JPH0968170A - Sewage pump control device in sewage treatment plant - Google Patents

Sewage pump control device in sewage treatment plant

Info

Publication number
JPH0968170A
JPH0968170A JP21999695A JP21999695A JPH0968170A JP H0968170 A JPH0968170 A JP H0968170A JP 21999695 A JP21999695 A JP 21999695A JP 21999695 A JP21999695 A JP 21999695A JP H0968170 A JPH0968170 A JP H0968170A
Authority
JP
Japan
Prior art keywords
sewage
inflow
pump
water level
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21999695A
Other languages
Japanese (ja)
Inventor
Hideaki Nagarei
英明 永礼
Hideyuki Tadokoro
秀之 田所
Yasufumi Suzuki
康文 鈴木
Mikio Yoda
幹雄 依田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP21999695A priority Critical patent/JPH0968170A/en
Publication of JPH0968170A publication Critical patent/JPH0968170A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To transport a fixed amount of sewage water, unsteadily flowing in, to a waste water disposal facility, by estimating an inflow amount of sewage water flowing in for a fixed time to a sewage storage facility in a sewage treatment plant, and determining a transport amount of sewage water in accordance with a predetermined rule based on a present and future sewage water inflow condition. SOLUTION: A water level meter 18 in an inflow conduit 11 of sewage water flowing in from a sewage pipe conduit 21, water level meter 20 in a pump well 14, flow meter 16 behind a sewage pump 15 and a gate opening meter 19 in a dust removing inflow gate 12 are respectively arranged, and these measuring data are stored in a storage device 51. Here in an arithmetic device 52, an inflow amount during 1 control period is converted in that per 1 hour, so as to calculate an actual inflow amount. A weight coefficient of neural network determined in a learning device 31 is reflected in an inflow amount estimating device 32. Further, membership and arithmetic rule determined by a change device 41 are reflected to a target delivery amount arithmetic device 42. In accordance with a target water level or the like set in a setting device 53, a target delivery amount is determined.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、下水処理場における汚
水ポンプの制御装置に係り、特に汚水貯留施設に非定常
に流入してくる汚水を、流入量にかかわらずになるべく
一定量だけ汚水処理施設に輸送するようにした汚水ポン
プ制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control system for a sewage pump in a sewage treatment plant, and in particular, sewage that unsteadily flows into a sewage storage facility is treated as much as possible regardless of the inflow amount. The present invention relates to a sewage pump controller adapted to be transported to a facility.

【0002】[0002]

【従来の技術】下水処理場は、下水処理区域から下水管
渠を経て集められた汚水を貯蔵する汚水貯留施設と汚水
処理施設及び汚水貯留施設から汚水処理施設へと汚水を
輸送する汚水ポンプとを有する。また、汚水貯留施設内
には、通常、下水の流入渠と除塵水路及びポンプ井とが
備えられる。
2. Description of the Related Art A sewage treatment plant is provided with a sewage storage facility for storing sewage collected from a sewage treatment area through a sewer pipe, a sewage treatment facility, and a sewage pump for transporting sewage from the sewage storage facility to the sewage treatment facility. Have. In addition, a sewage inflow culvert, a dust removal water channel, and a pump well are usually provided in the wastewater storage facility.

【0003】汚水は、管渠より汚水貯留施設内の流入渠
に流入しポンプ井へと達する。その後、汚水ポンプによ
り汚水処理施設へと輸送されて処理され、河川へ放流さ
れる。
Sewage flows from a pipe to an inflow pipe in a wastewater storage facility and reaches a pump well. After that, it is transported to a sewage treatment facility by a sewage pump, treated, and discharged into a river.

【0004】汚水ポンプを自動運転する場合には、通
常、汚水ポンプの吐出量を一定に保つ吐出量一定制御
と、ポンプ井の水位を一定に保つ水位一定制御のうちの
どちらか一方の制御方法が採用される。
When the sewage pump is automatically operated, usually, either one of the discharge amount constant control for keeping the discharge amount of the sewage pump constant and the water level constant control for keeping the water level of the pump well constant. Is adopted.

【0005】吐出量一定制御では、下水処理場への汚水
の流入量の変動によりポンプ井の水位が変動する。
In the constant discharge amount control, the water level in the pump well changes due to the change in the amount of sewage flowing into the sewage treatment plant.

【0006】一方、水位一定制御では、ポンプ井の水位
は一定に保たれるがポンプの吐出量が変動する。
On the other hand, in the constant water level control, the water level in the pump well is kept constant, but the discharge amount of the pump fluctuates.

【0007】汚水処理施設側からみれば、処理施設に流
入する汚水の量をなるべく一定に保ち、安定した処理を
したいという要求がある。しかし、ポンプ井の水位の変
動を無視するために、異常な水位変動により汚水貯留施
設の浸水やポンプ故障を引き起こしやすいという問題が
ある。
From the sewage treatment facility side, there is a demand for keeping the amount of sewage flowing into the treatment facility as constant as possible and performing stable treatment. However, since the fluctuation of the water level in the pump well is ignored, there is a problem that abnormal water level fluctuations tend to cause inundation of the wastewater storage facility and pump failure.

【0008】このようなことから、吐出量一定制御或い
は水位一定制御に代わるものとして、現在の水位と過去
の水位の変化の傾向をみてポンプを運転するようにした
発明及び或いはポンプ井への流入流量パターンを記憶
し、これにより吐出量がなるべく変化しないような吐出
量パターンを作成してポンプを運転するようにした発明
が見出され、前者は特開平3−184101 号公報,特開平4
−191482 号公報に示され、後者は特開平3−115786 号
公報に示されている。
Therefore, as an alternative to the constant discharge amount control or the constant water level control, the invention of operating the pump by observing the tendency of the change of the present water level and the past water level and / or the inflow to the pump well. An invention has been found in which a pump is operated by storing a flow rate pattern and creating a discharge rate pattern such that the discharge rate does not change as much as possible, and the former is disclosed in JP-A-3-184101 and JP-A-4.
-191482, and the latter is disclosed in JP-A-3-115786.

【0009】[0009]

【発明が解決しようとする課題】特開平3−184101 号公
報に記載された発明では、ポンプ井の水位の変化傾向か
らポンプ起動時のポンプ井水位とポンプ停止時のポンプ
井水位とを決定して、汚水ポンプ吐出量を制御してい
る。この発明には、汚水ポンプ吐出量を一定に制御する
という考えはない。
In the invention described in Japanese Patent Laid-Open No. 3-184101, the pump well water level when the pump is started and the pump well water level when the pump is stopped are determined based on the tendency of the water level of the pump well. Control the discharge amount of the sewage pump. This invention has no idea to control the discharge amount of the sewage pump to be constant.

【0010】特開平4−191482 号公報及び特開平2−115
786 号公報に記載された発明では、いずれも汚水ポンプ
吐出量の平準化をめざしている。しかし、特開平3−115
786号公報に記載の発明では、記憶した流入流量パター
ンと実際の流入流量とが違ったときに対応できないとい
うように、必ずしも満足のいく制御法になっていない。
Japanese Unexamined Patent Publication Nos. 4-191482 and 2-115
In all of the inventions described in Japanese Patent No. 786, the discharge amount of the sewage pump is aimed to be equalized. However, JP-A-3-115
The invention described in Japanese Patent No. 786 is not necessarily a satisfactory control method because it cannot deal with the case where the stored inflow flow rate pattern and the actual inflow flow rate are different.

【0011】本発明は、非定常に流入してくる汚水を、
流入量にかかわらずになるべく一定量を汚水処理施設に
輸送できるようにした汚水ポンプ制御装置を提供するこ
とにある。
According to the present invention, the sewage that flows in unsteadily is
An object of the present invention is to provide a sewage pump control device capable of transporting a certain amount to a sewage treatment facility as much as possible regardless of the inflow amount.

【0012】[0012]

【課題を解決するための手段】本発明は、汚水貯留施設
内の流入渠の水位とポンプ井の水位及び除塵水路のゲー
ト開度、汚水ポンプの吐出量の各時系列データを保存す
るプラントデータ保存手段と、前記プラントデータ保存
手段に保存されたポンプ井水位と汚水ポンプ吐出量とに
基づいて、過去のある時点から現在までに下水処理場に
流入した汚水量を演算する実績流入量演算手段と、前記
プラントデータ保存手段に保存された時系列データと前
記実績流入量及び実績流入量の変化率に基づいて、現在
より先のある一定時間内に汚水貯留施設に流入する汚水
流入量を予測する汚水流入量予測手段と、前記ポンプ井
水位と予め定めたポンプ井の目標水位とからポンプ井水
位偏差を求め、前記汚水流入量予測手段で得られた予測
流入量と前記ポンプ吐出量とから揚水量偏差を求めて、
これらによりポンプ井の水位をある範囲内に抑えながら
吐出量をなるべく一定にする目標吐出量演算ルールを作
成して該ルールに従い汚水ポンプの吐出量を決定する目
標吐出量演算手段と、該目標吐出量演算手段で決定され
た吐出量になるように汚水ポンプの運転台数,回転数及
び吐出弁の開度の少なくとも1つを制御する汚水ポンプ
運転制御手段とを備えたことを特徴とする下水処理場の
汚水ポンプ制御装置にある。
Means for Solving the Problems The present invention relates to plant data for storing time series data of the water level of an inflow channel, the water level of a pump well, the gate opening of a dust removal channel, and the discharge amount of a wastewater pump in a wastewater storage facility. A storage unit, and an actual inflow amount calculation unit that calculates the amount of wastewater that has flowed into the sewage treatment plant from a certain point in the past to the present based on the pump well water level and the discharge amount of the wastewater pump stored in the plant data storage unit. And, based on the time-series data stored in the plant data storage means, the actual inflow amount, and the rate of change of the actual inflow amount, predict the inflow amount of the sewage flowing into the sewage storage facility within a certain period of time ahead of the present Sewage inflow predicting means, and a pump well water level deviation is calculated from the pump well water level and a predetermined target water level of the pump well, and the predicted inflow amount obtained by the sewage inflow predicting means and the pump Seeking a pumping amount of deviation from the discharge amount,
By these, a target discharge amount calculation means for creating a target discharge amount calculation rule for keeping the discharge level as constant as possible while suppressing the water level of the pump well and determining the discharge amount of the wastewater pump according to the rule, and the target discharge amount calculation means A sewage treatment system, comprising: a sewage pump operation control means for controlling at least one of the number of operating sewage pumps, the number of revolutions, and the opening of a discharge valve so that the discharge amount determined by the amount calculating means is obtained. It is located in the sewage pump controller of the plant.

【0013】プラントデータ保存手段に保存された時系
列データと前記実績流入量演算手段で求められた実績流
入量及び実績流入量の変化率を用いてバックプロパゲー
ション法によりニューラルネットワークの重み係数を決
定する学習手段を備え、プラントデータ保存手段に保存
された時系列データと実績流入量演算手段で求められた
実績流入量及び実績流入量の変化率を入力とし、該重み
係数をもとに、現在より先のある一定時間内に前記汚水
貯留施設に流入する汚水流入量を予測する前記汚水流入
量予測手段とを備えることは更に望ましい。
The weight coefficient of the neural network is determined by the back-propagation method using the time-series data stored in the plant data storage means and the actual inflow amount and the change rate of the actual inflow amount obtained by the actual inflow amount calculating means. Equipped with learning means for inputting the time series data stored in the plant data storage means, the actual inflow amount and the change rate of the actual inflow amount obtained by the actual inflow amount calculating means, and based on the weighting factor, It is further desirable to include the wastewater inflow predicting means for predicting the inflow quantity of wastewater flowing into the wastewater storage facility within a certain time period ahead.

【0014】また、プラントデータ保存手段に保存され
たポンプ井水位とポンプ吐出量、予め定めたポンプ井の
目標水位及び前記汚水流入量予測手段で得られた予測流
入量を用い、ファジィ推論において、ポンプ位の水位変
動はある範囲内に抑えながら吐出量をなるべく一定にす
るように演算するためのメンバーシップ関数,推論ルー
ルを変更する手段を設けて、プラントデータ保存手段に
保存されたポンプ井水位とポンプ吐出量、予め定めたポ
ンプ井の目標水位及び前記汚水流入量予測手段で得られ
た予測流入量を入力とし、前記メンバーシップ関数と推
論ルールに従いファジィ推論により汚水ポンプの目標吐
出量を決定することも望ましい。
Further, in the fuzzy inference, using the pump well water level and the pump discharge amount stored in the plant data storage means, the predetermined target water level of the pump well and the estimated inflow amount obtained by the wastewater inflow amount estimation means, The pump well water level stored in the plant data storage means is provided with a membership function for calculating the discharge amount to be as constant as possible while suppressing the fluctuation of the pump water level within a certain range, and means for changing the inference rule. And the pump discharge amount, the predetermined target water level of the pump well and the predicted inflow amount obtained by the wastewater inflow predicting means are input, and the target discharge amount of the wastewater pump is determined by fuzzy reasoning according to the membership function and the inference rule. It is also desirable to do.

【0015】本発明において、汚水貯留施設内の流入渠
の水位とポンプ井の水位とが同一の挙動を示すように構
成されている場合には、流入渠水位とポンプ井水位のど
ちらか一方が学習手段或いは汚水流入量予測手段に入力
されるようにしてもよい。
In the present invention, when the water level of the inflow channel and the water level of the pump well in the wastewater storage facility are configured to exhibit the same behavior, either one of the inflow channel water level and the pump well water level is It may be input to the learning means or the wastewater inflow prediction means.

【0016】[0016]

【作用】本発明では、下水処理場の汚水貯留施設にこれ
から先の一定時間に流入する汚水の流入量を予測し、更
に現在及び将来の汚水流入状況をもとに、なるべく汚水
の目標輸送量を変化させないように予め定めたルールに
従い汚水の輸送量を決定する。
The present invention predicts the inflow amount of sewage that will flow into the sewage treatment facility of the sewage treatment plant in the future for a certain period of time, and further, based on the present and future sewage inflow conditions, the target transport amount of sewage as much as possible. Determine the amount of sewage transported according to a predetermined rule so as not to change.

【0017】[0017]

【実施例】以下、本発明の実施例を示す図面をもとに説
明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0018】図1に本発明による汚水ポンプ制御装置の
構成図を示す。
FIG. 1 shows a block diagram of a sewage pump controller according to the present invention.

【0019】下水処理場はその処理区域から下水管渠2
1を経て集められる生活排水や産業排水等の汚水を処理
し、河川に放流する。下水処理場に流入した汚水はまず
流入渠11に入る。流入渠11は除塵水路13,ポンプ
井14とつながっており、汚水は流入渠11からポンプ
井14へ流入後、汚水ポンプ15により処理施設17へ
と送られ処理される。
The sewage treatment plant runs from its treatment area to the sewer pipe 2
Wastewater such as domestic wastewater and industrial wastewater collected through 1 is treated and discharged into rivers. Sewage that has flowed into the sewage treatment plant first enters the inflow port 11. The inflow channel 11 is connected to the dust removal water channel 13 and the pump well 14, and the wastewater flows from the inflow channel 11 into the pump well 14 and is then sent to the treatment facility 17 by the wastewater pump 15 for treatment.

【0020】流入渠11には水位計18が、ポンプ井1
4には水位計20が、汚水ポンプ15の後方には流量計
16が設置してあり、流入渠水位,ポンプ井水位,汚水
ポンプ吐出量が計測される。汚水ポンプ吐出量は例えば
1時間当たりの吐出量として出力される。また、除塵流
入ゲート12の開度がゲート開度計19で計測されて0
から100[%]で得られる。
A water level gauge 18 is provided in the inflow conduit 11 and a pump well 1
4, a water level meter 20 is installed, and a flow meter 16 is installed behind the sewage pump 15. The inflow channel water level, the pump well water level, and the sewage pump discharge amount are measured. The discharge amount of the dirty water pump is output as a discharge amount per hour, for example. In addition, the opening degree of the dust removal inflow gate 12 is measured by the gate opening degree meter 19 and is zero.
To 100 [%].

【0021】これらの計測データは、プラントデータ保
存装置51に時系列データとして保存される。
These measurement data are stored in the plant data storage device 51 as time series data.

【0022】実績流入量演算装置52では、まずポンプ
井水位,ポンプ吐出量から次の式に従いある一定時間
(制御周期)の間に実際に処理場へ流入した汚水量を算
出する。
The actual inflow amount calculation device 52 first calculates the amount of sewage actually flowing into the treatment plant from the pump well water level and the pump discharge amount according to the following equation within a certain fixed time (control cycle).

【0023】Qin=ΣPout+ΔV Qin :1制御周期間の汚水流入量 ΣPout:1制御周期間の汚水ポンプ吐出量 ΔV :1制御周期間の貯留量変化量 ここで、貯留量とは図2のように管渠および処理場内貯
留施設内に貯留された汚水量を表す。また、貯留量は予
め土木図面から作成しておいた井水位と貯留量の関係を
表した「貯留量テーブル」から求められ、この貯留量テ
ーブルは図3のようにポンプ井水位と貯留量が一対一の
関係で表されている。
Qin = ΣPout + ΔV Qin: Inflow amount of sewage during one control period ΣPout: Discharge amount of sewage pump during one control period ΔV: Change amount of storage amount during one control period Here, the storage amount is as shown in FIG. Represents the amount of sewage stored in pipes and storage facilities in the treatment plant. In addition, the storage volume is obtained from the "storage volume table" that represents the relationship between the well water level and the storage volume that was created in advance from the civil engineering drawings. This storage volume table shows the pump well water level and storage volume as shown in Fig. 3. It is represented in a one-to-one relationship.

【0024】ここで求めた1制御周期の間の流入量をさ
らに1時間当たりに換算し、実績流入量とする。
The inflow amount obtained during one control cycle obtained here is further converted into an actual inflow amount per hour.

【0025】学習装置31ではニューラルネットワーク
の重み係数を決定する。重み係数は、プラントデータ保
存装置51に蓄積された各種プラントデータをもとにバ
ックプロパゲーション法により決定する。決定された重
み係数はただちに流入量予測装置32に反映される。
The learning device 31 determines the weighting coefficient of the neural network. The weighting factor is determined by the back propagation method based on various plant data accumulated in the plant data storage device 51. The determined weight coefficient is immediately reflected in the inflow amount prediction device 32.

【0026】流入量予測装置32は、プラントデータ保
存装置51に保存された各種プラントデータから将来の
汚水流入量を予測する。予測には過去の汚水流入量や水
位,ポンプ吐出量などの線形和として将来の流入量を計
算する重回帰モデルや、汚水流入量の変動パターンを記
憶し、その記憶をもとに将来値を予測する方法などが利
用できるが、本実施例では図4のようなニューラルネッ
トを用いた。
The inflow amount predicting device 32 predicts the future inflow amount of sewage from various plant data stored in the plant data storage device 51. For the prediction, a multiple regression model that calculates the future inflow as a linear sum of the past inflow, the water level, and the pump discharge, and the fluctuation pattern of the inflow of sewage are stored, and future values are stored based on that memory. Although a prediction method or the like can be used, a neural network as shown in FIG. 4 is used in this embodiment.

【0027】図4のニューラルネットは、入力としてポ
ンプ井水位(ポンプ井の水位と流入渠の水位とが同一の
挙動を示す場合には、流入渠水位でもよい),除塵流入
ゲート開度,汚水ポンプ吐出量,実績流入量,実績流入
量変化率等のプラントの時系列データを与えると、予測
流入量(1時間当たり)が出力される。ここで、実績流
入量変化率とは現在と1制御周期前の実績流入量の差を
いう。
The neural network shown in FIG. 4 has the pump well water level (if the water level of the pump well and the water level of the inflow culvert are the same behavior, the inflow basin water level may be used) as an input, the dust removal inflow gate opening, and the sewage. Given the time-series data of the plant such as the pump discharge amount, the actual inflow amount, the actual inflow amount change rate, etc., the predicted inflow amount (per hour) is output. Here, the actual inflow rate change rate means the difference between the current inflow rate and the actual inflow rate one control cycle before.

【0028】メンバーシップ・ルール変更装置41で
は、目標吐出量演算に使用するファジィ推論のためのメ
ンバーシップ関数,演算ルールの作成・修正が行える。
その際、プラントデータ保存装置に保存された過去のデ
ータを用いて作成・修正を行うこともできる。メンバー
シップ・ルール変更装置41にて決定されたメンバーシ
ップ関数,演算ルールはただちに目標吐出量演算装置4
2に反映される。
The membership rule changing device 41 can create and modify membership functions and calculation rules for fuzzy inference used for target discharge amount calculation.
At that time, the past data stored in the plant data storage device can be used to create / correct. The membership function and calculation rule determined by the membership rule changing device 41 are immediately applied to the target discharge amount calculation device 4
Reflected in 2.

【0029】ポンプ井目標水位設定装置53では、操作
員が制御の目標となるポンプ井目標水位を設定し、その
値が記憶される。
In the pump well target water level setting device 53, the operator sets the pump well target water level as a control target, and the value is stored.

【0030】目標吐出量演算装置42では、ポンプ井目
標水位設定装置53で設定されたポンプ井の目標水位,
流入量予測装置32により求められる予測流入量,プラ
ントデータ保存装置51に保存された実績流入量,ポン
プ井水位,汚水ポンプ吐出量等の情報より演算される情
報(例えば将来のポンプ井水位など)を入力とし、目標
吐出量を決定する。
In the target discharge amount calculation device 42, the target water level of the pump well set by the pump well target water level setting device 53,
Information that is calculated from information such as the predicted inflow amount obtained by the inflow amount prediction device 32, the actual inflow amount stored in the plant data storage device 51, the pump well water level, and the sewage pump discharge amount (for example, future pump well water level) Is input and the target discharge amount is determined.

【0031】本実施例では、目標吐出量決定にファジィ
推論を採用し、ポンプ井水位偏差,揚水量偏差をファジ
ィ推論の入力とする。ポンプ井水位偏差とはその時点で
のポンプ井水位とポンプ井目標水位の差を、揚水量偏差
とは予測流入量と現在のポンプ吐出量の差をいう。
In this embodiment, fuzzy inference is used to determine the target discharge amount, and the pump well water level deviation and the pumped water amount deviation are used as the inputs of the fuzzy inference. The pump well water level deviation is the difference between the pump well water level and the pump well target water level at that time, and the pumping water quantity deviation is the difference between the predicted inflow amount and the current pump discharge amount.

【0032】 ポンプ井水位偏差=ポンプ井水位−ポンプ井目標水位 揚水量偏差=予測流入量−ポンプ吐出量 本実施例で用いたファジィ推論による目標吐出量演算ル
ールの例を表1に示す。
Pump well water level deviation = Pump well water level-Pump well target water level Pumped water quantity deviation = Predicted inflow amount-Pump discharge amount Table 1 shows an example of a target discharge amount calculation rule by fuzzy inference used in this embodiment.

【0033】[0033]

【表1】 [Table 1]

【0034】表1のルールでは水位偏差がプラスで大き
く、揚水量偏差が大きくないか或いはプラスで大きいと
きは目標吐出量を増やし、ポンプ井水位偏差がマイナス
で大きく、揚水量偏差が大きくないか或いはマイナスで
大きいときに目標吐出量を減らす。つまり、現在の状況
があまり良くない(ポンプ井水位偏差が大きい)うえ
に、将来も状況が良くなりそうにない場合のみ目標吐出
量を変更し、それ以外では一定としている。
According to the rule of Table 1, the water level deviation is large in the plus and the pumping rate deviation is not large, or when it is in the plus side, the target discharge amount is increased, and the pump well water level deviation is large in the minus and the pumping quantity deviation is not large. Alternatively, when it is negative and large, the target discharge amount is reduced. That is, the target discharge rate is changed only when the current situation is not so good (the pump well water level deviation is large) and the situation is unlikely to improve in the future, and is constant at other times.

【0035】ここで、「プラスで大きい」「大きくな
い」「増やす」「減らす」等の曖昧な表現は図5から図
7のようなメンバーシップ関数によって表現する。
Here, ambiguous expressions such as “plus large”, “not large”, “increase”, “decrease” are expressed by membership functions as shown in FIGS. 5 to 7.

【0036】図5において、ポンプ井水位偏差は±0.
5[m]で「大きくない」という評価が高く、この変動
幅は許容される範囲であることを意味する。一方、±1
[m]以上では「プラスで大きい」または「マイナスで
大きい」という評価が高くなり、この変動幅は望ましく
ない状態といえる。
In FIG. 5, the pump well water level deviation is ± 0.
The evaluation of “not large” at 5 [m] is high, which means that this fluctuation range is within an allowable range. On the other hand, ± 1
When the value is [m] or more, the evaluation of “large in plus” or “large in minus” is high, and this fluctuation range is not desirable.

【0037】図6の揚水量偏差は、0[m3/hr]を
中心に±600[m3/hr]で「大きくない」となっ
ており、予測流入量と汚水ポンプ吐出量の差が小さいほ
ど評価が高くなる。
The pumping amount deviation of 6, 0 [m 3 / hr] has a "not greater" in ± 600 [m 3 / hr] mainly, the difference in the predicted inflow and sewage pump discharge quantity The smaller the value, the higher the evaluation.

【0038】次に、目標吐出量が実際に求められるまで
の課程について詳しく述べる。例として、 ポンプ井水位偏差:−1.2[m] 揚水量偏差 :−500[m3/hr] の場合の目標吐出量算出課程を図8から図9に示す。
Next, the process until the target discharge amount is actually obtained will be described in detail. As an example, FIGS. 8 to 9 show the target discharge rate calculation process in the case of the pump well water level deviation: -1.2 [m] and the pumped water quantity deviation: -500 [m 3 / hr].

【0039】まず、ポンプ井水位偏差,揚水量偏差が求
められたら、メンバーシップ関数をもとにそれぞれの適
合度を求める。例の場合、ポンプ井水位は−1.2
[m] であるから、「マイナスで大きい」度合度が1.
0 となる(図8)。一方、揚水量偏差は−500[m3
/hr]では「マイナスで大きい」と「大きくない」の
2つにまたがる。この場合、この2つともに適合度を算
出する。「マイナスで大きい」では0.83 、「大きくな
い」では0.17 となる(図9)。
First, when the pump well water level deviation and the pumped water quantity deviation are obtained, the respective suitability is obtained based on the membership function. In the case of the example, the pump well water level is -1.2
Since it is [m], the degree of “negative and large” is 1.
It becomes 0 (Fig. 8). On the other hand, the deviation of the amount of pumped water is -500 [m 3
/ Hr] spans both "minus and large" and "not large". In this case, the suitability is calculated for both of the two. It is 0.83 for "minus large" and 0.17 for "not large" (Fig. 9).

【0040】この例のルールではポンプ井水位偏差,揚
水量偏差の2つの条件があるため、2つの総合した条件
としての適合度を求める。条件部の適合度は、ポンプ井
水位偏差,揚水量偏差の適合度の小さい方の値とする。
In the rule of this example, there are two conditions, that is, the pump well water level deviation and the pumped water quantity deviation, and therefore the degree of conformity as the two combined conditions is obtained. The conformity of the condition part shall be the smaller value of the conformity of pump well water level deviation and pumped water quantity deviation.

【0041】 条件部適合度=min(ポンプ井水位偏差,揚水量偏差) ところで、揚水量偏差の適合度算出において、揚水量偏
差が2つのメンバーシップにまたがっていたので、条件
部の適合度も2通りについて算出する。
Condition part conformity = min (pump well water level deviation, pumped water amount deviation) Incidentally, in the calculation of the conformity of the pumped water amount deviation, the pumped water amount deviation spanned two memberships, so Calculate for two ways.

【0042】揚水量偏差がナイナスで大きい場合は、 条件部適合度=min(1.0,0.83)=0.83 揚水量偏差が大きくない場合は、 条件部適合度=min(1.0,0.17)=0.17 となる。When the deviation of the pumped water amount is large and is large, the conformity of the conditional part = min (1.0, 0.83) = 0.83 When the deviation of the pumped water amount is not large, the conformity of the conditional part = min (1. 0,0.17) = 0.17.

【0043】表1のルールに従い条件部に対応する結論
を抜き出す。この例の場合、ポンプ井水位偏差は「マイ
ナスで大きい」、揚水量偏差は「マイナスで大きい」と
「大きくない」に当てはまるので、結論は「目標吐出量
を減らす」となる。この抜き出された結論部のメンバー
シップ関数を条件部の適合度で区切り、台形を切り取る
(図10,図11の斜線部)。
According to the rules of Table 1, the conclusion corresponding to the condition part is extracted. In the case of this example, the pump well water level deviation is “negative and large”, and the pumping water amount deviation is “negative and large” and “not large”, so the conclusion is “to reduce the target discharge amount”. The membership function of the extracted conclusion part is divided by the goodness of fit of the condition part, and the trapezoid is cut out (hatched part in FIGS. 10 and 11).

【0044】次に、切り取られた台形をすべての条件に
ついて重ね合わせる(図12)。重ね合わされてできた
図形について重心を求め、その重心に対応する揚水量が
目標吐出量偏差となる(この操作をファジィと呼ぶ)。
この例の場合、−395[m3/hr]となる。
Next, the cut trapezoids are overlapped with each other under all conditions (FIG. 12). The center of gravity is calculated for the superposed figures, and the amount of pumped water corresponding to the center of gravity becomes the target discharge amount deviation (this operation is called fuzzy).
In the case of this example, it becomes −395 [m 3 / hr].

【0045】この目標吐出量偏差を現在の目標吐出量に
加え、新しい目標吐出量とする。
This target discharge amount deviation is added to the current target discharge amount to obtain a new target discharge amount.

【0046】汚水ポンプ制御装置54は目標吐出量演算
装置42で算出された目標吐出量に従い汚水ポンプ15
の運転台数,回転数,吐出弁開度等を決定し、ポンプ吐
出量を目標吐出量に調節する。
The sewage pump control device 54 controls the sewage pump 15 according to the target discharge amount calculated by the target discharge amount calculation device 42.
The number of pumps, the number of rotations, the discharge valve opening, etc. are determined, and the pump discharge rate is adjusted to the target discharge rate.

【0047】[0047]

【発明の効果】本発明では、将来の汚水流入量を予測
し、さらに現在・将来の状況をもとに、なるべく目標吐
出量を変化させないよう予め作成されたルールに従い汚
水ポンプの目標吐出量を決定する。従って、汚水流入量
にかかわらずに、なるべく一定量の汚水を処理施設へ輸
送することができ、処理施設で安定な処理を行うことが
できる。
The present invention predicts the future inflow amount of sewage, and based on the present / future situation, the target discharge amount of the sewage pump is set according to a rule created in advance so as not to change the target discharge amount as much as possible. decide. Therefore, regardless of the inflow of sewage, a certain amount of sewage can be transported to the treatment facility as much as possible, and stable treatment can be performed in the treatment facility.

【図面の簡単な説明】[Brief description of drawings]

【図1】汚水ポンプ制御装置の構成図。FIG. 1 is a configuration diagram of a sewage pump control device.

【図2】実績流入量概念図。FIG. 2 is a conceptual diagram of the actual inflow amount.

【図3】貯留量とポンプ井水位との関係を示すグラフ。FIG. 3 is a graph showing the relationship between the storage amount and the pump well water level.

【図4】流入量予測ニューラルネットの構成図。FIG. 4 is a configuration diagram of an inflow prediction neural network.

【図5】メンバーシップ関数を示す図(ポンプ井水位偏
差)。
FIG. 5 is a diagram showing a membership function (pump well water level deviation).

【図6】メンバーシップ関数を示す図(揚水量偏差)。FIG. 6 is a diagram showing a membership function (pumping amount deviation).

【図7】メンバーシップ関数を示す図(目標吐出量)。FIG. 7 is a diagram showing a membership function (target discharge amount).

【図8】条件ごとの適合度算出を示す図(ポンプ井水位
偏差)。
FIG. 8 is a diagram showing the calculation of the fitness for each condition (pump well water level deviation).

【図9】条件ごとの適合度算出を示す図(揚水量偏
差)。
FIG. 9 is a diagram showing the calculation of the fitness for each condition (pumping amount deviation).

【図10】条件部適合度の算出を示す図(揚水量偏差が
マイナスで大きい場合)。
FIG. 10 is a diagram showing the calculation of the condition part conformance (when the deviation of the pumping amount is negative and large).

【図11】条件部適合度の算出を示す図(揚水量偏差が
大きくない場合)。
FIG. 11 is a diagram showing the calculation of the degree of conformity of the condition part (when the deviation of the pumping amount is not large).

【図12】デファジィを示す図。FIG. 12 is a diagram showing defuzziness.

【符号の説明】[Explanation of symbols]

11…流入渠、12…除塵流入ゲート、13…除塵水
路、14…ポンプ井、15…汚水ポンプ、16…流量
計、17…処理施設、18…水位計、19…ゲート開度
計、20…水位計、21…下水管渠、31…学習装置、
32…流入量予測装置、41…メンバーシップ・ルール
変更装置、42…目標吐出量演算装置、51…プラント
データ保存装置、52…実績流入量演算装置、53…ポ
ンプ井目標水位設定装置、54…汚水ポンプ制御装置。
11 ... Inlet Drain, 12 ... Dust Removal Inlet Gate, 13 ... Dust Removal Channel, 14 ... Pump Well, 15 ... Sewage Pump, 16 ... Flow Meter, 17 ... Treatment Facility, 18 ... Water Level Meter, 19 ... Gate Opening Meter, 20 ... Water level gauge, 21 ... Sewer pipe, 31 ... Learning device,
32 ... Inflow amount predicting device, 41 ... Membership rule changing device, 42 ... Target discharge amount computing device, 51 ... Plant data storage device, 52 ... Actual inflow amount computing device, 53 ... Pump well target water level setting device, 54 ... Sewage pump controller.

フロントページの続き (72)発明者 依田 幹雄 茨城県日立市大みか町五丁目2番1号 株 式会社日立製作所大みか工場内Front page continuation (72) Inventor Mikio Yoda 52-1 Omika-cho, Hitachi-shi, Ibaraki Hitachi Ltd. Omika factory

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】下水処理区域から下水管渠を経て集められ
た汚水を貯蔵する汚水貯留施設と汚水処理施設及び該汚
水貯留施設から該汚水処理施設へ汚水を輸送する汚水ポ
ンプとを有し、該汚水貯留施設内に下水の流入渠と除塵
水路及びポンプ井とを備えた下水処理場の汚水ポンプ制
御装置であって、 前記汚水貯留施設内の流入渠の水位とポンプ井の水位及
び除塵水路のゲート開度,前記汚水ポンプの吐出量の各
時系列データを保存するプラントデータ保存手段と、 前記プラントデータ保存手段に保存されたポンプ井水位
と汚水ポンプ吐出量とに基づいて、過去のある時点から
現在までに下水処理場に流入した汚水量を演算する実績
流入量演算手段と、 前記プラントデータ保存手段に保存された時系列データ
と前記実績流入量及び該実績流入量の変化率に基づい
て、現在より先のある一定時間内に前記汚水貯留施設に
流入する汚水流入量を予測する汚水流入量予測手段と、 前記ポンプ井水位と予め定めたポンプ井の目標水位とか
らポンプ井水位偏差を求め、前記汚水流入量予測手段で
得られた予測流入量と前記ポンプ井吐出量とから揚水量
偏差を求めて、これらによりポンプ井の水位をある範囲
内に抑えながら吐出量をなるべく一定にする目標吐出量
演算ルールを作成して該ルールに従い汚水ポンプの吐出
量を決定する目標吐出量演算手段と、 該目標吐出量演算手段で決定された吐出量になるように
汚水ポンプの運転台数,回転数及び吐出弁の開度の少な
くとも1つを制御する汚水ポンプ運転制御手段とを備え
たことを特徴とする下水処理場の汚水ポンプ制御装置。
1. A sewage storage facility for storing sewage collected from a sewage treatment area via a sewer pipe, a sewage treatment facility, and a sewage pump for transporting sewage from the sewage treatment facility to the sewage treatment facility, A sewage treatment plant sewage treatment plant control device comprising a sewage inflow channel, a dust removal channel and a pump well in the sewage storage facility, the water level of the inflow channel and the water level of the pump well and the dust removal channel in the sewage storage facility. Based on the pump well water level and the sewage pump discharge amount stored in the plant data storage unit, and the plant data storage unit that stores each time series data of the gate opening degree and the discharge amount of the sewage pump. Actual inflow amount calculation means for calculating the amount of sewage that has flown into the sewage treatment plant from the time to the present, time series data stored in the plant data storage means, the actual inflow amount and the actual inflow amount Based on the rate of change, from the sewage inflow predicting means for predicting the sewage inflow into the sewage storage facility within a certain time ahead of the present, from the pump well water level and the predetermined target water level of the pump well The pump well water level deviation is calculated, and the pumped water quantity deviation is calculated from the predicted inflow quantity obtained by the sewage inflow quantity prediction means and the pump well discharge quantity, and the discharge quantity is held while suppressing the water level of the pump well within a certain range. Target discharge amount calculation rule for making the discharge amount constant as much as possible, and a target discharge amount calculation means for determining the discharge amount of the sewage pump according to the rule, and a sewage pump for achieving the discharge amount determined by the target discharge amount calculation means. And a sewage pump operation control means for controlling at least one of the number of operating units, the number of revolutions, and the opening degree of the discharge valve of the sewage treatment plant.
【請求項2】請求項1において、前記プラントデータ保
存手段に保存された時系列データと前記実績流入量演算
手段で求められた実績流入量及び実績流入量の変化率を
用い、バックプロパゲーション法によりニューラルネッ
トワークの重み係数を決定する学習手段と、 前記プラントデータ保存手段に保存された時系列データ
と前記実績流入量演算手段で求められた実績流入量及び
実績流入量の変化率を入力とし、該重み係数をもとに、
現在より先のある一定時間内に前記汚水貯留施設に流入
する汚水流入量を予測する前記汚水流入量予測手段とを
備えたことを特徴とする下水処理場の汚水ポンプ制御装
置。
2. The back propagation method according to claim 1, wherein the time-series data stored in the plant data storage means, the actual inflow quantity and the change rate of the actual inflow quantity obtained by the actual inflow calculation means are used. Learning means for determining the weighting coefficient of the neural network by, the time-series data stored in the plant data storage means and the actual inflow amount and the rate of change of the actual inflow amount obtained by the actual inflow operation means are input, Based on the weighting factor
A sewage pump control device for a sewage treatment plant, comprising: the sewage inflow amount predicting unit that predicts an inflow amount of sewage flowing into the sewage storage facility within a certain time period ahead of the present time.
【請求項3】請求項1または2において、前記汚水貯留
施設内の流入渠の水位とポンプ井の水位とが同一の挙動
を示すように構成されている場合に、該流入渠水位と該
ポンプ井水位のどちらか一方が前記学習手段或いは前記
汚水流入量予測手段に入力されるようにしたことを特徴
とする下水処理場の汚水ポンプ制御装置。
3. The inflow channel water level and the pump according to claim 1 or 2, when the water level of the inflow channel and the water level of the pump well in the wastewater storage facility are configured to exhibit the same behavior. A sewage pump control device for a sewage treatment plant, wherein either one of the well water levels is input to the learning means or the sewage inflow prediction means.
【請求項4】請求項1または2において、前記プラント
データ保存手段に保存されたポンプ井水位とポンプ吐出
量、予め定めたポンプ井の目標水位及び前記汚水流入量
予測手段で得られた予測流入量を用い、ファジィ推論に
おいて、ポンプ井の水位変動をある範囲内に抑えながら
吐出量をなるべく一定にするように演算するためのメン
バーシップ関数及び推論ルールを変更する手段と、 前記プラントデータ保存手段に保存されたポンプ井水位
とポンプ吐出量、予め定めたポンプ井の目標水位及び前
記汚水流入量予測手段で得られた予測流入量を入力と
し、前記メンバーシップ関数と推論ルールに従いファジ
ィ推論により汚水ポンプの目標吐出量を決定する前記目
標吐出量演算手段を備えたことを特徴とする下水処理場
の汚水ポンプ制御装置。
4. The pump well water level and pump discharge amount stored in the plant data storage means, the target water level of a predetermined pump well, and the predicted inflow obtained by the wastewater inflow amount prediction means according to claim 1 or 2. And means for changing the membership function and inference rule for calculating the discharge amount to be as constant as possible while suppressing the water level fluctuation of the pump well within a certain range in the fuzzy inference, and the plant data storage means The pump well water level and pump discharge amount, the target water level of the predetermined pump well, and the predicted inflow amount obtained by the wastewater inflow predicting means, which are stored in, are input, and the wastewater is fuzzy inferred according to the membership function and inference rules. A sewage pump control device for a sewage treatment plant, comprising the target discharge amount calculation means for determining a target discharge amount of a pump.
JP21999695A 1995-08-29 1995-08-29 Sewage pump control device in sewage treatment plant Pending JPH0968170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21999695A JPH0968170A (en) 1995-08-29 1995-08-29 Sewage pump control device in sewage treatment plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21999695A JPH0968170A (en) 1995-08-29 1995-08-29 Sewage pump control device in sewage treatment plant

Publications (1)

Publication Number Publication Date
JPH0968170A true JPH0968170A (en) 1997-03-11

Family

ID=16744304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21999695A Pending JPH0968170A (en) 1995-08-29 1995-08-29 Sewage pump control device in sewage treatment plant

Country Status (1)

Country Link
JP (1) JPH0968170A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040044748A (en) * 2002-11-22 2004-05-31 지아이 주식회사 Remote controling method of wastewater treatment facilities by simulation expert system for optimal operation
KR100456413B1 (en) * 2002-06-21 2004-11-10 에치투엘 주식회사 System and method for AI controlling waste-water treatment by neural network and back-propagation algorithm
KR101108031B1 (en) * 2009-06-30 2012-01-25 부산대학교 산학협력단 Wastewater treatment system and method of treating wastewater based on pridicton control
JP2012173775A (en) * 2011-02-17 2012-09-10 Toshiba Mitsubishi-Electric Industrial System Corp Pump control system
CN110963538A (en) * 2019-10-25 2020-04-07 广东科创工程技术有限公司 Control method for stable water inflow of sewage plant
CN113820976A (en) * 2021-08-30 2021-12-21 长江勘测规划设计研究有限责任公司 Gate intelligent control method based on artificial intelligence

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100456413B1 (en) * 2002-06-21 2004-11-10 에치투엘 주식회사 System and method for AI controlling waste-water treatment by neural network and back-propagation algorithm
KR20040044748A (en) * 2002-11-22 2004-05-31 지아이 주식회사 Remote controling method of wastewater treatment facilities by simulation expert system for optimal operation
KR101108031B1 (en) * 2009-06-30 2012-01-25 부산대학교 산학협력단 Wastewater treatment system and method of treating wastewater based on pridicton control
JP2012173775A (en) * 2011-02-17 2012-09-10 Toshiba Mitsubishi-Electric Industrial System Corp Pump control system
CN110963538A (en) * 2019-10-25 2020-04-07 广东科创工程技术有限公司 Control method for stable water inflow of sewage plant
CN113820976A (en) * 2021-08-30 2021-12-21 长江勘测规划设计研究有限责任公司 Gate intelligent control method based on artificial intelligence
CN113820976B (en) * 2021-08-30 2023-09-29 长江勘测规划设计研究有限责任公司 Gate intelligent control method based on artificial intelligence

Similar Documents

Publication Publication Date Title
JPH0968170A (en) Sewage pump control device in sewage treatment plant
JP4488970B2 (en) Operation management system for combined sewage systems
JPH06102911A (en) Method and device for predicting inflow water rate in drainage pump place
JP4485043B2 (en) Sewage treatment system, inflow water treatment arithmetic device, inflow water treatment method, and storage medium
JPH05265513A (en) Method for controlling, number of pumps in operation at place of drainage pump and device therefor
JP3294074B2 (en) Rainwater pump control device and control method
JPH01175613A (en) Pump controller
JP2003239372A (en) Drainage pump operation support device and drainage pump control device
JP3237274B2 (en) Rainwater pump control method
JPH08318262A (en) Pumping-up water flow rate control device of adjusting basin
JPH09204218A (en) Plant monitoring device
JP3278932B2 (en) Rainwater pump controller
JP2885449B2 (en) Pump control device
JP2861621B2 (en) Rainwater pump operation control device
JP2001182665A (en) Pump operation method, pump control device and recording medium therefor
JPS6323391B2 (en)
JP3208969B2 (en) Rainwater reservoir cleaning control method
JPH07259745A (en) Refluent water control method for rainwater stagnating pond
JPH06129361A (en) Method and device for controlling number of pump operating tables in water drainage pumping place
JPH05303407A (en) Method and device for controlling the number of running pumps in drainage pump station
JPS58211586A (en) Pump operating apparatus
JP2000167580A (en) Operation control of effluent type waste water treatment plant
JPH05303406A (en) Method for controlling prediction of qualitative inference
JP2574576B2 (en) Dam gate control device
JPH0711692A (en) Controlling method for stormwater pump