JPS6323391B2 - - Google Patents

Info

Publication number
JPS6323391B2
JPS6323391B2 JP11568379A JP11568379A JPS6323391B2 JP S6323391 B2 JPS6323391 B2 JP S6323391B2 JP 11568379 A JP11568379 A JP 11568379A JP 11568379 A JP11568379 A JP 11568379A JP S6323391 B2 JPS6323391 B2 JP S6323391B2
Authority
JP
Japan
Prior art keywords
pump
water level
sewage
rainwater
pump well
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11568379A
Other languages
Japanese (ja)
Other versions
JPS5641477A (en
Inventor
Hidemi Kodate
Shuichiro Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP11568379A priority Critical patent/JPS5641477A/en
Publication of JPS5641477A publication Critical patent/JPS5641477A/en
Publication of JPS6323391B2 publication Critical patent/JPS6323391B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sewage (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Flow Control (AREA)
  • Control Of Non-Electrical Variables (AREA)

Description

【発明の詳細な説明】 本発明は下水道における汚水・雨水ポンプ設備
に係り、複数台数の異容量ポンプにより構成され
た汚水・雨水ポンプ群の運転方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to sewage/rainwater pump equipment in a sewer system, and relates to a method of operating a sewage/rainwater pump group constituted by a plurality of pumps of different capacities.

下水道における汚水・雨水ポンプ設備は、ポン
プ井とポンプ群とから構成され、ポンプ井は地下
埋設の管渠と接続し、ポンプ群は吸込側をポンプ
井と、吐出側を下水処理場の初沈池へ、共に管渠
により接続されている。市街地に降つた雨水や家
庭からの汚水は、管渠を通つてポンプ井に流れ込
んでくるが、ポンプ井の水位に関し設けられた上
下限位置をこえないように、ポンプ群の吐出量を
変化させる。従来はポンプ井の水位を計測し、水
位が上昇すればポンプ群吐出量を増大させ、逆に
水位が降下すればポンプ群吐出量を減少させてい
た。この場合、ポンプ群は異容量のポンプで構成
され、その群の吐出量は台数制御による段階的
に、または一部速度制御により、連続的に調整し
うるものである。
Sewage/rainwater pumping equipment for sewerage systems consists of pump wells and pump groups. The pump wells are connected to underground pipes, the suction side of the pump group is connected to the pump well, and the discharge side is connected to the initial subsidence of the sewage treatment plant. Both are connected to the pond by a conduit. Rainwater falling in the city and sewage from households flow into the pump wells through pipes, but the discharge volume of the pump group is changed so that the water level in the pump wells does not exceed the upper and lower limits established. . Conventionally, the water level in a pump well was measured, and if the water level rose, the pump group discharge amount was increased, and conversely, if the water level fell, the pump group discharge amount was decreased. In this case, the pump group is composed of pumps of different capacities, and the discharge amount of the group can be adjusted stepwise by controlling the number of pumps or continuously by partially controlling the speed.

一般に家庭汚水は、人間集団の活動によつてそ
の時系列変化が週単位か、日単位か、である程度
定形なものとなつている。しかし雨水は、降雨量
の地域別の時系列変化という形でとらえても、あ
るいはまた、管渠を通つてポンプ井へ流入してく
る雨水流入量の時系列変化という形でも、共にそ
の都度変わるものであり、再現性は殆どないため
に全く予測しえないものである。
In general, household sewage has a somewhat fixed time series, with changes occurring on a weekly or daily basis depending on the activities of human groups. However, rainwater changes from time to time, both in the form of time-series changes in rainfall by region, and also in the form of time-series changes in the amount of rainwater flowing into pump wells through pipes. It is highly unpredictable and has almost no reproducibility.

そこで、雨水を対象に含む汚水・雨水ポンプ群
では、水位のみを計測してポンプ群の吐出量を決
定するという従来方法では、雨水流入量の現時点
の一点における変化率が、次の離散時刻において
も持続すると考えていることに相当しており、変
化率が変わる対象に対応しているとは言えない。
これは、具体的には水位予測の精度が悪く、無駄
な始動・停止が行なわれる結果となる。
Therefore, for sewage/rainwater pump groups that target rainwater, the conventional method of determining the discharge amount of the pump group by measuring only the water level has the effect that the rate of change in the amount of rainwater inflow at one point at the current point is This corresponds to thinking that the rate of change will continue, and it cannot be said that it corresponds to an object whose rate of change changes.
Specifically, this results in poor water level prediction accuracy and unnecessary starting and stopping.

本発明は上記事由に基づいてなされ、降雨時の
ポンプ井流入量の変化率の時間変化を考慮して、
流入量のある時間先の値を予測し、ポンプ井水位
を計算して、それが水位の上下限範囲内におさま
るのであればポンプ群の運転状態を変化させない
ことにし、無駄なポンプの始動停止を削減して、
必要最小限な始動停止回数となる、前記欠点のな
い汚水・雨水ポンプ群の運転方法を提供すること
を目的とする。
The present invention has been made based on the above reasons, and takes into consideration the time change in the rate of change of the pump well inflow during rainfall.
We predict the value of the inflow at a certain point in time, calculate the pump well water level, and if it falls within the upper and lower water level limits, we decide not to change the operating status of the pump group and avoid unnecessary pump starts and stops. By reducing the
It is an object of the present invention to provide a method of operating a group of sewage/rainwater pumps that does not have the above-mentioned drawbacks and has the minimum necessary number of starts and stops.

以下本発明を図面を参照して説明する。第1図
は対象システムの構成を示すものである。管渠1
から流れ込んで来た下水(汚水と雨水)は、沈砂
池2とスクリーン3を経て、ポンプ井4に流入す
る。ポンプ群5は、ポンプ井4に蓄わえられた下
水を下水処理設備6へ送水する。ポンプ井4には
ポンプ井水位計7が設置されており、その水位は
上限値10を下限値11の範囲内に保持されるよ
うに、ポンプ群を運転する。
The present invention will be explained below with reference to the drawings. FIG. 1 shows the configuration of the target system. Pipe 1
The sewage (sewage and rainwater) flowing from the pump passes through a settling basin 2 and a screen 3, and then flows into a pump well 4. The pump group 5 sends the sewage stored in the pump well 4 to the sewage treatment facility 6. A pump well water level gauge 7 is installed in the pump well 4, and the pump group is operated so that the water level is maintained within a range between an upper limit value 10 and a lower limit value 11.

また、ポンプ群5の吐出側には吐出流量計8が
付設されており、水位計7の値と共に電算機9で
演算され、その結果を利用して、さらに内蔵アル
ゴリズムによつて選定されたポンプ運転状態に合
致するように、ポンプを始動あるいは停止させ
る。ポンプ井底面積、あるいは断面積と高さとの
関係は既知であるから、ポンプ井水位は流入量と
ポンプ群吐出量の差に比例する。離散時刻毎に水
位と吐出量は実測値として得られるので、次の離
散時刻における水位を予測するためには、流入量
と吐出量を共に予測しなくてはならない。
Further, a discharge flow meter 8 is attached to the discharge side of the pump group 5, and the value of the water level gauge 7 is calculated by a computer 9, and the pump selected by the built-in algorithm is further calculated using the result. Start or stop the pump to match operating conditions. Since the relationship between the pump well bottom area or cross-sectional area and height is known, the pump well water level is proportional to the difference between the inflow amount and the pump group discharge amount. Since the water level and the discharge amount are obtained as actual measured values at each discrete time, in order to predict the water level at the next discrete time, both the inflow amount and the discharge amount must be predicted.

今、吐出量を一定とすれば、すなわちポンプ運
転状態を変化させなくても良いとすれば、流入量
のみを予測すれば良い。流入量は後述の方法で予
測したときには、吐出量の実測値を用いて、水位
が予測することが可能となる。この予測水位がポ
ンプ井上下限範囲内にあれば支障のないが、この
範囲をこえたときには、ポンプ群吐出量を変更し
なければならない。したがつて本運転方法は、主
として2つの部分から構成されることになる。第
1は、()ポンプ井流入量予測演算部であり、
第2は、()ポンプ運転状態変更部である。
Now, if the discharge amount is constant, that is, if the pump operating state does not need to be changed, then only the inflow amount needs to be predicted. When the inflow amount is predicted by the method described below, the water level can be predicted using the actual measured value of the discharge amount. If this predicted water level is within the upper and lower limits of the pump well, there will be no problem, but if it exceeds this range, the pump group discharge amount must be changed. Therefore, this operating method mainly consists of two parts. The first is () a pump well inflow prediction calculation unit,
The second is () a pump operation state changing section.

();ポンプ井流入量予測演算部 離散時刻nにおいて、流入量の時系列データy
(k)(k=1,2,…,n)が入手済であると
し、これによる自己回帰モデルが次式で得られ
る。
(); Pump well inflow prediction calculation unit At discrete time n, time series data y of inflow
(k) (k=1, 2, . . . , n) has already been obtained, and an autoregressive model based on this can be obtained by the following equation.

y(n+1)=oi=n-m+1 xi(n)・y(i) ……(1) ここで、係数xi(n),(i=n−m+1,n−
m+2,…,n)は最小2乗法によつて決定す
る。又、説明変数の項数mについては、例えば
AIC(赤池情報量基準)を用いて、予め本対象に
関するデータを用いて決定しておく。第1式の自
己回帰モデルの係数xi(n)を状態ベクトルX
(n)として取扱い、雨水を含む流入量には雑音
が含まれているとの解釈から、本予測システムの
状態推移式と出力観測式は次式となる。
y(n+1)= oi=n-m+1 xi(n)・y(i)...(1) Here, the coefficient xi(n), (i=n-m+1, n-
m+2,...,n) are determined by the method of least squares. Also, regarding the number of terms m of explanatory variables, for example,
It is determined in advance using data related to the subject using AIC (Akaike Information Criterion). The coefficient xi(n) of the autoregressive model in the first equation is expressed as the state vector
(n), and from the interpretation that the inflow amount including rainwater includes noise, the state transition formula and output observation formula of this prediction system are as follows.

X(n+1)=Φ(n)・X(n)+U(n) y(n)=H(n)・X(n)+v(n) (2) ここで、y(n)は離散時刻nの流入量観測値、
係数ベクトルH(n)=(y(n−1),y(n−2)

…,y(n−m))係数Φ(n)はX(n)の遷移行
列、ベクトルU(n)とスカラーv(n)とは互に
無相関な正規白色雑音とする。
X(n+1)=Φ(n)・X(n)+U(n) y(n)=H(n)・X(n)+v(n) (2) Here, y(n) is discrete time n observed value of inflow,
Coefficient vector H(n) = (y(n-1), y(n-2)

..., y(n-m)) coefficient Φ(n) is a transition matrix of X(n), and vector U(n) and scalar v(n) are normal white noise that is mutually uncorrelated.

すなわち、それぞれの確率密度関数Fは、 F(U(n))=N(o,Q(n)) F(v(n))=N(o,r(n)) ただし、N(A,B)は平均値A分散Bの意で
ある。これはKalmanの予測推定理論の枠組にお
さまつたことになるので、離散時刻nにおける状
態量X(n+1)の最良推定値X^(n+1|n)は
次の演算によつて得られる。
That is, each probability density function F is: F(U(n))=N(o,Q(n)) F(v(n))=N(o,r(n)) However, N(A, B) means mean value A variance B. Since this falls within the framework of Kalman's predictive estimation theory, the best estimate X^(n+1|n) of the state quantity X(n+1) at discrete time n can be obtained by the following calculation.

X^(n+1|n) =Φ(n)X^(n|n−1)+G(n)・{y(
n)−H(n)・Φ(n)X^(n|n−1)} ここで、 G(n+1) =〔P(n+1|n)・HT(n)〕〔H(n)・P(
n+1|n)・HT(n)+r(n+1)〕 P(n+1|n)=Φ(n)・P(n|n)ΦT(n
)+Q(n+1) P(n+1|n+1)=〔I−G(n)・H(n)〕
P(n+1|n) ただし、G(n)はKalman利得、P(n+1|
n)は状態量ベクトルX(n+1)の推定誤差X^
(n+1|n)(すなわちx〓(n+1|n)=△=x
(n+1)−x^(n+1|n))の共分散行列であ
る。結局、観測値y^(n)の予測値y(n+1)は
次式となる。
X^(n+1|n) =Φ(n)X^(n|n-1)+G(n)・{y(
n)-H(n)・Φ(n)X^(n|n-1)} Here, G(n+1) = [P(n+1|n)・H T (n)] [H(n)・P(
n+1|n)・H T (n)+r(n+1)] P(n+1|n)=Φ(n)・P(n|n)Φ T (n
)+Q(n+1) P(n+1|n+1)=[I-G(n)・H(n)]
P(n+1|n) where G(n) is the Kalman gain, P(n+1|
n) is the estimation error X^ of the state quantity vector X(n+1)
(n+1|n) (i.e. x〓(n+1|n)=△=x
(n+1)−x^(n+1|n)). In the end, the predicted value y(n+1) of the observed value y^(n) is given by the following equation.

y^(n+1)=H(n+1)・X^(n+1|n) ();ポンプ運転状態変更部 ポンプの運転状態を変更する必要がある時に
は、以下の2つの補助則を加味して決定する。
y^(n+1)=H(n+1)・X^(n+1|n) (); Pump operating state change section When it is necessary to change the pump operating state, the following two auxiliary rules should be taken into consideration when making a decision. .

(−a);ポンプの始動、停止回数を極力少な
くする。
(-a): Reduce the number of times the pump starts and stops as much as possible.

(−b);ポンプ運転時間の均等化。(-b); Equalization of pump operation time.

(−a)項は現在のポンプ運転状態を基点と
することで、基本的には満足されるものである。
すなわち個々の選定において、例えば、上限水位
を超えると予測され、このため一台のポンプを始
動させねばならないときには、現在運転中のもの
はそのままで停止中のもので、水位条件を満すも
のを候補者として選定する。候補者が見つからな
いときには、停止中の二台の組合せとして候補者
を見出す。
The term (-a) is basically satisfied by using the current pump operating state as the base point.
In other words, when making individual selections, for example, if it is predicted that the water level will exceed the upper limit and one pump must be started for this reason, the one that is currently in operation should be left as is, the one that is stopped, and the one that satisfies the water level condition should be selected. Select as a candidate. If a candidate is not found, a candidate is found as a combination of two stopped machines.

又、(−b)項は異種容量ポンプ、すなわち
m種容量のポンプがそれぞれni(i=1,2,…,
m)台ずつあり、m≧1でni≧1(i=1,2,
…,m;m,niは正整数)である場合が多いの
で、ni>1のときの決定に際し、ポンプ運転時間
を指標として、これが最短となつているポンプを
選ぶことにした。以上のアルゴリズムの全体の流
れ図を第2図に示す。ここで注意すべき点は汚
水・雨水のポンプ井流入量が正規白色雑音とい条
件を満すか否かであるが、通常、自然現象はこの
条件を満すものと考えられている。雨水の特徴は
汚水に比し数倍となるときに顕在化するものであ
るから、汚水雨水の流入量が自然現象としての雨
水の特徴、すなわち正規白色雑音という条件を満
すものと考えて良い。
In addition, the term (-b) means that different capacity pumps, that is, m types of capacity pumps, are each ni (i=1, 2,...,
m) units, m≧1 and ni≧1 (i=1, 2,
. The overall flowchart of the above algorithm is shown in FIG. The point to be noted here is whether the amount of sewage/rainwater flowing into the pump well satisfies the condition of normal white noise, and it is generally thought that natural phenomena satisfy this condition. The characteristics of rainwater become apparent when the amount is several times that of sewage, so it can be assumed that the amount of inflow of sewage rainwater satisfies the characteristics of rainwater as a natural phenomenon, that is, the condition of regular white noise. .

離散時間の一単位は5分とか10分が一般的であ
ろうが、これはポンプ井容積、ポンプ容量、年間
降雨量、対象地区人口、電算機性能など種々な点
を考慮して決定される。この離散時間毎にポンプ
井流入量を精密に予測することにより、ポンプ井
水位の予測も精密なものとなる。特に降雨量の多
い時(例えば第3図)にその効果が顕著であり、
無駄なポンプの始動停止を防止することが可能と
なる。また、ポンプ運転状態の決定に於いて、ポ
ンプ運転時間の積算値を補助則として用いること
により、ポンプの運転時間を均等化させ、この結
果、ポンプ設備の寿命をも長くすることになる。
One unit of discrete time is generally 5 or 10 minutes, but this is determined by considering various points such as pump well volume, pump capacity, annual rainfall, target area population, computer performance, etc. . By accurately predicting the pump well inflow rate at each discrete time, the pump well water level can also be predicted accurately. This effect is especially noticeable when there is a lot of rainfall (for example, Figure 3).
It becomes possible to prevent unnecessary starting and stopping of the pump. Further, in determining the pump operating state, by using the integrated value of the pump operating time as an auxiliary rule, the operating time of the pump is equalized, and as a result, the life of the pump equipment is extended.

本運転法は前述のごとく降雨量の多い時に効果
が大きいことがわかつているが、降雨量の少ない
時にも効果がないわけではない。しかし、演算さ
せることと、その効果とを比率評価したときに利
点を見出しえないときには、降雨量の多少を判別
する部分を第2図の「カルマンフイルタによる予
測流入量演算()」の前に設けて、この演算を
省略することも実用的である。
As mentioned above, this operating method is known to be most effective when there is a lot of rainfall, but it is not ineffective even when there is little rainfall. However, if you cannot find an advantage when evaluating the ratio of the calculation and its effect, the part that determines the amount of rainfall should be placed before the ``Calculation of predicted inflow amount using Kalman filter ()'' in Figure 2. It is also practical to provide one and omit this calculation.

以上述べたように本発明は、時々刻々変化する
降雨量を対象にして予測するために、変化を雑音
として把えるKalman予測推定理論を応用し、精
度の高いポンプ井水位予測が可能となつた。予測
精度が高くなつた結果、従来の無駄なポンプの始
動停止を省くことが出来るようになり、さらにポ
ンプ運転時間の均等化を加味することによつて、
ポンプ設備の長寿命化にもつながるポンプ運転方
法となる。
As described above, the present invention applies the Kalman prediction and estimation theory that treats changes as noise in order to predict the amount of rainfall that changes from moment to moment, making it possible to predict pump well water levels with high accuracy. . As a result of improved prediction accuracy, it is now possible to eliminate the wasteful starting and stopping of pumps, and by taking into account the equalization of pump operating times,
This is a pump operating method that also extends the life of pump equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例を示し、第1図は本発
明の対象システムの構成図、第2図はポンプ群運
転アルゴリズムの全体の流れ図、第3図は降雨時
ポンプ群運転シミユーレーシヨン結果例である。 1…埋設管渠、2…沈砂池、3…スクリーン、
4…ポンプ井、5…ポンプ群、6…下水処理設
備、7…ポンプ井水位計、8…ポンプ群吐出量
計、9…電算機、10…ポンプ井上限水位、11
…ポンプ井下限水位、12…ポンプ井流入量時系
列曲線(実データ)、13…ポンプ群吐出量時系
列曲線(本アルゴリズムにより決定)、14…ポ
ンプ井水位時系列曲線。
The drawings show an embodiment of the present invention. Fig. 1 is a configuration diagram of the target system of the present invention, Fig. 2 is an overall flowchart of the pump group operation algorithm, and Fig. 3 is a simulation result of pump group operation during rain. This is an example. 1...Buried pipe, 2...Sand basin, 3...Screen,
4... Pump well, 5... Pump group, 6... Sewage treatment equipment, 7... Pump well water level meter, 8... Pump group discharge meter, 9... Computer, 10... Pump well upper limit water level, 11
... Pump well lower limit water level, 12... Pump well inflow time series curve (actual data), 13... Pump group discharge amount time series curve (determined by this algorithm), 14... Pump well water level time series curve.

Claims (1)

【特許請求の範囲】[Claims] 1 市街地の汚水・雨水を主として下水処理場へ
揚水する汚水・雨水ポンプ群の運転において、ポ
ンプ井水位計及びポンプ群吐出流量計の2種の測
定器を用い、予め決定した時間間隔の1離散時間
先のポンプ井流入流量をカルマンフイルタの適用
により予測し、ポンプ井水位を演算して、この演
算値がポンプ井水位に設定された上下限を起える
場合、ポンプ井水位制限範囲以内におさまるよう
に、運転すべきポンプ組合せを現在の運転状態を
極力変えないように決定して、ポンプの始動・停
止回数を最少化することを特徴とした汚水・雨水
ポンプ群の運転方法。
1. In the operation of a group of sewage/rainwater pumps that mainly pump sewage/rainwater from urban areas to a sewage treatment plant, two types of measuring instruments, a pump well water level meter and a pump group discharge flow meter, are used to measure the sewage and rainwater at predetermined time intervals. Predict the pump well inflow flow rate in time by applying a Kalman filter, calculate the pump well water level, and if this calculated value occurs within the upper and lower limits set for the pump well water level, it will fall within the pump well water level limit range. A method of operating a group of sewage/rainwater pumps is characterized in that the combination of pumps to be operated is determined so as not to change the current operating state as much as possible, thereby minimizing the number of times the pumps start and stop.
JP11568379A 1979-09-11 1979-09-11 Driving method of group of rainwater and sewage pumps Granted JPS5641477A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11568379A JPS5641477A (en) 1979-09-11 1979-09-11 Driving method of group of rainwater and sewage pumps

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11568379A JPS5641477A (en) 1979-09-11 1979-09-11 Driving method of group of rainwater and sewage pumps

Publications (2)

Publication Number Publication Date
JPS5641477A JPS5641477A (en) 1981-04-18
JPS6323391B2 true JPS6323391B2 (en) 1988-05-16

Family

ID=14668676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11568379A Granted JPS5641477A (en) 1979-09-11 1979-09-11 Driving method of group of rainwater and sewage pumps

Country Status (1)

Country Link
JP (1) JPS5641477A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59150841A (en) * 1983-02-17 1984-08-29 株式会社東芝 Estimation and regulation of flow amount of confluence type drainage
JPS62208109A (en) * 1986-03-10 1987-09-12 Toshiba Corp Control device for running of pump
JP4905305B2 (en) * 2007-09-14 2012-03-28 株式会社安川電機 Pump control device

Also Published As

Publication number Publication date
JPS5641477A (en) 1981-04-18

Similar Documents

Publication Publication Date Title
JP4481920B2 (en) Rainwater drainage support system, rainwater drainage support method, and rainwater drainage control system
US6474153B1 (en) Predicting system and predicting method configured to predict inflow volume of rainwater
JP3839361B2 (en) Rainwater runoff coefficient prediction method, rainwater inflow prediction method, rainwater runoff coefficient prediction program, and rainwater inflow forecast program
JPS6323391B2 (en)
Geerse et al. Assessing the performance of urban drainage systems:general approach'applied to the city of Rotterdam
CN116911643A (en) Urban waterlogging prevention and control scheme selection method, system, device and storage medium
JPH06102911A (en) Method and device for predicting inflow water rate in drainage pump place
JPS6132681B2 (en)
JPH05265513A (en) Method for controlling, number of pumps in operation at place of drainage pump and device therefor
JPH0968170A (en) Sewage pump control device in sewage treatment plant
TWI310428B (en) Rainwater draining support system, and rainwater draining support method
JPH09204218A (en) Plant monitoring device
JPS59150841A (en) Estimation and regulation of flow amount of confluence type drainage
JP2004234422A (en) Rainwater inflow prediction device
Gabrielsson Model Predictive Control of Skeboå Water system
JPH0131572B2 (en)
JP3237274B2 (en) Rainwater pump control method
CN118153911B (en) Optimized scheduling method and device for drainage pipe network system and electronic equipment
JP2001234561A (en) Control method for water distribution basin facility and device therefor
JPH0962367A (en) Rainwater pump control device and method
JP2885449B2 (en) Pump control device
JPS58189712A (en) Method for controlling pumping-up volume of sewage pump
JPH05303406A (en) Method for controlling prediction of qualitative inference
JP2000056835A (en) Device and method for predicting rate of inflow of rainwater
JPH0126007B2 (en)