JPS63232349A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS63232349A
JPS63232349A JP6715987A JP6715987A JPS63232349A JP S63232349 A JPS63232349 A JP S63232349A JP 6715987 A JP6715987 A JP 6715987A JP 6715987 A JP6715987 A JP 6715987A JP S63232349 A JPS63232349 A JP S63232349A
Authority
JP
Japan
Prior art keywords
film
groove
etching
polycrystalline silicon
etched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6715987A
Other languages
Japanese (ja)
Inventor
Yoshibumi Kikuchi
菊池 義文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP6715987A priority Critical patent/JPS63232349A/en
Publication of JPS63232349A publication Critical patent/JPS63232349A/en
Pending legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)

Abstract

PURPOSE:To improve the reliability of wirings by burying a polycrystalline silicon film through a silicon oxide film in a U-shaped groove formed on a semiconductor substrate. CONSTITUTION:An SiO2 film 12 and an Si3N4 film 13 are laminated and covered on an Si substrate 11, covered thereon with a protective insulating film 14, a resist film mask 15 is further selectively formed thereon, and the substrate 11 is reactive ion-etched to form a U-shaped groove 16. Then, the film 13 exposed on the side in the groove 16 is side-etched to eliminate the overhung Si3N4 film, the upper surface of the groove 16 is formed in a shape opened in a tapered state, the film 14 is further removed by etching, and a polycrystalline film is buried through the SiO2 film in the groove without air gap. Thus, the surface of the groove separation zone is flattened without step, and even if a wiring layer is formed on the upper surface, wirings having no disconnection and high reliability is formed to enhance the reliability of an IC.

Description

【発明の詳細な説明】 [概要コ U溝の形成方法であって、半導体基板上に選択的に酸化
シリコン膜、窒化シリコン膜および保護絶縁膜(エツチ
ング保護マスク)を形成した後、U溝をエツチング形成
する。次いで、U溝側面の窒化シリコン膜をサイドエツ
チングし、保護絶縁膜を除去した後、前記U溝内部に酸
化シリコン膜を介して多結晶シリコン膜を埋没する。
[Detailed Description of the Invention] [Summary] A method for forming a U-groove, in which a silicon oxide film, a silicon nitride film, and a protective insulating film (etching protection mask) are selectively formed on a semiconductor substrate, and then a U-groove is formed. Form by etching. Next, the silicon nitride film on the side surfaces of the U-groove is side-etched to remove the protective insulating film, and then a polycrystalline silicon film is buried inside the U-groove via a silicon oxide film.

そうすれは、多結晶シリコン膜をU溝内部に空隙なく成
長させることができる。
In this way, a polycrystalline silicon film can be grown inside the U-groove without any voids.

[産業上の利用分野] 本発明はICなど、半導体装置の製造方法に係り、特に
、素子分離のためのU溝形成方法に関する。
[Industrial Field of Application] The present invention relates to a method of manufacturing semiconductor devices such as ICs, and particularly relates to a method of forming a U-groove for element isolation.

半導体装置の製造方法においては、ICを高集積化する
目的で素子分離帯としてU溝分離(トレンチ分離; t
rench 5eparation )が利用されてい
る。しかし、このようなU溝は狭隘な凹部を形成する方
法であるから、品質上の問題が生じないように、十分に
考慮した形成方法が望ましい。
In the manufacturing method of semiconductor devices, U-groove isolation (trench isolation; t
rench 5eparation) is used. However, since such a U-groove is a method of forming a narrow concave portion, it is desirable that the formation method be carefully considered so as not to cause quality problems.

[従来の技術] 従前、素子分離帯としてpn接合分離や絶縁膜分離が用
いられていたが、前者のpn接合分離は拡散して形成す
るために、横方向に拡がりが起こって微細化することが
難しく、また、後者の絶縁膜分離はバーズビークの発生
で、同様に微細化が難しい。従って、最近、幅1〜2μ
m程度に微細に形成できるU溝分離が重用されている。
[Prior art] Previously, pn junction isolation and insulating film isolation were used as element isolation bands, but since the former pn junction isolation is formed by diffusion, it spreads laterally and becomes finer. In addition, the latter type of insulating film separation causes bird's beaks, making it similarly difficult to miniaturize. Therefore, recently, width 1~2μ
U-groove separation, which can be formed as finely as 100 m in diameter, is widely used.

さて、従来のU溝の形成方法を説明すると、第2図(a
l〜(8)にその形成工程順断面図を示しており同図に
よって順を追って説明する。
Now, to explain the conventional method of forming a U-groove, Fig. 2 (a)
1 to (8) are sequential cross-sectional views of the formation process, and the explanation will be given in sequence with reference to the figures.

第2図(a)参照;まず、シリコン基板1上に酸化シリ
:27 (Si02)膜2(膜厚6000人)を形成し
Refer to FIG. 2(a); First, a silicon oxide:27 (Si02) film 2 (film thickness: 6,000 yen) is formed on a silicon substrate 1.

その上に窒化シリコン(Sia N4 )膜3(膜厚2
゜00人)を被着し、その上に燐シリケートガラス(P
SG)膜4(膜厚1.3.crm)を被着し、更に、そ
の上に選択的にレジスト膜マスク5を形成する。
On top of that, a silicon nitride (Sia N4) film 3 (thickness 2
゜00 people) and phosphorus silicate glass (P
SG) film 4 (thickness: 1.3 crm) is deposited, and a resist film mask 5 is selectively formed thereon.

なお、SiO□膜2が膜厚6000人と厚いのは、これ
を素子内部のフィールド絶縁膜として利用するためで、
U溝を形成する前に形成されているもので、このような
U溝とフィールド絶縁膜とを組み合わせた構造をU−F
OX構造と呼んでいる・第2図(b)参照;次いで、レ
ジスト膜マスク5を用いて、PSG膜4. Si3 N
4膜3および5i02膜2をパターンニングした後、塩
素系の反応ガスを用いたりアクティブイオンエツチング
(RI B)によってエツチングして、幅1.5μm、
深さ約3μmのU溝6を形成する。この時、レジスト膜
マスク5は大部分が消耗して、PSG膜4がエラ2  
チング保護マスクとしての役目をする。また、この工程
でPSG膜4.Si3N4膜3および5i02膜2をパ
ターンニングした後、レジスト膜マスク5を除去して、
PSG膜4のみをエツチング保護マスクとしても良い。
The reason why the SiO□ film 2 is 6,000 thick is because it is used as a field insulating film inside the device.
It is formed before forming the U-groove, and the structure that combines such a U-groove and field insulating film is called U-F.
This is called an OX structure (see FIG. 2(b)); then, using a resist film mask 5, a PSG film 4. Si3N
After patterning the 4 film 3 and the 5i02 film 2, they are etched using a chlorine-based reactive gas or by active ion etching (RIB) to form a pattern with a width of 1.5 μm.
A U-groove 6 with a depth of about 3 μm is formed. At this time, most of the resist film mask 5 has been consumed, and the PSG film 4 has an error 2.
Acts as a protective mask. Also, in this step, the PSG film 4. After patterning the Si3N4 film 3 and the 5i02 film 2, the resist film mask 5 is removed.
Only the PSG film 4 may be used as an etching protection mask.

第2図(C)参照;次いで、残存しているレジスト膜ヤ
スク5をアッシング(灰化)除去した後、弗酸系のエツ
チング剤によってPSG膜4をエツチング除去し、更に
、弗酸・硝酸系の強いエツチング剤によってU溝6の内
部を洗浄する。この工程において、U溝6の内部に露出
した5t02膜2側面にはサイドエツチングが起きる。
Refer to FIG. 2(C); Next, after removing the remaining resist film yask 5 by ashing (ashing), the PSG film 4 is removed by etching with a hydrofluoric acid-based etching agent, and then The inside of the U groove 6 is cleaned with a strong etching agent. In this step, side etching occurs on the side surfaces of the 5t02 film 2 exposed inside the U-groove 6.

第2図(d)参照;次いで、高温熱処理してU溝6の内
部を酸化して、5i02膜7(膜厚500人)を生成し
た後、化学気相成長(CV D)法で多結晶シリコン膜
8を被着して、U溝6の内部を埋没させる。この時、多
結晶シリコン膜8はU溝の側面から成長して溝中央に進
み、かくして溝内部が埋没される。
See FIG. 2(d); Next, the inside of the U-groove 6 is oxidized by high-temperature heat treatment to form a 5i02 film 7 (thickness: 500 mm), and then polycrystalline is formed by chemical vapor deposition (CVD). A silicon film 8 is deposited to bury the inside of the U-groove 6. At this time, the polycrystalline silicon film 8 grows from the side surfaces of the U-groove and advances to the center of the groove, thus filling the inside of the groove.

第2図(e)参照;次いで、化学研磨法で多結晶シリコ
ン膜8を研磨して除去する。この場合、5iyN4膜3
がエツチング阻止層の役目を果たすことになる。
Refer to FIG. 2(e); next, the polycrystalline silicon film 8 is polished and removed using a chemical polishing method. In this case, 5iyN4 film 3
serves as an etching prevention layer.

しかる後、S33 N4膜3をエツチング除去し、多結
晶シリコン膜8の表面を熱酸化して5i02膜(図示せ
ず)を生成して完了する。このようにして、5i02膜
7を介して多結晶シリコン膜8を埋没させたU溝分離帯
が形成される。なお、このようなU溝分離法は別名をI
 OP (Isolation withOxide 
and Po1ysilicon)法と呼んでいる。
Thereafter, the S33N4 film 3 is removed by etching, and the surface of the polycrystalline silicon film 8 is thermally oxidized to form a 5i02 film (not shown). In this way, a U-groove isolation zone is formed in which the polycrystalline silicon film 8 is buried through the 5i02 film 7. Note that this U-groove separation method is also known as I
OP (Isolation with Oxide
and Polysilicon) method.

[発明が解決しようとする問題点] ところが、上記のようなU溝分離帯の形成方法において
、弗酸系のエツチング剤によってPSG膜4をエツチン
グしたり、また、弗酸・硝酸系の強いエツチング剤によ
ってU溝内部を洗浄したりすると、U溝6の内部に露出
した5t02膜2がサイドエツチングされる(第2図(
C)参照)。
[Problems to be Solved by the Invention] However, in the method for forming the U-groove separator as described above, the PSG film 4 is etched with a hydrofluoric acid-based etching agent, and the PSG film 4 is etched with a strong etching agent based on hydrofluoric acid or nitric acid. When the inside of the U-groove is cleaned with a chemical, the 5t02 film 2 exposed inside the U-groove 6 is side-etched (see FIG. 2).
See C).

そうすれば、U溝6内ではSi3 N4膜がひさし状に
突き出して、下の5f02膜2の部分が横に拡がった形
状になり、そのような形状のU溝内部にCVD法で多結
晶シリコン膜8を成長して埋没させると、多結晶シリコ
ン膜はU溝の側面から成長するため、拡がった形状の5
i02膜2の部分に空隙が生じたまま、上面まで多結晶
シリコン膜によって埋没される。即ち、U溝の上部中央
に空隙ができた状態になる(第2図(dl参照)。従っ
て、次工程で上面の多結晶シリコン膜8を研磨して除去
すると、U溝の中央に空隙が表出して陥没部分ができ、
その部分を酸化して5i02膜を生成しても、その上面
に配線層を形成すると、配線層が断線する障害が起こる
By doing so, the Si3 N4 film protrudes like an eaves inside the U-groove 6, and the lower 5f02 film 2 becomes shaped to spread laterally. When the film 8 is grown and buried, the polycrystalline silicon film grows from the sides of the U-groove, so the expanded shape 5
The i02 film 2 is filled with the polycrystalline silicon film up to its upper surface, leaving a void therein. In other words, a void is created in the center of the upper part of the U-groove (see Figure 2 (dl)).Therefore, when the polycrystalline silicon film 8 on the top surface is polished and removed in the next step, a void is created in the center of the U-groove. It comes out and creates a depressed area,
Even if a 5i02 film is produced by oxidizing that portion, if a wiring layer is formed on the top surface, a problem occurs in which the wiring layer is disconnected.

本発明は、このような多結晶シリコン膜の空隙を解消さ
せて、信頼性を高めるU溝の形成方法を提案するもので
ある。
The present invention proposes a method for forming a U-groove that eliminates such voids in a polycrystalline silicon film and improves reliability.

[問題点を解決するための手段] その目的は、半導体基板上に選択的に酸化シリコン膜と
窒化シリコン膜と保護絶縁膜からなる三層のエツチング
保護マスクとを形成して、前記シリコン基板をリアクテ
ィブイオンエツチングしてU溝を形成する工程、次いで
、U溝内の側面に露出した窒化シリコン膜をサイドエツ
チングし、更に、保護絶縁膜をエツチング除去した後、
前記U溝内部に酸化シリコン膜を介して多結晶シリコン
膜を埋没させる工程が含まれる半導体装置の製造方法に
よって達成される。
[Means for Solving the Problems] The purpose is to selectively form a three-layer etching protection mask consisting of a silicon oxide film, a silicon nitride film, and a protective insulating film on a semiconductor substrate, and then remove the silicon substrate. After forming a U-groove by reactive ion etching, side-etching the silicon nitride film exposed on the side surfaces inside the U-groove, and removing the protective insulating film by etching,
This is achieved by a method for manufacturing a semiconductor device that includes a step of burying a polycrystalline silicon film inside the U-groove via a silicon oxide film.

[作用コ 即ち、本発明は、多結晶シリコン膜をU溝内部に被着す
る前に、Si3N4膜をサイドエツチングして、ひさし
状のSi3 N4 ’A’J、をなくし、U溝の上面が
テーパー状に開いた形状にする。そうして、多結晶シリ
コン膜を成長すれば、U溝内部に多結晶シリコン膜を空
隙なく成長させることができ、ICの信頼性が向上する
[In other words, in the present invention, before depositing the polycrystalline silicon film inside the U-groove, the Si3N4 film is side-etched to eliminate the canopy-shaped Si3N4 'A'J, so that the top surface of the U-groove is Create a tapered open shape. If the polycrystalline silicon film is grown in this manner, the polycrystalline silicon film can be grown inside the U-groove without any voids, and the reliability of the IC is improved.

[実施例] 以下、図面を参照して実施例によって詳細に説明する。[Example] Hereinafter, embodiments will be described in detail with reference to the drawings.

第1図(a)〜(e)は本発明にかかるυ溝の形成方法
の工程順断面図を示している。
FIGS. 1(a) to 1(e) show cross-sectional views in the order of steps of the method for forming a υ groove according to the present invention.

第1図(a)参照;従来の工程と同様に、シリコン基板
11上に5i02膜12(膜厚6000人)およびSi
3N4膜13(膜厚2000人)を積層被着し、その上
にPSG呻14(膜厚1.3μm;保護絶縁膜)を被着
し、更に、その上に選択的にレジスト膜マスク15を形
成して、次に、レジスト膜マスク15によってPSG膜
14. Si3 N4膜13および5i02膜12をパ
ターンニングした後、塩素系の反応ガスを用いノ;RI
Eによってシリコン基板11をエツチングして、幅1.
5μm、深さ3μm程度のU溝16を形成する。
See FIG. 1(a); similar to the conventional process, a 5i02 film 12 (thickness: 6000) and a Si
A 3N4 film 13 (thickness: 2000 layers) is deposited, a PSG film 14 (thickness: 1.3 μm; protective insulating film) is deposited thereon, and a resist film mask 15 is selectively deposited on top of it. Then, a PSG film 14. is formed using a resist film mask 15. After patterning the Si3N4 film 13 and the 5i02 film 12, RI is performed using a chlorine-based reactive gas.
Etching the silicon substrate 11 with E etching the width 1.
A U-groove 16 of approximately 5 μm and depth of 3 μm is formed.

なお、5i02膜2が厚いのは、U−FOX構造にして
、U溝を形成する前に厚い5i02膜2を形成している
からである。
The 5i02 film 2 is thick because it has a U-FOX structure and the thick 5i02 film 2 is formed before forming the U-groove.

第1図(b)参照;次いで、若しレジスト膜マスク15
が残存していれば、それをアッシング除去して、次に、
熱燐酸液に30分間浸漬して、U溝内に露出したSi3
N4膜13をサイドエツチングする。そのエツチング量
は2000〜3000人程度にする。
Refer to FIG. 1(b); Next, resist film mask 15
If remains, remove it by ashing and then
Immersed in hot phosphoric acid solution for 30 minutes to remove Si3 exposed in the U groove.
The N4 film 13 is side etched. The amount of etching will be approximately 2,000 to 3,000 people.

第tm(c+参照;次いで、弗酸系のエツチング剤によ
ってPSG膜14をエツチング除去し、次に、弗酸・硝
酸系の強いエツチング剤によってU溝16の内部を洗浄
する。この工程において、U溝16側面に露出した5i
02膜12はサイドエツチングが起こる。
tm (see c+; next, the PSG film 14 is etched away using a hydrofluoric acid-based etching agent, and then the inside of the U groove 16 is cleaned using a strong hydrofluoric acid/nitric acid-based etching agent. 5i exposed on the side of groove 16
Side etching occurs in the 02 film 12.

第1図(d)参照;次いで、高温熱処理してU溝6の内
部を酸化して、5i02膜17(膜厚500人)を生成
した後、CVD法で多結晶シリコン膜18を成長して、
U溝16の内部を埋没させる。この場合、多結晶シリコ
ン膜18は溝側面から成長して溝中央に進むが、前記工
程によってSi3 N4膜13をサイドエツチングして
いるために、上記工程によって5i02膜12のサイド
エツチングが起こっても、Si3N4膜がひさし状に突
き出すことなく、テーパー形状のU溝上部が形成される
。従って、多結晶シリコン膜は空隙を残すことなしに、
溝中央の凹部にも多結晶シリコン膜の成長が進み、最後
に多結晶シリコン膜18の凹部が最上面に形成されて、
溝内部は完全に埋没される。
Refer to FIG. 1(d); Next, the inside of the U-groove 6 is oxidized by high-temperature heat treatment to form a 5i02 film 17 (thickness: 500 mm), and then a polycrystalline silicon film 18 is grown by CVD. ,
The inside of the U groove 16 is buried. In this case, the polycrystalline silicon film 18 grows from the side surfaces of the trench and advances toward the center of the trench, but since the Si3N4 film 13 is side-etched in the above process, even if the 5i02 film 12 is side-etched in the above process, , the tapered upper part of the U-groove is formed without the Si3N4 film protruding like a canopy. Therefore, the polycrystalline silicon film can be formed without leaving any voids.
The growth of the polycrystalline silicon film also progresses in the recess at the center of the groove, and finally, the recess of the polycrystalline silicon film 18 is formed on the top surface.
The inside of the trench will be completely buried.

第2図(el参照;次いで、多結晶シリコン膜18を研
磨除去する。そうすれば、空隙がなく、密度の高い多結
晶シリコン膜がU溝内に充填される。
2 (see el; next, the polycrystalline silicon film 18 is removed by polishing. Thereby, the U-groove is filled with a polycrystalline silicon film having no voids and high density.

しかる後、Si3 N4膜3をエツチング除去し、表面
を酸化して5i02k (図示せず)を生成して、U溝
分離帯が完成される。このような形成方法によれば、U
溝分離帯の表面は段差なく平坦化され、従って、その上
面に配線層を形成しても、断線のない信頼性の高い配線
が形成されて、ICが高倍転化される。
Thereafter, the Si3 N4 film 3 is removed by etching and the surface is oxidized to produce 5i02k (not shown) to complete the U-groove separation zone. According to such a forming method, U
The surface of the groove separation band is flattened without any difference in level, so even if a wiring layer is formed on the upper surface, highly reliable wiring without disconnection is formed, and the IC can be made to have a high conversion rate.

[発明の効果] 以上の説明から判るように、本発明にかかる形成方法に
よればICの信頼性向上に顕著に貢献するものである。
[Effects of the Invention] As can be seen from the above description, the forming method according to the present invention significantly contributes to improving the reliability of ICs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(elは本発明にかかる形成方法の工程
順断面図、 第2図(a)〜Te)は従来の形成方法の工程順断面図
である。 図において、 1.11はシリコン基板、2,12は5i02膜、3.
13はSi3N4膜、 4,14はPSG膜、5.15
はレジスト膜マスク、 6.16はU溝、     7,17は5i02膜、8
.18は多結晶シリコン膜 第1図
FIGS. 1A to 1E are step-by-step cross-sectional views of a forming method according to the present invention, and FIGS. 2A-Te are step-by-step cross-sectional views of a conventional forming method. In the figure, 1.11 is a silicon substrate, 2 and 12 are 5i02 films, and 3.
13 is Si3N4 film, 4, 14 is PSG film, 5.15
is a resist film mask, 6.16 is a U groove, 7 and 17 are 5i02 films, 8
.. 18 is a polycrystalline silicon film.

Claims (1)

【特許請求の範囲】 半導体基板上に選択的に酸化シリコン膜と窒化シリコン
膜と保護絶縁膜からなる三層のエッチング保護マスクと
を形成して、前記シリコン基板をリアクティブイオンエ
ッチングしてU溝を形成する工程、 次いで、U溝内の側面に露出した窒化シリコン膜をサイ
ドエッチングして、更に、保護絶縁膜をエッチング除去
した後、前記U溝内部に酸化シリコン膜を介して多結晶
シリコン膜を埋没させる工程が含まれてなることを特徴
とする半導体装置の製造方法。
[Claims] A three-layer etching protection mask consisting of a silicon oxide film, a silicon nitride film, and a protective insulating film is selectively formed on a semiconductor substrate, and the silicon substrate is subjected to reactive ion etching to form a U-groove. Next, after side-etching the silicon nitride film exposed on the side surfaces in the U-groove and etching away the protective insulating film, a polycrystalline silicon film is formed inside the U-groove via a silicon oxide film. 1. A method for manufacturing a semiconductor device, comprising the step of burying a semiconductor device.
JP6715987A 1987-03-19 1987-03-19 Manufacture of semiconductor device Pending JPS63232349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6715987A JPS63232349A (en) 1987-03-19 1987-03-19 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6715987A JPS63232349A (en) 1987-03-19 1987-03-19 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS63232349A true JPS63232349A (en) 1988-09-28

Family

ID=13336835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6715987A Pending JPS63232349A (en) 1987-03-19 1987-03-19 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS63232349A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6121113A (en) * 1997-06-30 2000-09-19 Fujitsu Limited Method for production of semiconductor device
US6177331B1 (en) 1997-06-04 2001-01-23 Nec Corporation Method for manufacturing semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6177331B1 (en) 1997-06-04 2001-01-23 Nec Corporation Method for manufacturing semiconductor device
US6121113A (en) * 1997-06-30 2000-09-19 Fujitsu Limited Method for production of semiconductor device

Similar Documents

Publication Publication Date Title
KR100258653B1 (en) Isolation of ic
US5447884A (en) Shallow trench isolation with thin nitride liner
US6784077B1 (en) Shallow trench isolation process
JPS6266647A (en) Forming method for oxide separating region
US5374583A (en) Technology for local oxidation of silicon
US6875670B2 (en) Trench isolation method
US4657630A (en) Method for manufacturing semiconductor device having isolating groove
US5371036A (en) Locos technology with narrow silicon trench
JPH11330226A (en) Method for isolating shallow trench
JP3439388B2 (en) Method for manufacturing semiconductor device
JPS58150A (en) Manufacture of semiconductor device
JPS63232349A (en) Manufacture of semiconductor device
JPH05849B2 (en)
US20030143817A1 (en) Method of forming shallow trench isolation
JP3773785B2 (en) Manufacturing method of semiconductor device
JPS59232437A (en) Manufacture of semiconductor device
JP2812013B2 (en) Method for manufacturing semiconductor device
US6204547B1 (en) Modified poly-buffered isolation
JPS5882532A (en) Element separation method
JPS6359538B2 (en)
JPH03263352A (en) Semiconductor device and manufacture thereof
JPH01282836A (en) Manufacture of semiconductor device
JP3296270B2 (en) Semiconductor device and manufacturing method thereof
JPH03153031A (en) Manufacture of semiconductor device
JPS6058636A (en) Forming of dielectric isolation region