JPS63231853A - Focusing and deflecting device - Google Patents

Focusing and deflecting device

Info

Publication number
JPS63231853A
JPS63231853A JP6375787A JP6375787A JPS63231853A JP S63231853 A JPS63231853 A JP S63231853A JP 6375787 A JP6375787 A JP 6375787A JP 6375787 A JP6375787 A JP 6375787A JP S63231853 A JPS63231853 A JP S63231853A
Authority
JP
Japan
Prior art keywords
sample
magnetic field
deflector
deflection
deflecting unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6375787A
Other languages
Japanese (ja)
Inventor
Katsuhiro Kuroda
勝広 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6375787A priority Critical patent/JPS63231853A/en
Publication of JPS63231853A publication Critical patent/JPS63231853A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate the adverse effect of the magnetic field change based on the operation and deflect a charged particle beam at a large angle and a high speed by arranging a magnetic field type deflecting unit and an electrostatic type deflecting unit with the specific specification and operating them. CONSTITUTION:A magnetic field type deflecting unit 33 and an electrostatic type deflecting unit 34 are arranged between a lens 2 and a sample 4, and the distance LM between the deflecting unit 33 and the sample 4 is set to nearly twice as large as the distance LS between the deflecting unit 34 and the sample 4. Both deflecting unit 33, 34 are arranged to avoid the arranged position of the lens 2, and the fluctuation of the magnetic field generated during their operation gives no disturbance to the lens 2. The operation is performed so that the deflection quantity RM of the deflecting unit 33 on the sample 4 is nearly twice as large as the deflection quantity RS, of the deflecting unit 34 on the sample 4 and the deflection directions are made opposite to each other. That is, respective deflection angles by the deflecting units 33, 34 are the same in size and different in direction, a charged particle beam 1 is made vertical to the sample 4 face and deflected at a high speed, high precision, and a large angle.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、荷電粒子線装置に係り、特に荷電粒子線を大
角度でかつ高速度で偏向するために好適な荷電粒子光学
系に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a charged particle beam device, and particularly to a charged particle optical system suitable for deflecting a charged particle beam at a large angle and at high speed.

〔従来の技術〕[Conventional technology]

荷電粒子線を細く絞ったままで大角度に偏向する為に、
特公昭48−14495号に示すような偏向収差の自己
打ち消し型荷電粒子光学系が考案されている。この荷電
粒子光学系を第2図に示す。この光学系のレンズや偏向
器は、磁界型で構成されている。第1偏向器31で偏向
された荷電粒子[1は、レンズ2による荷電粒子線のふ
りもどし作用と第2偏向器32の偏向作用とを受ける。
In order to deflect the charged particle beam to a large angle while keeping it narrow,
A charged particle optical system with self-cancelling deflection aberration has been devised as shown in Japanese Patent Publication No. 14495/1982. This charged particle optical system is shown in FIG. The lenses and deflector of this optical system are constructed of magnetic field type. The charged particles [1 deflected by the first deflector 31 are subjected to the deflection action of the charged particle beam by the lens 2 and the deflection action of the second deflector 32.

このとき、偏向器31で生じた偏向収差は、レンズ2の
軸外収差と偏向器32の偏向収差とで消去できるように
構成ならびに動作させている。
At this time, the structure and operation are such that the deflection aberration caused by the deflector 31 can be canceled by the off-axis aberration of the lens 2 and the deflection aberration of the deflector 32.

しかし、この光学系では少なくとも第2の偏向器32は
レンズ2の内部に配置する必要がある。
However, in this optical system, at least the second deflector 32 must be placed inside the lens 2.

そのために偏向器を高速度で動作させると、偏向磁界が
高速度で変化し、この交流磁界がレンズのコイルに電流
を生じさせる。この電流はレンズ磁場を乱し、レンズの
特性に影響を与える。従って。
For this purpose, when the deflector is operated at high speed, the deflection magnetic field changes at high speed, and this alternating magnetic field generates a current in the coil of the lens. This current disturbs the lens magnetic field and affects the properties of the lens. Therefore.

荷電粒子線を高速度で偏向できないという問題があった
There was a problem in that the charged particle beam could not be deflected at high speed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、偏向収差の自己打ち消しを行うために
偏向器をレンズの内部にi!il!置し、高速度で偏向
器を動作させたために生じたものである。
In the above conventional technology, a deflector is installed inside the lens in order to self-cancel the deflection aberration. Il! This was caused by operating the deflector at high speed.

本発明の目的は、この問題を解決する事にある。The purpose of the present invention is to solve this problem.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するためには、レンズの内部に偏向コイ
ルを配置しなければよい。しかし、一般に偏向器単独で
は偏向収差の自己打ち消しはできない。そこで、偏向器
のみの組み合わせによりこの自己打ち消しができれば上
記目的は達成できる。
In order to achieve the above object, it is not necessary to arrange a deflection coil inside the lens. However, in general, the deflection aberration cannot be self-cancelled using a deflector alone. Therefore, if this self-cancellation can be achieved by combining only deflectors, the above object can be achieved.

そのために、磁界型と静電型の偏向器を適度に組み合わ
せて実現できる荷電粒子光学系を考案した。
To this end, we devised a charged particle optical system that can be realized by appropriately combining magnetic field type and electrostatic type deflectors.

〔作用〕[Effect]

偏向器には磁界型と静電型があり、動作させると偏向収
差が生じる。偏向収差には色々な種類があるが、大きく
分けて幾何学収差と色収差とに分けられる。前者は三次
収差が、後者は一次の収差が光学特性に最も影響を与え
る。偏向器を単独で用いた時、前者の収差は偏向器の形
状や寸法により変化するが、後者は一意的に決まる。従
って、本発明の原理を簡単に説明するために、色収差に
ついて説明する。
There are two types of deflectors: magnetic field type and electrostatic type, and deflection aberrations occur when they are operated. There are various types of deflection aberrations, but they can be broadly divided into geometric aberrations and chromatic aberrations. For the former, third-order aberrations have the greatest influence on optical characteristics, and for the latter, first-order aberrations have the greatest influence on optical characteristics. When a deflector is used alone, the former aberration changes depending on the shape and dimensions of the deflector, but the latter is uniquely determined. Therefore, in order to simply explain the principle of the present invention, chromatic aberration will be explained.

今、加速電圧Vで加速された荷電粒子線が偏向器により
試料面上でRなる距離だけ偏向されたとすると、加速電
圧VとΔVだけ異なるエネルギーをもった荷電粒子線は
R+ΔRの距離で偏向され、八Rは次式で表わされる。
Now, if a charged particle beam accelerated by an accelerating voltage V is deflected by a distance R on the sample surface by a deflector, a charged particle beam whose energy differs from the accelerating voltage V by ΔV is deflected by a distance R + ΔR. , 8R are expressed by the following formula.

ΔR=KT−R・Δ■/v       ・・・(1)
ここで、Krは偏向色収差係数であり、磁界型ではに丁
=1.5、静電型ではKT=1である。
ΔR=KT-R・Δ■/v...(1)
Here, Kr is a deflection chromatic aberration coefficient, and KT=1.5 for the magnetic field type and KT=1 for the electrostatic type.

本発明は、この性質を利用したものである。すなわち、
磁界型偏向器の試料面上での偏向量RMを静電型偏向器
の偏向量R3に対して方向が逆でかつ約二倍(RMニー
2Rs)になるように動作させる。このとき、それぞ九
の収差は、 ΔR=KT−RM・ΔV/V       −(2)Δ
R=KT −Rs ’ ΔV/V          
−(3)となり、全体の収差ΔRは、ΔR=ΔRM+Δ
Rs=0となる。すなわち、収差を打ち消したことにな
る。従って、磁界型偏向器をレンズの内部に配置せずど
も偏向収差の自己打ち消しが行える事が分かる。
The present invention takes advantage of this property. That is,
The magnetic field type deflector is operated so that the amount of deflection RM on the sample surface is opposite to the amount of deflection R3 of the electrostatic type deflector and is approximately twice as large (RM knee 2Rs). At this time, the nine aberrations are ΔR=KT-RM・ΔV/V −(2)Δ
R=KT-Rs' ΔV/V
-(3), and the overall aberration ΔR is ΔR=ΔRM+Δ
Rs=0. In other words, aberrations are canceled out. Therefore, it can be seen that the deflection aberration can be self-cancelled without arranging the magnetic field type deflector inside the lens.

以上の説明において、磁界型と静電型の配置に関しては
なんらの制約も与えていない。すなわち、これらの配置
は任意に行なえる。逆に、これらの配置に制約を加える
と上記以外の効果が更に出てくる。これについては、〔
実施例〕で述べる。
In the above explanation, no restrictions are given regarding the arrangement of the magnetic field type and the electrostatic type. That is, these arrangements can be made arbitrarily. Conversely, adding constraints to these arrangements will produce effects other than those described above. Regarding this, please refer to [
Example].

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。 An embodiment of the present invention will be described below with reference to FIG.

まず、本発明の構成とその動作について説明する。荷電
粒子銃より放射された荷電粒子線1は、レンズ2により
試料4に細く絞られて照射される。
First, the configuration and operation of the present invention will be explained. A charged particle beam 1 emitted from a charged particle gun is narrowly focused and irradiated onto a sample 4 by a lens 2 .

このレンズ2の試料4との間には、磁界型の偏向器33
と静電型の偏向器34とが配設されている。
A magnetic field type deflector 33 is provided between the lens 2 and the sample 4.
and an electrostatic deflector 34 are provided.

また、それぞれを単独で用いたとすると、それぞれの偏
向量(Rn v Rs )は同一で方向が逆になるよう
に動作する。このような条件で、これらの偏向器を同時
に動作させると、〔作用〕で説明したように偏向収差を
打ち消す事ができる。
Further, if each is used alone, the deflection amount (Rn v Rs ) of each is the same and the direction is opposite. If these deflectors are operated simultaneously under such conditions, the deflection aberration can be canceled as explained in [Operation].

本実施例では、偏向器33と試料4との距離(LH)が
偏向器34と試料4との距離(Ls)のほぼ二倍の関係
をもって配置した。このとき、偏向器33で荷電粒子1
7A1をOMなる角度偏向したとすると、偏向器34で
はこの荷電粒子線をθ5(=−0M)の角度で偏向すれ
ばよい。このように構成すると、第1図から容易に分か
るように荷電粒子線1の試料4に対して垂直に入射する
効果も生じる。
In this embodiment, the distance (LH) between the deflector 33 and the sample 4 is approximately twice the distance (Ls) between the deflector 34 and the sample 4. At this time, the charged particle 1 is
If 7A1 is deflected at an angle of OM, the deflector 34 may deflect this charged particle beam at an angle of θ5 (=-0M). With this configuration, as can be easily seen from FIG. 1, there is also an effect that the charged particle beam 1 is incident perpendicularly to the sample 4.

以上ごく一例を示したが、例えば、磁界型偏向器33と
静電型偏向器34とを同一場所に配置しくLH=LS)
 、fJM=−os/2の関係をもって動作させてもよ
い。このように構成すれば、レンズ2と試料417jの
距離を短かくすることができる。
Although only one example has been shown above, for example, the magnetic field type deflector 33 and the electrostatic type deflector 34 may be placed at the same location (LH=LS).
, fJM=-os/2. With this configuration, the distance between the lens 2 and the sample 417j can be shortened.

要はレンズと試料の間に磁界型と静電型の偏向器を配置
し、それぞれを単独で動作したときに試料面上での偏向
量が前者が後者のほぼ二倍の量となるように動作すれば
、本発明の本質になんらの問題も生じない。
The key is to place a magnetic field type and an electrostatic type deflector between the lens and the sample, so that when each is operated independently, the amount of deflection on the sample surface is approximately twice as much for the former as for the latter. If it works, there will be no problem with the essence of the invention.

本実施例において、1ノンズ2や磁界型偏向器33、静
電型偏向器34それぞれ一個のみで表わしたが、これら
の個数は本発明の実施例に限ることなく複数個用いるこ
ができることは訂うまでもない。また、レンズ2は磁界
型で示したが、静電型であっても問題は生じない。
In this embodiment, only one nons 2, one magnetic field deflector 33, and one electrostatic deflector 34 are used, but it should be noted that the number of these deflectors is not limited to the embodiments of the present invention and a plurality of them can be used. It's no good. Further, although the lens 2 is shown as a magnetic field type lens, there is no problem even if it is an electrostatic type lens.

〔発明の効果〕〔Effect of the invention〕

以上に述べたごとく、本発明によれば、レンズの内部に
偏向器を配置することなく偏向収差の打ち消しができ、
また荷電粒子線を試料に垂直に入射させることができる
ので、電子線描画装置のように、高速度で、高精度で、
大角度に偏向できる集束偏向系が提供できる。
As described above, according to the present invention, deflection aberration can be canceled without arranging a deflector inside the lens.
In addition, since the charged particle beam can be applied perpendicularly to the sample, it can be used at high speed and with high precision, like an electron beam lithography system.
A focusing/deflecting system capable of deflecting at a large angle can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

1・・・荷電粒子線、2・・・対物レンズ、3・・・磁
界型側内器、4・・・試料、31・・・第一偏向器、3
2・・・第二偏向器、33・・・磁界型偏向器、34・
・・静電型偏向器。
DESCRIPTION OF SYMBOLS 1... Charged particle beam, 2... Objective lens, 3... Magnetic field type side device, 4... Sample, 31... First deflector, 3
2... Second deflector, 33... Magnetic field type deflector, 34...
...An electrostatic deflector.

Claims (1)

【特許請求の範囲】 1、荷電粒子銃から出た荷電粒子線を細く絞る複数のレ
ンズ手段、上記荷電粒子線を試料面上で二次元的に偏向
する偏向手段とを具備した装置において、上記偏向手段
は磁界型偏向器と静電型偏向器とから構成され、かつ上
記レンズと試料との間に配設し、磁界型偏向器の試料面
上での偏向量を静電型偏向器の試料面上での偏向量のほ
ぼ二倍とし、それぞれの偏向方向が逆向きになるように
動作させたことを特徴とする集束偏向装置。 2、上記磁界型偏向器と静電型偏向器において、磁界型
偏向器と試料との距離を静電型偏向器と試料との距離の
ほぼ二倍となるように構成したことを特徴とする第1項
記載の集束偏向装置。
[Scope of Claims] 1. An apparatus comprising a plurality of lens means for narrowing a charged particle beam emitted from a charged particle gun, and a deflection means for two-dimensionally deflecting the charged particle beam on a sample surface, The deflection means is composed of a magnetic field type deflector and an electrostatic type deflector, and is arranged between the above lens and the sample, and the amount of deflection of the magnetic field type deflector on the sample surface is controlled by the amount of deflection of the electrostatic type deflector. A focusing/deflecting device characterized in that the amount of deflection is approximately twice that on the sample surface, and the deflection is operated in opposite directions. 2. The above magnetic field deflector and electrostatic deflector are characterized in that the distance between the magnetic field deflector and the sample is approximately twice the distance between the electrostatic deflector and the sample. A focusing/deflecting device according to claim 1.
JP6375787A 1987-03-20 1987-03-20 Focusing and deflecting device Pending JPS63231853A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6375787A JPS63231853A (en) 1987-03-20 1987-03-20 Focusing and deflecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6375787A JPS63231853A (en) 1987-03-20 1987-03-20 Focusing and deflecting device

Publications (1)

Publication Number Publication Date
JPS63231853A true JPS63231853A (en) 1988-09-27

Family

ID=13238584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6375787A Pending JPS63231853A (en) 1987-03-20 1987-03-20 Focusing and deflecting device

Country Status (1)

Country Link
JP (1) JPS63231853A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02216746A (en) * 1989-02-16 1990-08-29 Shimadzu Corp Electronic optical system of scanning type electron diffraction device
JP2001148227A (en) * 1999-11-12 2001-05-29 Advantest Corp Polarization device for separating two particle beams

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02216746A (en) * 1989-02-16 1990-08-29 Shimadzu Corp Electronic optical system of scanning type electron diffraction device
JP2001148227A (en) * 1999-11-12 2001-05-29 Advantest Corp Polarization device for separating two particle beams

Similar Documents

Publication Publication Date Title
KR101481950B1 (en) Projection lens arrangement
KR101570974B1 (en) Projection lens arrangement
NL2007604C2 (en) Charged particle system comprising a manipulator device for manipulation of one or more charged particle beams.
US20050201246A1 (en) Particle-optical projection system
JP2011514633A5 (en)
JP2011517130A5 (en)
KR20120098627A (en) Charged particle optical system with multiple beams
JP2023517626A (en) Specific improvements for multi-beam generation units and multi-beam deflection units
US7164139B1 (en) Wien filter with reduced chromatic aberration
JP2502425B2 (en) Charged particle beam deflector
KR20010007211A (en) Apparatus and method for image-forming charged particle beams and charged particle beam exposure apparatus
US9355818B2 (en) Reflection electron beam projection lithography using an ExB separator
JP2023512919A (en) Charged particle manipulation device
JPS61101944A (en) Charged particle beam focusing system
JP4822848B2 (en) Charged particle beam equipment
JPS63231853A (en) Focusing and deflecting device
JPS5851384B2 (en) Deflection method of charged particle beam
US6066855A (en) Charged-particle-beam optical system exhibiting aberration correction
US6078382A (en) Charged-particle-beam projection-optical system
JP3772067B2 (en) Charged particle beam irradiation equipment
JPH0234426B2 (en)
JP5555437B2 (en) Electron beam drawing device
JPH01166450A (en) Charged particle optical system
US6489620B1 (en) Astigmatism-correction device and charged-particle-beam microlithography apparatus and methods comprising same
TW202240625A (en) Electron optical column and method for directing a beam of primary electrons onto a sample