the upper layer.

このように上下のガラス織布をずらすと、任意の点の厚
さ方向の糸数及び持数が面方向に亙って均一となり、誘
電特性が面方向に依存しなくなる。
When the upper and lower glass woven fabrics are shifted in this way, the number of threads in the thickness direction at any point and the number of yarns held are uniform across the surface direction, and the dielectric properties no longer depend on the surface direction.

その結果、平面回路の設計に当って、面方向の確認、管
理が不要となり、面方向によりマイクロストリップ線路
の幅を変える必要がなくなる。
As a result, when designing a planar circuit, there is no need to check or manage the planar direction, and there is no need to change the width of the microstrip line depending on the planar direction.

また、マイクロストリップライン型共振器を形成する際
、単一周波数に対して一種類の寸法で済む。
Furthermore, when forming a microstrip line type resonator, only one type of dimension is required for a single frequency.

さらに、高価なテフロン銅張積層板にストリップライン
回路を多数取り付けるための割付けが容易となる。
Furthermore, it becomes easy to allocate an expensive Teflon copper-clad laminate for attaching a large number of stripline circuits.

なお、上記実施例では、たて糸とよこ糸の番手。In addition, in the above example, the counts of the warp and weft.

持数が等しい織布の場合について述べたが、たて糸とよ
こ糸の番手、持数が異なる絹布の場合には、積層する際
に、織り方向が1本方向に偏せず、全方向に均等に向く
ように重ねて、布目方向による誘電特性の相違を解消す
る。例えばこのようなガラス織布を2枚積層する場合に
は、例えば織り方向を直交させる。
We have described the case of woven fabrics with the same number of yarns, but in the case of silk fabrics with different numbers of warp and weft yarns and different numbers of yarns, when layering, the weaving direction will not be biased toward one direction, but will be evenly distributed in all directions. By stacking them so that they face each other, differences in dielectric properties due to the direction of the grain can be eliminated. For example, when two such glass woven fabrics are laminated, the weaving directions are made perpendicular to each other, for example.

[発明の効果] 以上型するに本発明によれば、面方向の誘電特性がほぼ
等しくなるので、面方向を考慮する必要がなくなり、平
面回路の設計が容易となる。また、銅張積層板への平面
回路の割付けが容易となるので高価なテフロン銅張積層
板の有効利用が図れて頗る経済的となる。
[Effects of the Invention] To summarize, according to the present invention, the dielectric characteristics in the planar direction are approximately equal, so there is no need to consider the planar direction, and the planar circuit can be easily designed. In addition, since it becomes easy to allocate planar circuits to the copper-clad laminate, the expensive Teflon copper-clad laminate can be used effectively, making it extremely economical.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る一実施例を示すガラス織布補強銅
張積層板の断面図、第2図は第1図に用いられるガラス
織布の一例を示す平面図である。 図中、1はテフロン基板、2は銅箔、3はたて糸、4は
よこ糸、5はガラス織布、10は銅張積層板、11は織
り目である。
FIG. 1 is a sectional view of a glass woven fabric-reinforced copper-clad laminate showing an embodiment of the present invention, and FIG. 2 is a plan view showing an example of the glass woven fabric used in FIG. 1. In the figure, 1 is a Teflon substrate, 2 is a copper foil, 3 is a warp, 4 is a weft, 5 is a glass woven fabric, 10 is a copper-clad laminate, and 11 is a texture.

Claims (3)

【特許請求の範囲】[Claims] (1)テフロン基板の表裏に銅箔を張設すると共に、上
記テフロン基板中に補強用のガラス織布を基板の厚さ方
向に積層したガラス織布補強銅張積層板において、積層
した上下のガラス織布が支配的となる銅張積層板の誘電
特性が、銅張積層板の面方向のいずれの方向においても
ほぼ等しくなるように、上下のガラス織布をずらして積
層したことを特徴とするガラス織布補強銅張積層板。
(1) In a glass woven reinforced copper clad laminate in which copper foil is stretched on the front and back sides of a Teflon substrate, and a reinforcing glass woven fabric is laminated in the thickness direction of the substrate within the Teflon substrate, the top and bottom of the laminated It is characterized in that the upper and lower glass woven fabrics are stacked with an offset so that the dielectric properties of the copper-clad laminate, in which the glass woven fabric is dominant, are approximately equal in any direction along the surface of the copper-clad laminate. Glass woven reinforced copper clad laminate.
(2)上記ガラス織布が、たて糸およびよこ糸の番手、
持数の等しいガラス織布であって、これらの上下の積層
がガラス織布の織り目を埋めるように織り目をずらして
積層されていることを特徴とする特許請求の範囲第1項
記載の積層板。
(2) The glass woven fabric has warp and weft counts,
The laminate according to claim 1, characterized in that the glass woven fabrics have the same number of fibers, and the upper and lower laminated layers are stacked with the weave offset so as to fill the weave of the glass woven fabric. .
(3)上記ガラス織布が、たて糸およびよこ糸の番手ま
たは持数の異なるガラス織布であって、これらの上下の
積層が織り方向を直交するようにずらして積層されてい
ることを特徴とする特許請求の範囲第1項記載の積層板
(3) The above-mentioned glass woven fabric is characterized in that it is a glass woven fabric with different counts or numbers of warp and weft yarns, and the upper and lower layers are stacked with the weaving direction shifted orthogonally to each other. A laminate according to claim 1.
JP7040687A 1987-03-26 1987-03-26 Glass woven fabric-reinforced copper-clad laminated board Pending JPS63236642A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7040687A JPS63236642A (en) 1987-03-26 1987-03-26 Glass woven fabric-reinforced copper-clad laminated board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7040687A JPS63236642A (en) 1987-03-26 1987-03-26 Glass woven fabric-reinforced copper-clad laminated board

Publications (1)

Publication Number Publication Date
JPS63236642A true JPS63236642A (en) 1988-10-03

Family

ID=13430554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7040687A Pending JPS63236642A (en) 1987-03-26 1987-03-26 Glass woven fabric-reinforced copper-clad laminated board

Country Status (1)

Country Link
JP (1) JPS63236642A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013030560A (en) * 2011-07-27 2013-02-07 Yaskawa Electric Corp Multilayer wiring board and electronic apparatus
JP2015118992A (en) * 2013-12-17 2015-06-25 株式会社デンソー Electronic device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013030560A (en) * 2011-07-27 2013-02-07 Yaskawa Electric Corp Multilayer wiring board and electronic apparatus
JP2015118992A (en) * 2013-12-17 2015-06-25 株式会社デンソー Electronic device

Similar Documents

Publication Publication Date Title
JP5799237B2 (en) Printed wiring board
JP5302635B2 (en) Multilayer wiring board
US4654248A (en) Printed wiring board with zones of controlled thermal coefficient of expansion
US20080176471A1 (en) Glass cloth wiring substrate
JPS63236642A (en) Glass woven fabric-reinforced copper-clad laminated board
JP6031943B2 (en) Circuit board, circuit board manufacturing method, electronic device, and glass cloth
JP2744866B2 (en) Laminates for printed circuit boards
JP2783359B2 (en) Fluororesin multilayer circuit board
JP2523649B2 (en) Glass fiber woven reinforced printed wiring board
JPH0736465B2 (en) Printed wiring board
JP2019106438A (en) Print circuit board and wireless communication device
JP3323116B2 (en) Glass cloth
JPH04282894A (en) Multilayer printed wiring board
US11596054B2 (en) Method of producing printed circuit boards with routing conductors and dielectric strands
JP3272437B2 (en) Glass fiber woven fabric and method for producing the same
JPH1037038A (en) Glass cloth
JPH08321679A (en) Multilayer printed wiring board
JP5506984B2 (en) Multilayer wiring board
JPH09316749A (en) Glass cloth
JP2024013103A (en) Core substrate, manufacturing method thereof, and multilayer wiring substrate
JPH02189997A (en) Multilayered printed circuit board
JP2570250B2 (en) Prepreg and laminate
JPH0760903A (en) Laminated sheet
JP2022116398A (en) printed wiring board
JP2550510B2 (en) Prepreg and laminated board