JPS63234147A - Phase difference detecting method for alternating-current application and polarization reaction - Google Patents

Phase difference detecting method for alternating-current application and polarization reaction

Info

Publication number
JPS63234147A
JPS63234147A JP7010987A JP7010987A JPS63234147A JP S63234147 A JPS63234147 A JP S63234147A JP 7010987 A JP7010987 A JP 7010987A JP 7010987 A JP7010987 A JP 7010987A JP S63234147 A JPS63234147 A JP S63234147A
Authority
JP
Japan
Prior art keywords
phase difference
current
potential
voltage
titration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7010987A
Other languages
Japanese (ja)
Other versions
JP2523608B2 (en
Inventor
Yoneichi Kitayama
北山 米一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYOTO DENSHI KOGYO KK
Kyoto Electronics Manufacturing Co Ltd
Original Assignee
KYOTO DENSHI KOGYO KK
Kyoto Electronics Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYOTO DENSHI KOGYO KK, Kyoto Electronics Manufacturing Co Ltd filed Critical KYOTO DENSHI KOGYO KK
Priority to JP62070109A priority Critical patent/JP2523608B2/en
Publication of JPS63234147A publication Critical patent/JPS63234147A/en
Application granted granted Critical
Publication of JP2523608B2 publication Critical patent/JP2523608B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a stable measured value and to improve detection accuracy by supplying a fine AC current between detection electrodes dipped in liquid to be inspected and detecting the polarization state of the liquid to be inspected based on the phase difference between inter-electrode potential generated at this time and the current. CONSTITUTION:The detection electrodes 7 are supplied with the alternating current from an oscillator 111 through a constant current circuit 12. At this time, the potential e0 generated between the detection electrodes 7 is amplified by an amplifier 13 to obtain a voltage E0 and a voltage e1 in phase with the current I is amplified by an amplifier 16 to obtain a voltage E1; and those voltages are inputted to a phase difference detecting means 20, which detects the phase difference between both. The detected phase difference signal fS is inputted to a CPU 14, which sends an instruction based upon the signal fS to a current control circuit 16 to control a tritration current supplied between an anode 2 and a cathode 4. The memory of the CPU 14 is stored with a phase difference corresponding to a tritration end point and the tritration current is controlled to zero when the phase difference is realized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、被検液の分極状態を検出する方法、特に滴
定の終点の判定を行う方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for detecting the polarization state of a test liquid, and particularly to a method for determining the end point of titration.

〔従来技術とその問題点〕[Prior art and its problems]

電量滴定及び容量滴定に於いては、滴定の進行状態、特
にその終点を精度良く検出することが重、要である。
In coulometric and volumetric titrations, it is important to accurately detect the progress of titration, especially the end point.

この滴定の終点検出の方法の一つに、被検液中に一対の
電極を浸清し、これに定電流装置から微少電流を流し、
このとき発生する分極電位に基づいて滴定量を制御する
分極電位検出方法がある。
One of the methods for detecting the end point of this titration is to immerse a pair of electrodes in the test liquid and apply a small current to them from a constant current device.
There is a polarization potential detection method that controls the titer based on the polarization potential generated at this time.

即ち、滴定の終点近傍に於いて分極電位が太き(変化す
る現象を利用するものであって、カールフィッシャー水
分計に利用されている。
That is, it utilizes the phenomenon in which the polarization potential becomes large (changes) near the end point of titration, and is used in Karl Fischer moisture meters.

この分極電位検出方法には、直流を印加する方法と交流
を印加する方法がある。直流を印加する方法は被検液の
攪拌の影響を受けて測定電位が不安定であり、終点の判
定が困難となる欠点があった。また、交流を印加する方
法は、上記直流印加方法に比して攪拌の影響は小さいの
であるが、第6図に示すように、周波数が高くなると分
極電位の変化が小さくなり、精度が落ちる欠点があり、
高い精度の測定結果を得ようとすると、特公昭53−9
880号公報に開示されているように、数Hzから数十
Hzの範囲の低い周波数を用いる必要がある。
This polarization potential detection method includes a method of applying direct current and a method of applying alternating current. The method of applying direct current has the disadvantage that the measured potential is unstable due to the influence of stirring of the test liquid, making it difficult to determine the end point. In addition, the method of applying alternating current has a smaller effect on stirring than the method of applying direct current, but as shown in Figure 6, as the frequency increases, the change in polarization potential becomes smaller, resulting in lower accuracy. There is,
When trying to obtain highly accurate measurement results,
As disclosed in the '880 publication, it is necessary to use a low frequency in the range of several Hz to several tens of Hz.

しかしながら、このような周波数帯域の交流を処理する
ための電気回路は設計に特別な配慮を必要とし、特に雑
音の除去が非常に困難であるため、期待する程の高精度
は得られない欠点がある。
However, electrical circuits for processing alternating current in such frequency bands require special consideration in design, and in particular, it is extremely difficult to eliminate noise, so the drawback is that the accuracy cannot be achieved as expected. be.

〔発明の目的〕[Purpose of the invention]

この発明は、上記従来の事情に鑑みて提案されたもので
あって、電気的に取扱が簡単な周波数帯域の交流を用い
て分極電位の変化の大きさに関わりなく、精度良(被検
液の分極状態を検出できる方法を提供することを目的と
するものである。
This invention was proposed in view of the above-mentioned conventional circumstances, and uses alternating current in a frequency band that is electrically easy to handle. The purpose of this invention is to provide a method that can detect the polarization state of.

〔目的を達成するための手段〕[Means to achieve the purpose]

上記目的を達成するために、この発明は以下のような手
段を採用している。即ち、被検液中に浸漬されている検
出電極間に微少交流電流を流し、゛このときに発生する
電極間電位と上記電流の位相差に基づいて、被検液の分
極状態を検出するものである。
In order to achieve the above object, the present invention employs the following means. In other words, a small alternating current is passed between detection electrodes immersed in the test liquid, and the polarization state of the test liquid is detected based on the phase difference between the interelectrode potential generated at this time and the current. It is.

この発明は、例えば、カールフィッシャー水分計に適用
することができ、この場合、被検液中のIg濃度が低い
場合には上記位相差が大きく、滴定が進行してIgが過
剰になるほど位相差が小さくなる。従って、所定の12
濃度に対応する位相差で滴定を止めることによって、被
検液中のH20濃度を測定することができる。
The present invention can be applied to, for example, a Karl Fischer moisture analyzer. In this case, when the Ig concentration in the test liquid is low, the phase difference is large, and as the titration progresses and Ig becomes excessive, the phase difference increases. becomes smaller. Therefore, the predetermined 12
By stopping the titration at a phase difference corresponding to the concentration, the H20 concentration in the test liquid can be measured.

上記方法は、電量滴定法、容量滴定法の何れの場合にも
適用できる。
The above method can be applied to both coulometric titration and volumetric titration.

〔実施例〕〔Example〕

第1図はこの発明が適用される電量滴定によるカールフ
ィッシャー水分計の概要を示すものであって、この装置
自体は公知であるので簡単にその構成を説明する。
FIG. 1 shows an outline of a Karl Fischer moisture meter using coulometric titration to which the present invention is applied, and since this device itself is well known, its construction will be briefly explained.

電解室1には陰極室3が挿入され、該陰極室3の低部の
隔膜5を挟んで電解用のアノード2とカソード4が配設
されている。電解室1には更に検出電極7が挿入されて
いる。この電解室1には発生液A、また、陰極室3には
対極液Bが充填され、上記アノード2とカソード4の間
に電流を流すことによって発生液A中より12が発生さ
れ、試料注入口8から注入された試料液中の水分とこの
発生したI2が選択的に反応するようになっている。
A cathode chamber 3 is inserted into the electrolysis chamber 1, and an anode 2 and a cathode 4 for electrolysis are disposed with a diaphragm 5 at the bottom of the cathode chamber 3 in between. A detection electrode 7 is further inserted into the electrolytic chamber 1 . The electrolytic chamber 1 is filled with the generated liquid A, and the cathode chamber 3 is filled with the counter electrode liquid B. By passing a current between the anode 2 and the cathode 4, 12 is generated from the generated liquid A, and the sample is injected. The moisture in the sample liquid injected from the inlet 8 selectively reacts with the generated I2.

尚、発生液Aは、滴定が均等に行われるように、攪拌子
6で攪拌されるようになっている。
Incidentally, the generated liquid A is stirred with a stirrer 6 so that the titration is performed evenly.

上記検出電極7に於ける電気的な等価回路は、第2図に
示すように、電極間に固有の容量C0水分濃度(沃素濃
度)に応じて変化する抵抗骨R1と容量C1が並列に接
続され、更に直列抵抗R0が接続された状態となる。こ
の等価回路に於いて被検液中の水分が過剰であるとき分
極状態となり、抵抗骨R1も容量C1も大きいため、検
出電極間に表れる電位は両極に流される電流よりも大き
く位相が遅れることになる。アノード2.カソード4間
に電流を流して滴定が進行するにつれ12m度が増加し
消極状態となり、それに伴って上記抵抗骨R9と容量C
3は小さくなる。このことより第3図(alに示すよう
に、滴定の進行に伴って上記電流(実線)と電位(破線
)の位相差が小さくなる。第3図(a)に於いて、電極
間電位を表す曲線(各破線)に付した■■■■の数字は
、この順に滴定量が順次多くなっていることを示してい
る。
The electrical equivalent circuit in the detection electrode 7 is as shown in FIG. 2, where a resistor R1 and a capacitor C1, which vary depending on the water concentration (iodine concentration) and a capacitor C0 inherent between the electrodes, are connected in parallel. Then, the series resistor R0 is further connected. In this equivalent circuit, when there is excess water in the test liquid, it becomes polarized, and since both the resistance bone R1 and the capacitance C1 are large, the potential appearing between the detection electrodes has a phase delay greater than that of the current flowing between the two poles. become. Anode 2. As the titration progresses by passing a current between the cathodes 4 and 12 m degrees increases and becomes a negative state, the resistance bone R9 and the capacitance C
3 becomes smaller. From this, as shown in Figure 3 (al), as the titration progresses, the phase difference between the current (solid line) and potential (broken line) decreases. In Figure 3 (a), the interelectrode potential is The numbers ■■■■ attached to the curves (each broken line) indicate that the titration amount increases in this order.

ここに於いて電位は各破線■−■の順で小さくなり、こ
の現象は、従来のこの種の水分計に利用されていたので
あるが、それと同時に、電流曲線との位相差が各破線で
異なることが理解できる。
Here, the potential decreases in the order of the broken lines I can understand different things.

従って、twitが所定の値に達したときの位相差を予
め知っておき、この位相差になったときに滴定を停止す
るようにすると、分極電位検出方法を利用しな(とも被
検液中の水分濃度が測定できるのである。
Therefore, if you know in advance the phase difference when twit reaches a predetermined value and stop the titration when this phase difference is reached, it is possible to avoid using the polarization potential detection method (also known as It is possible to measure the moisture concentration of

上記第3図(a)は、検出電極7間に30Hzの交流を
印加した場合の現象を示したものであり、10001(
z付近の交流を印加した場合には、第3図(b)に示す
ような結果が得られる。即ち、破線で示された検出電極
7間の電位曲線は、滴定の進行に伴って実線で示された
電流曲線に対して次第に位相差が小さくなるのである。
FIG. 3(a) above shows the phenomenon when 30 Hz alternating current is applied between the detection electrodes 7, and 10001 (
When an alternating current near z is applied, a result as shown in FIG. 3(b) is obtained. That is, the phase difference between the potential curve between the detection electrodes 7 shown by the broken line and the current curve shown by the solid line gradually becomes smaller as the titration progresses.

第4図は従来方法と本願発明に係る方法の周波数特性を
示すものである。即ち、従来の方法に於ける検出電極7
に印加する交流の周波数と電極間電位との関係vl・・
・v4及び本願発明による周波数と位相差F、・・・F
4との関係を、滴定量をパラメータとして表したもので
ある。滴定はF、 Vの符号に付した1・・・4のサフ
ィックスが前記した第6図に概略的に示した滴定量■・
・・■に対応する。
FIG. 4 shows the frequency characteristics of the conventional method and the method according to the present invention. That is, the detection electrode 7 in the conventional method
The relationship between the frequency of alternating current applied to the electrode and the potential between the electrodes vl...
・V4 and frequency and phase difference F,...F according to the present invention
4 is expressed using the titer as a parameter. The titration is indicated by the 1...4 suffixes attached to the F and V symbols as shown schematically in Figure 6 above.
...corresponds to ■.

この図からも明らかなように、従来方法では周波数が高
くなるに従って、初期電位(水分過剰時の電位)と最終
電位の(沃素過剰時の電位)の変化は1000H2近く
の高い周波数領域になると、30Hzのときに比して3
%(E l 0f10112/ E 31182=0.
03)程度と極めて小さくなり、従って、高い周波数領
域に於いては精度の高い測定ができないことになる。こ
れに対して、本願発明に於いては、周波数による位相差
の変化は1000Hzに近くなっても、30Hzのとき
の70%前後(Fl。。。nz/Fz。工2=0.69
)あるので、高い周波数領域でも充分に精度の高い測定
ができることになる。
As is clear from this figure, in the conventional method, as the frequency increases, the change in the initial potential (potential when water is excessive) and final potential (potential when iodine is excessive) becomes higher in the high frequency region near 1000H2. 3 compared to 30Hz
%(E l 0f10112/E 31182=0.
03), and therefore highly accurate measurements cannot be made in high frequency ranges. On the other hand, in the present invention, even when the frequency approaches 1000 Hz, the change in phase difference due to frequency is around 70% of that at 30 Hz (Fl...nz/Fz.Equation 2=0.69
), it is possible to perform sufficiently accurate measurements even in high frequency ranges.

第5図はこの発明を実施するための回路図を示すもので
ある。検出電極7には発振器11から供給される交流が
定電流回路12を介して印加されており、このどき、検
出電極7間に発生する電位eoを増幅器13で増幅した
電圧E0と電流Iと同相の電圧e、を増幅器16で増幅
した電圧E。
FIG. 5 shows a circuit diagram for implementing the invention. An alternating current supplied from an oscillator 11 is applied to the detection electrode 7 via a constant current circuit 12, and at this moment, the potential eo generated between the detection electrodes 7 is amplified by the amplifier 13, and the voltage E0 is in phase with the current I. The voltage E is amplified by the amplifier 16.

が位相差検出手段20に入力され、ここで両者の位相差
が検出される。
is input to the phase difference detection means 20, where the phase difference between the two is detected.

検出された位相差S、はCPUI 4に入力され、該C
r’U14は該信号Sfに基づいて電流逝去回路15に
指示を与え、アノード2とカソード4の間に流される滴
定電流を制御するようになっている。CPUI 4のメ
モリには滴定終了点に対応する位相差が記憶されており
、該位相差になると滴定電流は零になるように制御され
る。
The detected phase difference S, is input to the CPU 4, and the detected phase difference S,
The r'U 14 gives an instruction to the current passing circuit 15 based on the signal Sf to control the titration current flowing between the anode 2 and the cathode 4. A phase difference corresponding to the titration end point is stored in the memory of the CPUI 4, and the titration current is controlled to become zero when the phase difference is reached.

位相差検出手段20は通常用いられる位相差検出手段を
そのまま用いることができる。図示の例を説明すると、
コンパレータ21は第3図(C1に示すように、印加電
流に対応する電圧E1が正のときで電極間電位e0に対
応する電圧E0が負のときrHJレベルの信号を出力し
、両者とも正になるとrLJレベルとなる。また、両者
とも負のときもrLJレベルとなる。従って、このコン
パレータ21は、印加電流と電極間電位の位相差に対応
する時間だけrHJレベルの信号を出力することになり
、このrHJレベルの信号でゲート22を開いてクロッ
ク信号を通過させる。ゲート22を通過したクロック信
号はカウンタ23で計数され、この計数値が上記位相差
を示すことになる。
As the phase difference detection means 20, a commonly used phase difference detection means can be used as is. To explain the illustrated example,
As shown in FIG. 3 (C1), the comparator 21 outputs a signal at the rHJ level when the voltage E1 corresponding to the applied current is positive and the voltage E0 corresponding to the interelectrode potential e0 is negative, and both are positive. Then, it becomes rLJ level. Also, it becomes rLJ level when both are negative. Therefore, this comparator 21 outputs a signal at rHJ level for a time corresponding to the phase difference between the applied current and the potential between the electrodes. , This rHJ level signal opens the gate 22 and allows the clock signal to pass through.The clock signal that has passed through the gate 22 is counted by the counter 23, and this counted value indicates the above-mentioned phase difference.

以上、電量滴定についてのみ説明したが、この発明は容
量滴定にも適用することができることは勿論であり、ま
た、水分量だけでな(、他の化学量の測定にも用いるこ
とができる。
Although only coulometric titration has been described above, the present invention can of course be applied to volumetric titration, and can also be used to measure not only water content (but also other chemical quantities).

〔発明の効果〕 以上説明したように、この発明は検出電極に交流を流し
、このとき発生する電極間電位と上記電流との位相差に
基づいて被検液の分極状態を検出するようになっている
ので、攪拌などの外乱に対して安定した測定値を得るこ
とができ、また、その印加交流電流として、商用周波数
より非常に高い周波数の交流を用いることができるので
、雑音の除去が容易であり、また、分極電位検出方法の
ようなA/D変換を必要としないため、容易に検出精度
の向上を図ることが可能となり、同時に電気的な設計が
非常に簡単かつ安価となる効果がある。
[Effects of the Invention] As explained above, in this invention, alternating current is passed through the detection electrode, and the polarization state of the test liquid is detected based on the phase difference between the interelectrode potential generated at this time and the above current. Because of this, it is possible to obtain stable measurement values against disturbances such as stirring, and because the applied AC current can be used at a frequency much higher than the commercial frequency, noise can be easily removed. In addition, since it does not require A/D conversion unlike the polarization potential detection method, it is possible to easily improve detection accuracy, and at the same time, the electrical design is extremely simple and inexpensive. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明が適用される水分計の概要図7第2図
は検出電極の等価回路、第3図<a) (b)は印加電
流と電極間電位の位相差を示すグラフ、第3図(C1は
下記第5図の回路のタイミングチャート、第4図は従来
例と本願発明の周波数特性を示すグラフ、第5図は本願
発明を実施するための回路を示すブロック図、第6図は
従来方法による電極電位を示すグラフである。 第1図 第2図 第6 図 ■■■ ■→浦足量Q
Figure 1 is a schematic diagram of a moisture meter to which this invention is applied. Figure 2 is an equivalent circuit of the detection electrode. Figure 3 is a graph showing the phase difference between the applied current and the potential between the electrodes. Figure 3 (C1 is a timing chart of the circuit shown in Figure 5 below, Figure 4 is a graph showing the frequency characteristics of the conventional example and the present invention, Figure 5 is a block diagram showing a circuit for implementing the present invention, and Figure 6 is a graph showing the frequency characteristics of the conventional example and the present invention. The figure is a graph showing the electrode potential according to the conventional method. Figure 1 Figure 2 Figure 6 Figure ■■■ ■→Uraashi amount Q

Claims (1)

【特許請求の範囲】[Claims] 被検液中に浸漬されている検出電極間に微少交流電流を
流し、このときに発生する電極間電位と上記電流との位
相差に基づいて被検液の分極状態を判別することを特徴
とする、交流印加分極反応に於ける位相差検出方法。
A small alternating current is passed between the detection electrodes immersed in the test liquid, and the polarization state of the test liquid is determined based on the phase difference between the interelectrode potential generated at this time and the current. A method for detecting phase difference in polarization reaction with applied alternating current.
JP62070109A 1987-03-23 1987-03-23 Phase difference detection method in AC applied polarization reaction Expired - Lifetime JP2523608B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62070109A JP2523608B2 (en) 1987-03-23 1987-03-23 Phase difference detection method in AC applied polarization reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62070109A JP2523608B2 (en) 1987-03-23 1987-03-23 Phase difference detection method in AC applied polarization reaction

Publications (2)

Publication Number Publication Date
JPS63234147A true JPS63234147A (en) 1988-09-29
JP2523608B2 JP2523608B2 (en) 1996-08-14

Family

ID=13422045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62070109A Expired - Lifetime JP2523608B2 (en) 1987-03-23 1987-03-23 Phase difference detection method in AC applied polarization reaction

Country Status (1)

Country Link
JP (1) JP2523608B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011158812A1 (en) * 2010-06-17 2011-12-22 国立大学法人豊橋技術科学大学 Specification device for water status of soil, and method for same
CN107064233A (en) * 2017-06-07 2017-08-18 铁科腾跃科技有限公司 The online moisture measurement apparatus of polyurethane

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011158812A1 (en) * 2010-06-17 2011-12-22 国立大学法人豊橋技術科学大学 Specification device for water status of soil, and method for same
CN107064233A (en) * 2017-06-07 2017-08-18 铁科腾跃科技有限公司 The online moisture measurement apparatus of polyurethane

Also Published As

Publication number Publication date
JP2523608B2 (en) 1996-08-14

Similar Documents

Publication Publication Date Title
US7772854B2 (en) High-conductivity contacting-type conductivity measurement
JPS63243767A (en) Method and apparatus for measuring conductivity from which effect of polarization is removed
JPS63234147A (en) Phase difference detecting method for alternating-current application and polarization reaction
JP2707762B2 (en) Electromagnetic flow meter
US4664756A (en) Method of detecting electrode potential in Karl Fischer moisture meter
RU2382356C1 (en) Method for switching chronoamperometry
Yoshimori et al. The Precise Coulometric Titration of the Acidic Primary Standard using Amperometric End-point Detection
JP2617335B2 (en) PH measuring method and measuring device using oxide semiconductor
RU2667688C2 (en) Device for recording conduction in liquids
JPS6097247A (en) Continuous liquid-concentration measuring device
JP6845979B2 (en) Moisture measuring device using Karl Fischer titer
SU787978A1 (en) Polarographic analysis method
RU2095802C1 (en) Device for electrochemical detection of presence of organic additions in water
SU609084A1 (en) Polarographic concentration ac meter
SU851243A1 (en) Substance concentration measuring method
SU1045100A1 (en) Volt-ampere measuring method
SU254857A1 (en) CONDUCTOMETRIC METHOD FOR ANALYSIS OF LIQUIDS
SU934343A1 (en) Method of indication of equivalnce point in coulometic analysis
JPH0715490B2 (en) Conductivity meter circuit
SU1679346A1 (en) Method for determining concentration of substance in multicomponent solution
JP2019045460A (en) Water detector using karl fischer's reagent
JPH02170040A (en) Method and device for measuring electrical conductivity
JPS5937464B2 (en) Coulometric titration method
JPS6039807Y2 (en) Monitoring device for electrolyte amount in gas detector
SU253423A1 (en) ЯАТентНО- |,;, * ^ TEXjffl ^ CCEM ^ Jf '^' 'gy & lyo'hekd-

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term