JPS63235617A - Exhaust gas cleaning device for internal combustion engine - Google Patents

Exhaust gas cleaning device for internal combustion engine

Info

Publication number
JPS63235617A
JPS63235617A JP62067902A JP6790287A JPS63235617A JP S63235617 A JPS63235617 A JP S63235617A JP 62067902 A JP62067902 A JP 62067902A JP 6790287 A JP6790287 A JP 6790287A JP S63235617 A JPS63235617 A JP S63235617A
Authority
JP
Japan
Prior art keywords
exhaust
passage
exhaust gas
ingredient
bypass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62067902A
Other languages
Japanese (ja)
Inventor
Yoshio Fujimoto
藤本 佳夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP62067902A priority Critical patent/JPS63235617A/en
Publication of JPS63235617A publication Critical patent/JPS63235617A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2410/00By-passing, at least partially, exhaust from inlet to outlet of apparatus, to atmosphere or to other device

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

PURPOSE:To enable the efficient recovery of unburnt HC by providing a bypass exhaust gas cooling means and a condensed ingredient reservoir for condensing an unburnt HC ingredient in order an exhaust bypass which is branched off of an exhaust passage, and introducing said unburnt HC ingredient into an intake passage after warming up an engine. CONSTITUTION:An exhaust bypass 5 is branched off of an exhaust passage 2 on the lower course side of a catalyst converter 3, and a selector valve 14 which is switched so as to open a bypass 5 side when the catalyst converter 3 is judged in an inactive condition under a low intake temp., is provided in its branched part 5a. And, a cooling pipe 30 which consists of plural cooling passages 30a-30c and which is cooled by an air flow is provided midway in the exhaust bypass 5 to cool exhaust gas in order condense an unburnt HC ingredient in the exhaust gas. And the condensed ingredient is collected in a condensed ingredient reservoir 30b and, after warming up an engine, a liquid type unburnt HC in the reservoir 30b is mixed with air introduced from a vent hole 7 through a check valve 8 and, then, fed into an intake passage 19 on the upper course side of a throttle valve 23 through a passage 33.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、内燃機関から排出される未燃HCを処理する
排気浄化装置に関Jる。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an exhaust purification device for treating unburned HC discharged from an internal combustion engine.

従来の技術 ガソリン機関、ディーゼル1関等を搭載した車両では、
一般に、未燃11cエミツシヨンの低減をはかるために
、排気通路に触媒コンバータが取付けられている。
In vehicles equipped with conventional technology gasoline engine, diesel engine, etc.
Generally, a catalytic converter is installed in the exhaust passage in order to reduce unburned 11c emissions.

また、アルコールまたはガソリンとの混合燃料を使用す
る火花点火機関では、機関冷間時に未燃HCが多聞に排
出されるため、例えば第4図に示すように、排気浄化装
置として、触媒コンバーク3の下流に未燃IIcを吸収
するための吸着装置6を備えている。
In addition, in spark ignition engines that use fuel mixed with alcohol or gasoline, a large amount of unburned HC is emitted when the engine is cold. An adsorption device 6 for absorbing unburned IIc is provided downstream.

この排気浄化装置について説明すると、機関本体1の排
気通路2に設けた触媒コンバータ3とマフラ4の間に排
気バイパス通路5を設け、排気バイパス通路5の途中に
未燃1−I Cを吸着する吸着装置6を設けており、吸
着装置6の下流の朗気バイパス通路5には、未燃1−(
Cのパージ時に通気孔7がら空気を吸着装置6に流入さ
、せる逆止弁8と、排気通路2の下流側接続部2aから
排気バイパス通路5に排気が逆流するのを防止16逆止
弁9が介装されている。
To explain this exhaust purification device, an exhaust bypass passage 5 is provided between a catalytic converter 3 provided in an exhaust passage 2 of an engine body 1 and a muffler 4, and unburned 1-IC is adsorbed in the middle of the exhaust bypass passage 5. An adsorption device 6 is provided, and an unburnt 1-(
A check valve 8 that allows air to flow into the adsorption device 6 through the vent hole 7 during purging of C, and a check valve 16 that prevents exhaust from flowing back into the exhaust bypass passage 5 from the downstream connecting portion 2a of the exhaust passage 2. 9 is interposed.

冷間時には、第4図のように、制御装置10の指令によ
り三方電磁弁11を大気側に切換え、ダイアフラム装置
12のダイアフラム室13に大気圧を導入し、切換弁1
4を開くことにより、触媒コンバータ3からの排気を排
気バイパス通路5に導くようにし、触媒コンバータ3で
トラップできなかった未燃HCを吸着装置6に吸着する
When cold, as shown in FIG. 4, the three-way solenoid valve 11 is switched to the atmospheric side by a command from the control device 10, atmospheric pressure is introduced into the diaphragm chamber 13 of the diaphragm device 12, and the switching valve 1
By opening 4, exhaust gas from the catalytic converter 3 is guided to the exhaust bypass passage 5, and unburned HC that could not be trapped by the catalytic converter 3 is adsorbed in the adsorption device 6.

暖11後は、排気を排気バイパス通路5に流さず、排気
通路2に流し、熱活性化された触媒コンバータ3r:未
燃HCを酸化除去するとともに、冷間中に吸着装置6で
吸着した未燃HCをバイメタルバキュームスイッヂング
バルブ(BVSV)16の開により、通路17を経てパ
ージボー1・21からサージタンク18の上流の吸気通
路19に吸引し、この未燃HCを空気と共に燃焼室20
にて燃焼させる。
After warming up 11, the exhaust gas is not passed through the exhaust bypass passage 5 but through the exhaust passage 2 to oxidize and remove unburned HC from the thermally activated catalytic converter 3r, and remove unburned HC adsorbed by the adsorption device 6 during the cold period. By opening the bimetallic vacuum switching valve (BVSV) 16, burned HC is sucked from the purge bows 1 and 21 through the passage 17 into the intake passage 19 upstream of the surge tank 18, and this unburned HC is transferred together with air into the combustion chamber 20.
Burn it.

発明が解決しようとする問題点 しかし、従来の排気浄化装置にあっては、第4図のよう
に、排気中の未燃HCを吸着するための吸着フィルタ2
2を設けているので、吸着フィルタ22による排気の背
圧が増加し、FjM閏の出力が低下するという問題があ
る。
Problems to be Solved by the Invention However, in the conventional exhaust purification device, as shown in FIG. 4, an adsorption filter 2 for adsorbing unburned HC in the exhaust gas
2, there is a problem in that the back pressure of the exhaust gas due to the adsorption filter 22 increases and the output of the FjM jump decreases.

本発明は、このような問題点を解決するためになされた
もので、吸着フィルタを用いることなく、排気中の未燃
LI Cを回収することを目的とする。
The present invention was made to solve these problems, and aims to recover unburned LIC in exhaust gas without using an adsorption filter.

問題点を解決するための手段 前記[1的を達成するために、本発明の内燃11関の排
気浄化装置は、排気通路から分岐される排気バイパス通
路を備え、この分岐部に切換弁を介装するとともに、排
気バイパス通路にバイパス排気を冷却する冷却手段を設
け、この冷却手段の下流の排気バイパス通路に排気中の
未燃HC成分を凝縮する凝縮成分溜を設け、該凝縮成分
溜に溜められた未燃HC成分を暖機後にパージボー]・
がら空気ととしに吸気通路に導入りるように構成されて
いる。
Means for Solving the Problems In order to achieve the above-mentioned [1], the internal combustion exhaust gas purification device of the present invention is provided with an exhaust bypass passage branching from the exhaust passage, and a switching valve is interposed in this branching part. At the same time, a cooling means for cooling the bypass exhaust gas is provided in the exhaust bypass passage, a condensed component reservoir for condensing unburned HC components in the exhaust gas is provided in the exhaust bypass passage downstream of the cooling means, and the unburned HC components are stored in the condensed component reservoir. Purge the unburned HC components after warming up]・
The structure is such that the air is introduced into the intake passage.

作   用 IRI3Ilの低温時には、排気が排気バイパス通路を
流れて冷却手段で冷却され、排気中の未燃HCは凝縮さ
れて凝縮成分溜に溜められると共に、未燃HCが除去さ
れた排気は排気通路に戻される。
Effect When the temperature of IRI3Il is low, the exhaust gas flows through the exhaust bypass passage and is cooled by the cooling means, and the unburned HC in the exhaust gas is condensed and stored in the condensate reservoir, and the exhaust gas from which the unburned HC has been removed flows through the exhaust passage. will be returned to.

機関が暖機されると、凝縮成分溜に溜められた液状の未
燃1−I Cは、空気と共に霧化されてパージポートか
ら吸気通路に導入される。
When the engine is warmed up, the liquid unburned 1-IC stored in the condensed component reservoir is atomized together with air and introduced into the intake passage through the purge port.

したがって、機関低温時に排気中の未燃HCが回収され
、暖機後にこの回収された未燃トICが吸気通路に導入
されるため、排出ガスとして大気中に排出される未燃1
1Gは低減される。
Therefore, unburned HC in the exhaust gas is recovered when the engine is at low temperature, and the recovered unburned IC is introduced into the intake passage after the engine is warmed up.
1G is reduced.

実  施  例 本発明の実施例を図面に基づいて説明する。Example Embodiments of the present invention will be described based on the drawings.

第1図は本発明をガソリン機関に適用した実施例を示し
ている。第1図において、第4図と実質的に同一の構成
部分については同−符qを付すことにする。
FIG. 1 shows an embodiment in which the present invention is applied to a gasoline engine. In FIG. 1, components that are substantially the same as those in FIG. 4 are designated by the same symbol q.

エアクリーナ21から吸気通路19に導入された吸入空
気は、その流■がスロットルバルブ23により制御され
、サージタンク18を経て吸気ボート24から燃焼室2
0に吸引され、燃焼される。
The flow of the intake air introduced into the intake passage 19 from the air cleaner 21 is controlled by the throttle valve 23, and the intake air passes through the surge tank 18 from the intake boat 24 to the combustion chamber 2.
It is sucked into zero and burned.

燃焼室20の排気ボートから排出された排気は、触媒コ
ンバータ3を経て排気通路2を流れる。触媒コンバータ
3のハウジング3aには、触媒コンバータ3の温度を検
出りる触TR温センサ25が設けられている。
Exhaust gas discharged from the exhaust boat of the combustion chamber 20 flows through the exhaust passage 2 via the catalytic converter 3. The housing 3a of the catalytic converter 3 is provided with a temperature sensor 25 for detecting the temperature of the catalytic converter 3.

触媒コンバータ3の下流側の排気通路2からは、排気バ
イパス通路5が分岐され、そのざらに下流側は、排気通
路2に合流されている。
An exhaust bypass passage 5 branches off from the exhaust passage 2 on the downstream side of the catalytic converter 3, and merges into the exhaust passage 2 roughly downstream.

排気通路2と排気バイパス通路5との分岐部5aには、
排気の流路を切換る切換弁14が設けられ、切換弁14
は、ダイアフラム装置12により(1気の流路を主排気
通路2aまたは排気バイパス通路5に選択的に切換える
。ダイアフラム装置12のダイアフラム室13には、通
路26に介装される三方電磁弁11により大気圧又はり
°−ジタンク1@8内の吸気管負圧が導入される。通路
26の途中には、三方電磁弁11が吸気管負圧側に切換
ねっているとき、ダイアフラム室13内の空気を吸気管
に吸引し、また吸気管内の負圧が小ざいときにダイアフ
ラム室13内への空気の流入を阻止する逆止弁28が設
けられている。
At the branch part 5a between the exhaust passage 2 and the exhaust bypass passage 5,
A switching valve 14 is provided to switch the exhaust flow path, and the switching valve 14
The diaphragm device 12 selectively switches the flow path of (1 air) to the main exhaust passage 2a or the exhaust bypass passage 5. Atmospheric pressure or negative pressure in the intake pipe in the rigid tank 1@8 is introduced.In the middle of the passage 26, when the three-way solenoid valve 11 is switched to the negative pressure side in the intake pipe, air in the diaphragm chamber 13 is introduced. A check valve 28 is provided to draw air into the intake pipe and to prevent air from flowing into the diaphragm chamber 13 when the negative pressure in the intake pipe is small.

排気バイパス通路5の途中には、冷却手段としての冷却
管30が設けられ、冷却管30を通過したバイパス排気
は、凝縮成分溜31に流入される。
A cooling pipe 30 as a cooling means is provided in the middle of the exhaust bypass passage 5, and the bypass exhaust gas that has passed through the cooling pipe 30 flows into a condensed component reservoir 31.

冷IJl管30で十分に冷rJ1された排気は、凝縮し
た排気成分(主として未燃HC)が凝縮成分溜31で除
去された後、下流側排気バイパス通路5bにより逆止弁
9を介して主排気通路2aに合流される。
After the condensed exhaust components (mainly unburned HC) are removed in the condensed component reservoir 31, the exhaust gas that has been sufficiently cooled by the cold IJl pipe 30 is sent to the main stream via the check valve 9 by the downstream exhaust bypass passage 5b. It merges into the exhaust passage 2a.

凝縮成分溜31に溜まった液状の未燃HCは、機関の暖
機後、通気孔7から逆止弁8を経て導入された空気と混
合され、この混合気は、バイメタルバキコームスイッチ
ングバルブ(BVSV)32を介して通路33よりパー
ジポート34からスロツ]−ルバルブ23のづぐ上流の
吸気通路19にパージされる。パージ時には切換弁14
で排気バイパス通路5の入口を閉じている。
The liquid unburned HC accumulated in the condensed component reservoir 31 is mixed with air introduced from the vent hole 7 through the check valve 8 after the engine is warmed up, and this mixture is passed through the bimetal vacuum comb switching valve (BVSV). ) 32 , the air is purged from the purge port 34 to the intake passage 19 upstream of the throttle valve 23 . When purging, selector valve 14
The entrance of the exhaust bypass passage 5 is closed.

なお、冷却管30は、複数の冷却通路30a。Note that the cooling pipe 30 includes a plurality of cooling passages 30a.

30b、30Gからなり、該通路の周囲には図示しない
冷却ファンが設けられている。
30b and 30G, and a cooling fan (not shown) is provided around the passage.

次に三方電磁弁11とBVSV32の動作について説明
すると、例えば第2図に示す各種センサからの信号を受
は入れた制御装置40により三方電磁弁11及びBVS
V32が制御される。制御装置40の排気流路切換弁制
御手段41には、吸入空気温度セン4)45と触媒温度
センサ25からの信号が入力され、パージ流路開閉弁制
御手段42には、吸入空気温度セン1ノ45、触媒温度
センサ°25、機関水温度センサ46、機関回転数セン
4J47からの各信号が入力される。排気流m切換弁制
御手段41の指令により三方電磁弁駆動回路43が駆動
され、この出力により三方電磁弁11が制御される。ま
たパージ流路開閉弁制御手段42の指令によりBVSV
駆動回路44が駆動され、この出力により[3VSV3
2が制御される。
Next, the operation of the three-way solenoid valve 11 and the BVSV 32 will be explained. For example, the three-way solenoid valve 11 and the BVSV 32 are
V32 is controlled. Signals from the intake air temperature sensor 4) 45 and catalyst temperature sensor 25 are input to the exhaust flow path switching valve control means 41 of the control device 40, and signals from the intake air temperature sensor 4) 45 and the catalyst temperature sensor 25 are input to the purge flow path switching valve control means 42. 45, catalyst temperature sensor 25, engine water temperature sensor 46, and engine speed sensor 4J47 are input. A three-way solenoid valve drive circuit 43 is driven by a command from the exhaust flow m switching valve control means 41, and the three-way solenoid valve 11 is controlled by this output. In addition, the BVSV is
The drive circuit 44 is driven, and this output causes [3VSV3
2 is controlled.

第3図は、三方電磁弁11とBVSV32の動作の一例
を示すフローチャー1−である。
FIG. 3 is a flowchart 1- showing an example of the operation of the three-way solenoid valve 11 and the BVSV 32.

最初のステップ51では、吸気温Tin、触媒温Tca
t、機関水温Tw、機関回転数Qを読み込む。
In the first step 51, the intake temperature Tin, the catalyst temperature Tca
t, engine water temperature Tw, and engine speed Q.

次のステップ52では、吸気m T i nが10℃以
下か否かを判別し、Tin≦10℃であれば、低温時と
みなし、次のステップ53に逝み、触媒温TCatが2
00℃以下か否かを判別し、Tcat≦200℃であれ
ば、触媒コンバータ3が不活性化状態とみなし、次のス
テップ54に進み、BVSV32を閉じると共に、次の
ステップ55にて、三方電磁弁11を負圧側に切換える
。三方電磁弁11が負圧側に切換わると、ダイアフラム
室13に通路26から吸気管負圧が導入され、ダイアフ
ラム12aがスプリング12bに抗してロンド12Cを
矢印方向に引張り、切換弁14をバイパス排気通路側に
切換える。これにより、排気は排気バイパス通路5の途
中の冷却手段30で冷却され、凝縮成分溜31に排気中
の未燃11G成分が凝縮される。
In the next step 52, it is determined whether or not the intake air m T in is 10°C or less, and if Tin≦10°C, it is considered that the temperature is low, and the process goes to the next step 53, where the catalyst temperature TCat is 2.
If Tcat≦200°C, it is determined that the catalytic converter 3 is in an inactivated state, and the process proceeds to the next step 54, where the BVSV 32 is closed, and at the next step 55, the three-way electromagnetic Switch the valve 11 to the negative pressure side. When the three-way solenoid valve 11 is switched to the negative pressure side, intake pipe negative pressure is introduced into the diaphragm chamber 13 from the passage 26, the diaphragm 12a pulls the iron 12C in the direction of the arrow against the spring 12b, and the switching valve 14 is bypassed and exhausted. Switch to the aisle side. As a result, the exhaust gas is cooled by the cooling means 30 in the middle of the exhaust bypass passage 5, and the unburned 11G component in the exhaust gas is condensed into the condensed component reservoir 31.

ステップ53において、触tR温■cat>200℃と
判別されると、触媒コンバータ3が活性状態にあるどみ
なされ、ステップ56に進む。ステップ56では、三方
電磁弁11を大気側に聞いて、ダイアフラム室13に通
路26からの大気圧を導入し、ロンド12Gを矢印反対
方向に押し上げ、切換弁14で排気バイパス通路5の入
口を閉じ、排気の流れを主排気通路2a側に切換える。
If it is determined in step 53 that the tR temperature cat>200° C., it is assumed that the catalytic converter 3 is in an active state, and the process proceeds to step 56. In step 56, the three-way solenoid valve 11 is set to the atmosphere side, atmospheric pressure is introduced from the passage 26 into the diaphragm chamber 13, the rond 12G is pushed up in the opposite direction of the arrow, and the inlet of the exhaust bypass passage 5 is closed with the switching valve 14. , the flow of exhaust gas is switched to the main exhaust passage 2a side.

次のステップ57では、機関水ITwが60℃以上であ
るか否かを判別し、TV<60℃であれば、このルーチ
ンを終了し、1w560℃であれば、暖機後とみなし、
ステップ58に進み、機関回転数Qが1200rpm以
上であるか否かを判別する。ステップ58にて、Q≧1
200rpmであれば、ステップ59に進み、BVSV
32を開く。
In the next step 57, it is determined whether the engine water ITw is 60°C or higher, and if TV<60°C, this routine is ended, and if 1w560°C, it is considered that it has been warmed up.
Proceeding to step 58, it is determined whether the engine speed Q is 1200 rpm or more. At step 58, Q≧1
If it is 200 rpm, proceed to step 59 and BVSV
Open 32.

この時パージポート34には吸気管負圧が生じているた
め、通路33を経て凝縮成分[31に吸気管負圧が導入
され、これにより逆止弁8が開いて通気孔7より空気が
凝縮成分溜31に導入され、空気と未燃11Gとの混合
気が[3VSV32を経てパージポート34から吸気通
路19に吸引される。
At this time, since intake pipe negative pressure is generated in the purge port 34, the intake pipe negative pressure is introduced into the condensed component [31] through the passage 33, which opens the check valve 8 and condenses air from the vent hole 7. A mixture of air and unburnt 11G is introduced into the component reservoir 31 and is sucked into the intake passage 19 from the purge port 34 via the 3VSV 32.

発明の詳細 な説明したように、本発明によれば、機関冷間時に排出
される排気を冷却することにより、1気中の未燃1」G
を効率良く回収し、この未燃HC成分を空気とJtに暖
機後に再燃焼させるので、吸容フィルタを設4)なくと
も未燃[−10を回収することができるとともに、機関
の冷間時、特に未暖機状態での運転時間が長いとき、燃
費を向上させることができる。
As described in detail, according to the present invention, by cooling the exhaust gas discharged when the engine is cold, unburned 1''G
Since this unburned HC component is re-burned in the air and Jt after warming up, it is possible to recover unburned [-10] even without installing an absorption filter, and it is possible to recover Fuel efficiency can be improved when the vehicle is operated for a long time, especially when the vehicle is not warmed up.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例をあられす概略構成図、第2図
は第1図に示す実施例で用いる制御装置をあられすブロ
ック図、 第3図は第1図に示す実施例の各弁装豹の動作をあられ
すフローチャート、 第4図は従来例をあられず概略構成図である。 1・・・機関本体、    2・・・排気通路、3・・
・触媒コンバータ、 5・・・排気バイパス通路、7・
・・通気孔、     8・・・逆止弁、9・・・逆止
弁、      11・・・三方電磁弁、12・・・ダ
イアフラム装置、 14・・・切換弁、     19・・・吸気通路、2
3・・・スロットルバルブ、 30・・・冷却(冷却手段)、 31・・・凝縮成分溜、 32・・・バイメタルバキュームスイッヂングバルブ(
f3VsV)、 34・・・バージボー1・、 40・・・制御装置。
FIG. 1 is a schematic configuration diagram showing an embodiment of the present invention, FIG. 2 is a block diagram showing a control device used in the embodiment shown in FIG. 1, and FIG. 3 is a block diagram showing each embodiment of the invention shown in FIG. FIG. 4 is a flowchart showing the operation of the Benso Hyo, and is a schematic configuration diagram of a conventional example. 1... Engine body, 2... Exhaust passage, 3...
・Catalytic converter, 5...exhaust bypass passage, 7.
...Vent hole, 8...Check valve, 9...Check valve, 11...Three-way solenoid valve, 12...Diaphragm device, 14...Switching valve, 19...Intake passage, 2
3... Throttle valve, 30... Cooling (cooling means), 31... Condensed component reservoir, 32... Bimetal vacuum switching valve (
f3VsV), 34... Bargebo 1., 40... Control device.

Claims (1)

【特許請求の範囲】[Claims] 排気通路から分岐される排気バイパス通路を備え、この
分岐部に切換弁を介装するとともに、排気バイパス通路
にバイパス排気を冷却する冷却手段を設け、この冷却手
段の下流の排気バイパス通路に排気中の未燃HC成分を
凝縮する凝縮成分溜を設け、該凝縮成分溜に溜められた
未燃HC成分を暖機後にパージポートから空気とともに
吸気通路に導入することを特徴とした内燃機関の排気浄
化装置。
An exhaust bypass passage is provided that branches from the exhaust passage, a switching valve is interposed in this branching part, and a cooling means for cooling the bypass exhaust is provided in the exhaust bypass passage, and a cooling means for cooling the bypass exhaust is provided in the exhaust bypass passage downstream of the cooling means. A condensed component reservoir for condensing unburned HC components is provided, and the unburned HC components stored in the condensed component reservoir are introduced into an intake passage together with air from a purge port after warming up. Device.
JP62067902A 1987-03-24 1987-03-24 Exhaust gas cleaning device for internal combustion engine Pending JPS63235617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62067902A JPS63235617A (en) 1987-03-24 1987-03-24 Exhaust gas cleaning device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62067902A JPS63235617A (en) 1987-03-24 1987-03-24 Exhaust gas cleaning device for internal combustion engine

Publications (1)

Publication Number Publication Date
JPS63235617A true JPS63235617A (en) 1988-09-30

Family

ID=13358288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62067902A Pending JPS63235617A (en) 1987-03-24 1987-03-24 Exhaust gas cleaning device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPS63235617A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2772829A1 (en) * 1997-12-24 1999-06-25 Valeo Thermique Moteur Sa CATALYTIC CONTAINER WITH TEMPERATURE MANAGEMENT, ESPECIALLY FOR A MOTOR VEHICLE
EP1350013A4 (en) * 2000-12-05 2006-10-04 Ju-Chel Lee Exhaust gas control device for internal combustion engines
JP2007198321A (en) * 2006-01-27 2007-08-09 Yanmar Co Ltd Exhaust structure of internal combustion engine
US8161732B2 (en) * 2008-03-05 2012-04-24 Ford Global Technologies, Llc System and method to improve engine emissions for a dual fuel engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2772829A1 (en) * 1997-12-24 1999-06-25 Valeo Thermique Moteur Sa CATALYTIC CONTAINER WITH TEMPERATURE MANAGEMENT, ESPECIALLY FOR A MOTOR VEHICLE
EP1350013A4 (en) * 2000-12-05 2006-10-04 Ju-Chel Lee Exhaust gas control device for internal combustion engines
JP2007198321A (en) * 2006-01-27 2007-08-09 Yanmar Co Ltd Exhaust structure of internal combustion engine
JP4634311B2 (en) * 2006-01-27 2011-02-16 ヤンマー株式会社 Exhaust structure of internal combustion engine
US8161732B2 (en) * 2008-03-05 2012-04-24 Ford Global Technologies, Llc System and method to improve engine emissions for a dual fuel engine

Similar Documents

Publication Publication Date Title
EP1419309B1 (en) Exhaust gas purification system and method for internal combustion engine
JP3855818B2 (en) Diesel engine exhaust purification system
RU2390642C2 (en) Device and method to purify ice exhaust gases
WO1995018292A1 (en) An exhaust gas purification device
US11261770B1 (en) Catalyst light off using purge fuel and e-booster
JPH07259654A (en) Exhaust gas circulating device of diesel engine
JPS63235617A (en) Exhaust gas cleaning device for internal combustion engine
JP2004324454A (en) Exhaust emission control device of internal combustion engine
JPH0417710A (en) Purifying device of engine exhaust gas
JPS63235616A (en) Exhaust gas cleaning device for internal combustion engine
JP2004176636A (en) Exhaust emission control device for internal combustion engine
JPH06101461A (en) Exhaust gas purifying device for internal combustion engine
WO2009133311A1 (en) Equipment for removing pollutants from exhaust gases from an internal combustion engine having selectively active or inactive cylinders, and method using such equipment
JPS63235615A (en) Exhaust gas cleaning device for internal combustion engine
JP3248290B2 (en) Exhaust gas purification device for internal combustion engine
JP2850664B2 (en) Exhaust gas purification device for internal combustion engine
JP4158467B2 (en) Exhaust treatment device for internal combustion engine and method for treating evaporated fuel by the device
JPH10176528A (en) Method for operating internal combustion engine
JPH0742538A (en) Exhaust emission control device for vehicle
JP3467931B2 (en) Exhaust gas purification device for internal combustion engine
JP3508594B2 (en) Internal combustion engine having lean NOx catalyst
JP2007056756A (en) Exhaust emission control system for internal combustion engine
JP3557927B2 (en) Internal combustion engine having lean NOx catalyst
JPH0286910A (en) Exhaust gas purification device for internal combustion engine using alcohol
JPH036807Y2 (en)