JPS6323241B2 - - Google Patents

Info

Publication number
JPS6323241B2
JPS6323241B2 JP53019969A JP1996978A JPS6323241B2 JP S6323241 B2 JPS6323241 B2 JP S6323241B2 JP 53019969 A JP53019969 A JP 53019969A JP 1996978 A JP1996978 A JP 1996978A JP S6323241 B2 JPS6323241 B2 JP S6323241B2
Authority
JP
Japan
Prior art keywords
powder
iron
phosphorus
particle size
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53019969A
Other languages
Japanese (ja)
Other versions
JPS53127310A (en
Inventor
Roberuto Tengeriusu Jan
Ratsuseru Fuairesu Robaato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoganas AB
Original Assignee
Hoganas AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoganas AB filed Critical Hoganas AB
Publication of JPS53127310A publication Critical patent/JPS53127310A/en
Publication of JPS6323241B2 publication Critical patent/JPS6323241B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0207Using a mixture of prealloyed powders or a master alloy
    • C22C33/0214Using a mixture of prealloyed powders or a master alloy comprising P or a phosphorus compound

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は含燐粉末を添加された大粒径の高純度
鉄粉に関するもので、特に軟磁性に対する強い要
求を満足させる部品を粉末冶金で製造するための
ものである。 粉末冶金による製造技術は寸法正確度の優れた
部品を多段階で製造することによつて特徴づけら
れるものであるが、製造結果は次段階の圧縮工程
を容易にするために金属粉末、例えば鉄粉末を、
もし必要ならば粉末状の合金化元素とともに、潤
滑剤と混合することから始まる。粉末混合物は粗
成型体に圧縮されるが、その形状はほぼまたは正
確に最終成型体の形状と一致する。次いで、粗成
型体は加熱されて強度、可鍛性等焼結によつて最
終特性の得られる温度に保持される。実質的に
は、この方法でつくられる材料は溶融冶金法でつ
くられる材料とは空隙率が異なるものとなる。優
れた軟磁性体に対する要求を満足すべき部品は、
その主成分として鉄を有する材料から通常製造さ
れ、最も普通の製造法は部品が高純度固体材料、
例えばアームコ鉄からつくられる方法である。し
かしながら、材料の節約、寸法正確性および成型
の容易性の故に、粉末冶金の技術もまたこれらの
部品の製造に利用できるものである。ただ、これ
までは同一組成の固体材料と同じような優れた軟
磁性を、鉄を主成分として含有する粉末冶金でつ
くられる材料から得ることはできなかつた。この
差異は実質上粉末冶金法でつくられる材料の空隙
率によるものである。 特許請求の範囲の記載においてより正確に特徴
づけられている本発明の方法によれば、粉末冶金
法によつてつくられる材料で、粉末冶金では異常
に粗大粒子の方向に動かされた粒度分布を有する
鉄粉を出発材料として用いることによつて、高純
度固体鉄とほぼ同一の軟磁性特性を得ることがで
きることが立証された。この鉄粉が粗大であると
いうことのほかに、また不純物含量の極度に低い
ことも必要とされることである。 この好ましくは噴霧法によつてつくられるべき
高純度鉄粉は99.8%以上の鉄含量を有することが
必要である。ここで%は重量%を意味し、以下同
様である。鉄の磁性を劣化させるものとして知ら
れている不純物の含量は、この鉄粉ではできるだ
け低くなければならず、好ましくはC<0.01%、
全−O<0.1%、N<0.005%であることが望まし
い。本発明の利点を得るためには、粒子の主要部
の粒径が35〜100Tylerメツシユ(417〜147μm)
の粉末を使用する。35Tylerメツシユ(417μm)
より大きい粒子の含量は5%以下であり、
100Tylerメツシユ(147μm)よりも小さい粒子
の含量は20%、好ましくは10%未満である。 もしも鉄粉の5%以上が35メツシユ以上の粒径
であると製品の機械強度が著しく減少し、また鉄
粉の20%以上が100メツシユ以下の粒径であると
磁気特性が著しく劣化する。これらの高純度粗大
鉄粉から作られる製品の機械的強度は100メツシ
ユ以下の粒子の含量が低いために著しく低く、従
つて高強度が要求される場合には100メツシユ以
下の粒子含量を高める以外はなく、その結果は軟
磁性特性を損うものとなつていた。この問題に対
しての解決は、粉末の合金化成分をこの高純度鉄
粉に添加することである。この合金化成分は焼成
時に得られる材料の軟磁性を損うことなしに強度
を増大させるからである。 例えばスウエーデン特許第7205754−0からも
知られるように、粉末状の燐鉄が、通常粉末冶金
に使用されるタイプの147μm未満の粒径の鉄粉と
混合される場合に、焼成時に強度を増加させるこ
とは既に公知である。以下の実施例からも知られ
るように、これら高純度粗大鉄粉に粉末状の燐鉄
を混合することによつて、その軟磁性を保持する
だけでなくむしろ強化することにより、焼成材料
の強度を5倍にすることができる。本発明によれ
ば、混合物の全燐分含量は1.5%を越えてはなら
ず、最大の強度増加は燐含有分0.3%で得られる。
また燐分は燐鉄として添加されることが好まし
い。 通常の粉末冶金の製造に関する条件下で圧縮、
焼結した後、この粉末混合物は相当する燐不含材
料よりも優れた機械特性および軟磁性を有する部
品を生成する。そして燐含量によつては高純度固
体鉄よりも優れた軟磁性を付与する。 以下に本発明の具体例とその驚異的結果を示
す。 実施例 1 2種類の鉄鋼粉末が噴霧、乾燥、及び還元後の
篩別によつてつくられた、異なつた種類の粒子分
布によつてテストされた。これらの2種類の鉄粉
末は、化学分析の結果、次の組成を示した。
0.047%O、0.0004%N、0.0003%S、<0.1%C及
び残部Feであつた。これらの鉄粉末A及びBの
粒子分布は、次の通りであつた。鉄粉末 篩別 種類 Tylerメツシユ% >35 35−100 <100 A 1.3 97.4 1.3 B 0.0 3.6 96.4 これらの鉄粉末は15%の燐分を有し、かつ
45μmより小さい粒径を有する燐鉄と混合されて、
燐含有量0.45%とされた。以下の記載において、
0.45%の燐分添加の粉末AはCとして示され、
0.45%燐分添加の粉末BはDとして示される。 粉末A−Dは0.8%のステアリン酸亜鉛と混合
され589NPaの圧力で圧縮されて55×10×10の寸
法のバーに成形され、空気中400℃で30分間潤滑
剤を燐焼後、試験用バーにつくられた。 バーはさらに水素雰囲気中で1120℃で60分、ベ
ルト状の炉で焼結された。 保磁力は材料の軟磁性の函数であるため、いわ
ゆるコエルシブメーターによつて計られた。上記
の4つの材料は、以下に示すコエルシブメーター
を示した。 材 料 A 1.02 Oe B 1.56 Oe C 0.89 Oe D 1.34 Oe 上記の結果は、粗大鉄粉を燐と混合した場合に
得られる著しい利点を示すものである。材料Cの
低い保磁力は、アームコ鉄の、0.9Oeという保磁
力とほぼ同一であつた。同時に、保磁力が減少す
るにつれて、燐分の添加と共に材料の抵抗が減少
し、このことは渦電流損失の減少を意味し、その
結果全体の磁性損失は減少することが知られた。 密度、抗張力、及び破裂伸張は以下の表から明
らかである。
The present invention relates to high-purity iron powder of large particle size to which phosphorus-containing powder is added, and is particularly for producing parts that satisfy strong demands for soft magnetism by powder metallurgy. Powder metallurgy manufacturing techniques are characterized by multi-step production of parts with excellent dimensional accuracy; powder,
It begins by mixing the lubricant, along with powdered alloying elements if necessary. The powder mixture is compressed into a rough compact whose shape approximately or exactly corresponds to the shape of the final compact. The rough compact is then heated and maintained at a temperature at which final properties such as strength and malleability are obtained through sintering. In effect, the material produced by this method will have a different porosity than the material produced by fusion metallurgy. Parts that meet the requirements for superior soft magnetic materials are:
Usually manufactured from materials that have iron as their main component, the most common manufacturing method is that the parts are made of high-purity solid materials,
For example, it is made from Armco iron. However, due to material economy, dimensional accuracy, and ease of molding, powder metallurgy techniques can also be used to manufacture these parts. However, until now, it has not been possible to obtain the same excellent soft magnetic properties as solid materials of the same composition from materials made using powder metallurgy that contain iron as a main component. This difference is essentially due to the porosity of the material produced by powder metallurgy. According to the method of the invention, which is more precisely characterized in the claims, materials produced by powder metallurgy methods have a particle size distribution that is abnormally shifted towards coarse particles. It has been demonstrated that by using iron powder having the same properties as a starting material, it is possible to obtain soft magnetic properties almost the same as those of high-purity solid iron. In addition to the coarseness of the iron powder, it is also required that the content of impurities be extremely low. The high-purity iron powder to be produced preferably by the spraying method needs to have an iron content of 99.8% or more. Here, % means weight %, and the same applies hereinafter. The content of impurities known to degrade the magnetism of iron must be as low as possible in this iron powder, preferably C<0.01%,
It is desirable that total -O<0.1% and N<0.005%. To obtain the advantages of the present invention, the particle size of the main part of the particles must be between 35 and 100 Tyler mesh (417-147 μm).
Use powder. 35Tyler mesh (417μm)
the content of larger particles is not more than 5%;
The content of particles smaller than 100 Tyler mesh (147 μm) is 20%, preferably less than 10%. If 5% or more of the iron powder has a particle size of 35 mesh or more, the mechanical strength of the product will be significantly reduced, and if 20% or more of the iron powder has a particle size of 100 mesh or less, the magnetic properties will significantly deteriorate. The mechanical strength of products made from these high-purity coarse iron powders is extremely low due to the low content of particles below 100 mesh; therefore, when high strength is required, there is no solution other than increasing the content of particles below 100 mesh. The result was that the soft magnetic properties were impaired. A solution to this problem is to add powdered alloying components to this high purity iron powder. This is because this alloying component increases the strength of the material obtained during firing without impairing its soft magnetic properties. As is also known, for example, from the Swedish patent no. It is already known to do this. As is known from the examples below, by mixing powdered iron phosphorus with these high-purity coarse iron powders, the strength of the fired material is not only maintained but also strengthened. can be multiplied by 5 times. According to the invention, the total phosphorus content of the mixture should not exceed 1.5%, and the maximum strength increase is obtained with a phosphorus content of 0.3%.
Further, it is preferable that the phosphorus content is added as iron phosphorus. Compacted under conditions related to normal powder metallurgy production,
After sintering, this powder mixture produces parts with better mechanical properties and soft magnetic properties than comparable phosphorus-free materials. Depending on the phosphorus content, it provides soft magnetism superior to that of high-purity solid iron. Specific examples of the present invention and their surprising results are shown below. Example 1 Two types of steel powders were tested with different types of particle distributions created by spraying, drying, and sieving after reduction. As a result of chemical analysis, these two types of iron powder showed the following composition.
It was 0.047% O, 0.0004% N, 0.0003% S, <0.1% C and the balance Fe. The particle distributions of these iron powders A and B were as follows. Iron powder Sieved type Tyler mesh% >35 35−100 <100 A 1.3 97.4 1.3 B 0.0 3.6 96.4 These iron powders have a phosphorus content of 15% and
mixed with iron phosphorus with particle size smaller than 45μm,
The phosphorus content was determined to be 0.45%. In the following description,
Powder A with 0.45% phosphorous addition is designated as C;
Powder B with 0.45% phosphorus content is designated as D. Powders A-D were mixed with 0.8% zinc stearate and compressed at a pressure of 589NPa to form bars with dimensions of 55 x 10 x 10, and after phosphorizing the lubricant for 30 minutes at 400 °C in air, they were prepared for testing. Built into a bar. The bars were further sintered in a belt furnace at 1120 °C for 60 min in a hydrogen atmosphere. Since coercive force is a function of the soft magnetic properties of the material, it was measured using a so-called coercive meter. The four materials listed above showed the coercive meter shown below. Material A 1.02 Oe B 1.56 Oe C 0.89 Oe D 1.34 Oe The above results demonstrate the significant advantages obtained when coarse iron powder is mixed with phosphorus. The low coercive force of material C was almost the same as that of Armco iron, which was 0.9 Oe. At the same time, it was found that as the coercive force decreases, the resistance of the material decreases with the addition of phosphorous, which means a decrease in eddy current losses, and as a result the overall magnetic losses decrease. The density, tensile strength and elongation at break are evident from the table below.

【表】 本実施例に示された強度特性は、147μm未満の
粒径を有する低含有量の鉄粉から製造される、材
料Aに対する非常に著しく低い数字を示すもので
ある。この結果から、この粉末に対する燐分の添
加が抗張力を約5倍に増大させるということも知
られた。 実施例 2 実施例1に示された鉄粉Aが燐含有量15%及び
粒径45μm未満の燐鉄と混合され、燐含有量0.3〜
1.5%にされた。0.8%のステアリン酸亜鉛がこれ
らの混合物に添加された。試験用バーは実施例1
におけると同様の方法で圧縮燃焼及び焼結され
た。その結果は以下の通りであつた。
TABLE The strength properties shown in this example represent very significantly lower figures for material A, which is produced from a low content of iron powder with a particle size of less than 147 μm. From this result, it was also known that the addition of phosphorus to this powder increases the tensile strength approximately five times. Example 2 Iron powder A shown in Example 1 was mixed with iron phosphorus having a phosphorus content of 15% and a particle size of less than 45 μm, and the phosphorus content was 0.3 to 0.3 μm.
It was set at 1.5%. 0.8% zinc stearate was added to these mixtures. The test bar is Example 1
It was compressed and sintered in the same manner as in . The results were as follows.

【表】 これらの結果は、基礎材料として鉄粉Aを有す
る焼結バーの抗張力が、実質的に燐の添加によつ
て増加していることを示すものである。これらの
燐分の添加による抗張力の実質的な増加が軟磁性
特性の改良と共に得られるという事実は、第1図
及び第2図から知られるところであり、それらは
抗張力及び保磁力が燐含有量の函数であることを
示すものである。 材 料 保磁力Oe A+0.30%P 0.95 A+0.45%P 0.89 A+0.60%P 0.82 A+1.00%P 0.73 A+1.50%P 0.85 A+0%Pacc. to example 1.02 これらの保磁力は極めて低く、これらの材料は
優れた軟磁性特性の要求される部品に対して適応
していることを示している。
Table 1 These results show that the tensile strength of the sintered bars with iron powder A as the base material is substantially increased by the addition of phosphorus. The fact that a substantial increase in tensile strength due to the addition of these phosphorus contents is obtained together with an improvement in soft magnetic properties is known from Figures 1 and 2, which show that the tensile strength and coercive force increase with increasing phosphorus content. This indicates that it is a function. Material Coercive force Oe A+0.30%P 0.95 A+0.45%P 0.89 A+0.60%P 0.82 A+1.00%P 0.73 A+1.50%P 0.85 A+0%Pacc. to example 1.02 These coercive forces are extremely low; These materials have been shown to be suitable for parts requiring excellent soft magnetic properties.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は100メツシユ以下の粒子含量と本発明
によつて得られる部品の抗磁力の関係を示したも
の、第2図は100メツシユ以下の粒子含量と得ら
れる焼結部品の抗張力の関係を示したもの、第3
図は100メツシユ以下の粒子含量と得られる本発
明の焼結部品の破裂伸長度の関係を示したもの、
第4図は燐含量を0.2〜1.6重量%に変化させた場
合の焼結部品の抗張力との関係を示したもの、第
5図は燐含量を0.2〜1.6重量%に変化させた場合
の焼結部品の抗磁力との関係を示したものであ
る。
Figure 1 shows the relationship between the particle content of 100 mesh or less and the coercive force of the parts obtained by the present invention, and Figure 2 shows the relationship between the particle content of 100 mesh or less and the tensile strength of the obtained sintered parts. Shown, 3rd
The figure shows the relationship between the particle content of 100 mesh or less and the degree of burst elongation of the obtained sintered parts of the present invention.
Figure 4 shows the relationship between the tensile strength of sintered parts when the phosphorus content is varied from 0.2 to 1.6% by weight, and Figure 5 shows the relationship between sintered parts when the phosphorus content is varied from 0.2 to 1.6% by weight. This shows the relationship between the coercive force of the connected parts.

Claims (1)

【特許請求の範囲】 1 99.8%以上の高純度鉄粉からなる粉末の主要
部が35〜100Tylerメツシユ(417〜147μm)の粒
径を有し、35Tylerメツシユ(417μm)を越える
粒径の粉末が5%未満、100Tylerメツシユ
(147μm)よりも小さい粒径を有する粉末が20%
未満、好ましくは10%未満であり、かつ該粉末が
合金添加物として0.15〜1.0%の燐を含有してい
ることを特徴とする軟磁性部品を製造するための
粉末冶金用粉末。 2 燐分が粉末状の燐鉄の形で添加され、好まし
くは該燐鉄が約15%の燐含量と45μmより小さい
粒径を有していることを特徴とする特許請求の範
囲第1項記載の粉末。
[Scope of Claims] 1. The main part of the powder made of high-purity iron powder of 99.8% or more has a particle size of 35 to 100 Tyler mesh (417 to 147 μm), and the powder has a particle size of more than 35 Tyler mesh (417 μm). Less than 5%, 20% powder with particle size smaller than 100Tyler mesh (147μm)
Powder for powder metallurgy for producing soft magnetic parts, characterized in that the powder contains 0.15 to 1.0% phosphorus as an alloying additive, preferably less than 10%. 2. The phosphorus content is added in the form of powdered iron phosphorus, preferably having a phosphorus content of about 15% and a particle size of less than 45 μm. Powder as described.
JP1996978A 1977-02-25 1978-02-24 Powder metallurgic powder to produce magnetic parts Granted JPS53127310A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE7702084A SE407641B (en) 1977-02-25 1977-02-25 POWDER INTENDED FOR POWDER METALLURGIC MANUFACTURE OF SOFT MAGNETIC PRODUCTS

Publications (2)

Publication Number Publication Date
JPS53127310A JPS53127310A (en) 1978-11-07
JPS6323241B2 true JPS6323241B2 (en) 1988-05-16

Family

ID=20330554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1996978A Granted JPS53127310A (en) 1977-02-25 1978-02-24 Powder metallurgic powder to produce magnetic parts

Country Status (8)

Country Link
JP (1) JPS53127310A (en)
CA (1) CA1100788A (en)
DE (1) DE2807602C2 (en)
ES (1) ES467302A1 (en)
FR (1) FR2381584A1 (en)
GB (1) GB1599081A (en)
IT (1) IT1101808B (en)
SE (1) SE407641B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4236945A (en) * 1978-11-27 1980-12-02 Allegheny Ludlum Steel Corporation Phosphorus-iron powder and method of producing soft magnetic material therefrom
DE10020083A1 (en) * 2000-04-22 2001-10-31 Bosch Gmbh Robert Sintered soft magnetic material and process for its production

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4845472A (en) * 1971-10-13 1973-06-29
JPS518368A (en) * 1974-07-09 1976-01-23 Noryuki Ikeda Burashiruino seizoho
JPS5442644A (en) * 1977-09-09 1979-04-04 Nippon Electric Co Method of positioning electrodes of laminated condenser

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB679413A (en) * 1950-03-04 1952-09-17 Metro Cutanit Ltd Improvements relating to magnetic material with good electrical conductivity
DE2118053A1 (en) * 1971-04-14 1972-10-26 Brown, Boveri & Cie AG, 6800 Mann heim Earth core for choke made from a mixture of ferromagnetic powder and insulating material binder
SE372293B (en) * 1972-05-02 1974-12-16 Hoeganaes Ab
DE2535377A1 (en) * 1975-08-08 1977-02-24 Huettermann Sintered iron element absorbing vibration and noise - esp. for mounting brake shoes in motor vehicle disc brakes

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4845472A (en) * 1971-10-13 1973-06-29
JPS518368A (en) * 1974-07-09 1976-01-23 Noryuki Ikeda Burashiruino seizoho
JPS5442644A (en) * 1977-09-09 1979-04-04 Nippon Electric Co Method of positioning electrodes of laminated condenser

Also Published As

Publication number Publication date
IT1101808B (en) 1985-10-07
SE7702084L (en) 1978-08-26
JPS53127310A (en) 1978-11-07
IT7848186A0 (en) 1978-02-24
ES467302A1 (en) 1979-11-01
DE2807602C2 (en) 1986-10-16
FR2381584A1 (en) 1978-09-22
DE2807602A1 (en) 1978-10-19
GB1599081A (en) 1981-09-30
FR2381584B1 (en) 1983-01-14
SE407641B (en) 1979-04-02
CA1100788A (en) 1981-05-12

Similar Documents

Publication Publication Date Title
US4190441A (en) Powder intended for powder metallurgical manufacturing of soft magnetic components
US4128420A (en) High-strength iron-molybdenum-nickel-phosphorus containing sintered alloy
US2988806A (en) Sintered magnetic alloy and methods of production
US2226520A (en) Iron article and method of making same
US4090875A (en) Ductile tungsten-nickel-alloy and method for manufacturing same
US4452756A (en) Method for producing a machinable, high strength hot formed powdered ferrous base metal alloy
JPS6323241B2 (en)
EP0200691B1 (en) Iron-based powder mixture for a sintered alloy
KR100245510B1 (en) Powder-metallurgical composition having good soft magnetic properties
EP0118148A1 (en) Iron-based low-expansion alloy having a crystal structure of the cubic sodium-zinc alloy type of molar ratio 1:13, an article manufactured from this material and method of producing the alloy
US3451809A (en) Method of sintering maraging steel with boron additions
US3497347A (en) Phosphorus containing iron powder
EP0157750B1 (en) Material for the powder metallurgical manufacture of soft magnetic components
US3136629A (en) Production of uranium-carbon alloys
JPH01219102A (en) Fe-ni-b alloy powder as additive for sintering and sintering method thereof
JPH0931588A (en) Production of invar (r) sintered compact
JPS6123701A (en) Raw material powder of powder metallurgy for producing ferrous parts
JPH01290734A (en) Magnetic al composite material and its manufacture
Tewari et al. Forging of Metal Powder Preform for Magnetic Applications
SU449971A1 (en) Iron Sintered Material
JPS63293102A (en) Production of fe-base sintered alloy member having high strength and high toughness
KR850000618B1 (en) Sintered powdered titanium alloy of method
JPS63307243A (en) Sintered soft magnetic material
JPS63307241A (en) Sintered soft magnetic material
JPH03188242A (en) Sintered high damping alloy