JPS63232375A - Stress converter - Google Patents

Stress converter

Info

Publication number
JPS63232375A
JPS63232375A JP6410087A JP6410087A JPS63232375A JP S63232375 A JPS63232375 A JP S63232375A JP 6410087 A JP6410087 A JP 6410087A JP 6410087 A JP6410087 A JP 6410087A JP S63232375 A JPS63232375 A JP S63232375A
Authority
JP
Japan
Prior art keywords
base material
stress
doped
semiconductor
impurity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6410087A
Other languages
Japanese (ja)
Inventor
Yasuhiro Hattori
服部 泰弘
Takanao Hashimoto
橋本 隆直
Mitsuaki Makino
牧野 光明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DERUFUAI KK
Delphi Co Ltd
Original Assignee
DERUFUAI KK
Delphi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DERUFUAI KK, Delphi Co Ltd filed Critical DERUFUAI KK
Priority to JP6410087A priority Critical patent/JPS63232375A/en
Publication of JPS63232375A publication Critical patent/JPS63232375A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Sensors (AREA)

Abstract

PURPOSE:To arbitrarily select the shape and quality of a base material having a large conversion efficiency by doping an impurity into a semiconductor device to form a piezo resistance element, bonding the element to the base material to convert a stress generated at the material into the resistance change of the element. CONSTITUTION:An impurity is doped at part 6 of the surface of a thin semiconductor piece, the piece 2 in which the doped part is formed as a low resistor is bonded by an inorganic material 3 to a base material 1, a stress is generated at the material 1, and the stress of the base material is detected as the resistance change due to a piezo resistance effect. That is, the stress generated at the material is transmitted through an adhesive made of the inorganic material to a semiconductor resistor doped with the impurity, and the stress generated at the resistor can be detected as a resistance change in good conversion efficiency.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、半導体ピエゾ抵抗効果を利用した応力変換器
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a stress transducer that utilizes a semiconductor piezoresistance effect.

(従来の技術) 従来より、応力変換器にはひずみゲージが用いられてい
るが、近時、変換効率の大なるピエゾ抵抗効果を有する
半導体ひずみゲージが良く用いられている。このひずみ
ゲージは、シリコン単結晶、から切り出されるバルク型
ゲージ、シリコンを真空蒸着法などによって適当な耐熱
性のあるベース上に形成する薄膜型ゲージと、シリコン
の薄片に不純物を部分的にドープして母材に接着するこ
となく、シリコンの薄片をそのまま母材ゲージとする方
法が一般に行われる(参考文献 センサー技術 Vol
、2No、6 1982年6月)。
(Prior Art) Conventionally, strain gauges have been used as stress transducers, but recently semiconductor strain gauges having a piezoresistive effect with high conversion efficiency have been frequently used. These strain gauges include bulk type gauges cut from silicon single crystal, thin film type gauges formed on a suitable heat-resistant base using silicon vacuum evaporation, and thin film gauges made by partially doping impurities into a thin piece of silicon. A common method is to use a thin piece of silicon as a base material gauge without bonding it to the base material (Reference: Sensor Technology Vol.
, 2 No. 6 June 1982).

(発明が解決しようとする問題点) 前記従来のバルク型ゲージでは、その加工上、素子を細
く高抵抗とすることができず、また母材が導体の場合、
ゲージが低抵抗体のため、絶縁層を設けなければならな
い。また真空蒸着による場合は母材の材質が限られ、ま
た変換効率も悪い。
(Problems to be Solved by the Invention) In the conventional bulk type gauge, it is not possible to make the element thin and high in resistance due to its processing, and when the base material is a conductor,
Since the gauge is a low resistance material, an insulating layer must be provided. Furthermore, when using vacuum evaporation, the material of the base material is limited and the conversion efficiency is also poor.

不純物を半導体にドープしたものは母材が半導体となる
ため、その用途も限られる等の問題点があった。
When semiconductors are doped with impurities, the base material becomes a semiconductor, which poses problems such as limited applications.

(問題点を解決するための手段) 本発明は、上記問題点を解決するためになされたもので
、半導体薄片の表面の一部分に不純物をドープし、その
ドープした部分を低抵抗体とした半導体薄片を母材に無
機材料で接着し、しがる後前記母材に応力を生ぜしめそ
の応力をピエゾ抵抗効果による抵抗変化として前記母材
の応力を検出するようにしたものである。
(Means for Solving the Problems) The present invention has been made to solve the above problems, and consists of doping a part of the surface of a semiconductor thin piece with an impurity, and making the doped part a low-resistance semiconductor. A thin piece is bonded to a base material with an inorganic material, and after bonding, stress is generated in the base material, and the stress in the base material is detected as a change in resistance due to the piezoresistance effect.

(作  用) 本発明によれば、母材に生じた応力は、無機材料でなる
接着剤を介して不純物をドープした半導体抵抗部に伝え
られ、その抵抗部に生じた応力は変換効率よく抵抗変化
として検出することができる。
(Function) According to the present invention, the stress generated in the base material is transmitted to the semiconductor resistance portion doped with impurities via the adhesive made of an inorganic material, and the stress generated in the resistance portion is transferred to the resistance portion with high conversion efficiency. It can be detected as a change.

(実施例) 第1図、第2図は本発明の一実施例を説明する図であり
、1は力又は変位5を直接受ける母材、2はシリコン半
導体薄片の表面の一部分に不純物をドープしたピエゾ抵
抗素子で、 ピエゾ抵抗素子2は接着剤3を介して母材
1に接着しである。
(Embodiment) FIGS. 1 and 2 are diagrams explaining an embodiment of the present invention, in which 1 is a base material that directly receives force or displacement 5, and 2 is a silicon semiconductor thin piece doped with impurities in a part of its surface. The piezoresistive element 2 is bonded to the base material 1 via an adhesive 3.

なお、4はピエゾ抵抗素子2の不純物拡散部分6より導
出されたリード線である。
Note that 4 is a lead wire led out from the impurity diffusion portion 6 of the piezoresistive element 2.

本実施例の場合は母材1としてバネ用ステンレス!l 
(SUS301  C8P/H)を用いて片持はりとし
、自由端に力又は変位5を加えると、最大曲げ応力は固
定端に生ずる。ピエゾ抵抗素子2をその部分の近傍に接
着剤3を介して接着しである。この接着は、母材1にp
b○・B、O,系低融点ガラス粉末(平均粒径24μm
)をアクリル系樹脂のビークルに12:1の比に混練し
たペーストを厚さ80μmでスクリーン印刷し、印刷し
た部分にピエゾ抵抗素子2(巾4鴫、奥行3 rm、厚
さ60μm)をのせガラス粉末を溶融して接着する。
In this example, the base material 1 is stainless steel for springs! l
(SUS301 C8P/H) is used as a cantilever beam, and when force or displacement 5 is applied to the free end, the maximum bending stress occurs at the fixed end. A piezoresistive element 2 is bonded to the vicinity of that portion using an adhesive 3. This adhesion is applied to the base material 1.
b○・B, O, system low melting point glass powder (average particle size 24 μm
) was mixed into an acrylic resin vehicle at a ratio of 12:1 and then screen-printed to a thickness of 80 μm, and a piezoresistive element 2 (width 4 mm, depth 3 rm, thickness 60 μm) was placed on the printed area and a glass plate was placed. The powder is melted and bonded.

ピエゾ抵抗素子2は、シリコンの基板上に不純物を拡散
してケージ部とするためのSiO2のマスクを形成し、
ゲージ部分に不純物(ボロン)を表面濃度9 X 10
”/c++3で拡散して、Si基板と異なる低抵抗(1
50Ω/口)のP形波散層を形成する。次に全面にSi
n、の表面保護膜を形成し、電極部に必要な箇所の5i
n2を除く。この部分に厚さ2μmのA1を蒸着して、
その蒸着部分に、直径50μmのリード線4をボンデイ
ン、グする。このようにして得られた半導体ひずみゲー
ジは、半導体のピエゾ抵抗効果を用いているので、応力
−抵抗変化の直線性は、その応力が20kg/mm”程
度では0.1%である。片持はりの片面にピエゾ抵抗素
子を接着した場合その変位−抵抗変化の直線性は0.5
%になる。
The piezoresistive element 2 is formed by forming a SiO2 mask on a silicon substrate to form a cage portion by diffusing impurities.
Impurity (boron) on the gauge part at a surface concentration of 9 x 10
”/c++3 to create a low resistance (1
50Ω/port) to form a P-type wave dispersion layer. Next, Si is applied to the entire surface.
Form a surface protective film of 5i on the electrode part and
Exclude n2. Deposit A1 with a thickness of 2 μm on this part,
A lead wire 4 having a diameter of 50 μm is bonded to the vapor deposited portion. Since the semiconductor strain gauge obtained in this way uses the piezoresistance effect of the semiconductor, the linearity of stress-resistance change is 0.1% when the stress is about 20 kg/mm. When a piezoresistance element is glued to one side of a beam, the linearity of displacement-resistance change is 0.5
%become.

このQ、5%が問題になる用途では、片持はりの両面に
ピエゾ抵抗素子2を接着し、縦ひずみを消去するブリッ
ジ配線とすれば、直線性が0.1%程度となり、半導体
拡散ピエゾ抵抗素子以外の各種ゲージを使用した場合と
同様になることは言うまでもない。
In applications where this Q of 5% is a problem, if piezoresistive elements 2 are glued to both sides of the cantilever beam and bridge wiring is used to eliminate longitudinal strain, the linearity will be about 0.1%, and the semiconductor diffused piezoelectric Needless to say, the result is the same as when various gauges other than resistive elements are used.

上記はn形シリコンに■族原子である硼素(B)を導入
した場合であるが、P形シリコンにV族原子であるリン
(P)を導入しても、シリコンの変わりにゲルマニウム
を用いても、同様の半導体ピエゾ抵抗素子を作ることが
できる。また、前記実施例には接着剤3として低融点ガ
ラスを用いたため、クリープ特性は0.1%と非常に良
い。
The above is a case where boron (B), a group II atom, is introduced into n-type silicon, but even if phosphorus (P), a group V atom, is introduced into p-type silicon, germanium is used instead of silicon. A similar semiconductor piezoresistive element can also be made. Furthermore, since low melting point glass was used as the adhesive 3 in the above embodiment, the creep property was very good at 0.1%.

半田)、有機系接着材(エポキシ、フェノール。solder), organic adhesives (epoxy, phenol).

アクリル)が用いられる。acrylic) is used.

第3図′は第1図、第2図の説明した構造の半導体ひず
みゲージを変位計として適用した場合の実験値で、変位
5mmで出力が500mVと大きく、直線性が0.1%
と良く、ヒステリシスも0.1%と少ない、精度のすぐ
れた変位計ができる。
Figure 3' shows experimental values when a semiconductor strain gauge with the structure explained in Figures 1 and 2 is used as a displacement meter, with a large output of 500 mV at a displacement of 5 mm, and a linearity of 0.1%.
It is possible to create a highly accurate displacement meter with a low hysteresis of 0.1%.

(発明の効果) 以上詳細に説明したように本発明によれば、ピエゾ抵抗
素子を半導体に不純物をドープすることにより作り、そ
の素子を母材に接着させて、母材に生じた応力をその素
子の抵抗変化に変換するので変換効率が大きく、母材の
形状、材質が任意に選べ、更に接着剤として無機材料を
用いたのでクリープ特性が優れているなどの利点を有す
る。さらに応力変換器であるので、母材を適当に選べば
加速度計、圧力計、温度計にも適用可能となる利点を有
する。
(Effects of the Invention) As described in detail above, according to the present invention, a piezoresistive element is made by doping a semiconductor with an impurity, and the element is bonded to a base material, so that the stress generated in the base material is absorbed. It has advantages such as high conversion efficiency because it converts the resistance change of the element, the shape and material of the base material can be selected arbitrarily, and since an inorganic material is used as the adhesive, creep characteristics are excellent. Furthermore, since it is a stress transducer, it has the advantage that it can be applied to accelerometers, pressure gauges, and thermometers if the base material is selected appropriately.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は本発明の一実施例を示し、第1図は応
力変換器の斜視図、第2図(A)はピエゾ抵抗素子2と
母材1に取付けた部分を示す平面図、(B)はそのx−
X線断面図、第3図はこの応力変換器を変位計として用
いた場合の測定結果である。 1・・・母材     2・・・ピエゾ抵抗素子3・・
・接着剤    4・・・リード線5・・・力または変
位 6・・・不純物拡散部分第1図
1 to 3 show an embodiment of the present invention, FIG. 1 is a perspective view of the stress transducer, and FIG. 2 (A) is a plane view showing the piezoresistive element 2 and the part attached to the base material 1. Figure, (B) is the x-
The X-ray cross-sectional view and FIG. 3 show the measurement results when this stress transducer was used as a displacement meter. 1... Base material 2... Piezoresistance element 3...
・Adhesive 4... Lead wire 5... Force or displacement 6... Impurity diffusion part Figure 1

Claims (1)

【特許請求の範囲】[Claims] 半導体薄片の表面の一部分に不純物をドープし、そのド
ープした部分を低抵抗体とした半導体薄片を母材に無機
材料で接着し、しかる後前記母材に応力を生ぜしめその
応力をピエゾ抵抗効果による抵抗変化として前記母材の
応力を検出するようにしたことを特徴とする応力変換器
A part of the surface of the semiconductor thin piece is doped with an impurity, and the doped part is used as a low resistance substance.The semiconductor thin piece is bonded to a base material with an inorganic material, and then stress is generated in the base material and the stress is transferred to the piezoresistance effect. A stress transducer characterized in that the stress in the base material is detected as a resistance change caused by the change in resistance.
JP6410087A 1987-03-20 1987-03-20 Stress converter Pending JPS63232375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6410087A JPS63232375A (en) 1987-03-20 1987-03-20 Stress converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6410087A JPS63232375A (en) 1987-03-20 1987-03-20 Stress converter

Publications (1)

Publication Number Publication Date
JPS63232375A true JPS63232375A (en) 1988-09-28

Family

ID=13248317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6410087A Pending JPS63232375A (en) 1987-03-20 1987-03-20 Stress converter

Country Status (1)

Country Link
JP (1) JPS63232375A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5113117A (en) * 1989-09-08 1992-05-12 Massachusetts Institute Of Technology Miniature electrical and mechanical structures useful for constructing miniature robots
JP2001272287A (en) * 2000-03-27 2001-10-05 Tadahiro Kato Strain-detecting sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52142489A (en) * 1976-05-21 1977-11-28 Hitachi Ltd Semiconductor strain measuring device and its production
JPS56118375A (en) * 1980-02-22 1981-09-17 Hitachi Ltd Semiconductor displacement convertor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52142489A (en) * 1976-05-21 1977-11-28 Hitachi Ltd Semiconductor strain measuring device and its production
JPS56118375A (en) * 1980-02-22 1981-09-17 Hitachi Ltd Semiconductor displacement convertor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5113117A (en) * 1989-09-08 1992-05-12 Massachusetts Institute Of Technology Miniature electrical and mechanical structures useful for constructing miniature robots
JP2001272287A (en) * 2000-03-27 2001-10-05 Tadahiro Kato Strain-detecting sensor

Similar Documents

Publication Publication Date Title
US7444879B2 (en) Displacement transducer
US3266303A (en) Diffused layer transducers
JPS5817421B2 (en) semiconductor pressure sensor
EP0225095A2 (en) Biaxial strain gage systems
EP0303875A2 (en) Si crystal force transducer
JPS59158566A (en) Semiconductor acceleration sensor
JPH0239574A (en) Semiconductor pressure sensor
JPS63232375A (en) Stress converter
US3913391A (en) Strain gage configurations employing high di-electric strength and efficient strain transmission
JPH0758795B2 (en) Pressure sensor
CN110608822B (en) Metallization of platinum
RU2293955C1 (en) Strain transformer of pressure
JPH0419495B2 (en)
JPS5930035A (en) Semiconductor pressure sensor
JP2512220B2 (en) Multi-function sensor
JPH0197827A (en) Semiconductor diffusion-type stress sensor
JPS5828754B2 (en) Pressure-electric conversion device
JPH0786619A (en) Strain gauge and manufacture thereof
RU2237873C2 (en) Pressure strain gage transducer
JPS6092670A (en) Kinetic force converter
JP2822613B2 (en) Semiconductor pressure sensor
JPS5870138A (en) Semiconductor pressure converter
JPS6175535A (en) Semiconductor device
JPH0566979B2 (en)
JPH0727639A (en) Semiconductor pressure sensor