JPS63231269A - Wind speed measuring instrument for air conditioning equipment for vehicle - Google Patents

Wind speed measuring instrument for air conditioning equipment for vehicle

Info

Publication number
JPS63231269A
JPS63231269A JP6394787A JP6394787A JPS63231269A JP S63231269 A JPS63231269 A JP S63231269A JP 6394787 A JP6394787 A JP 6394787A JP 6394787 A JP6394787 A JP 6394787A JP S63231269 A JPS63231269 A JP S63231269A
Authority
JP
Japan
Prior art keywords
wind speed
thermistor
temperature
measuring instrument
thermistors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6394787A
Other languages
Japanese (ja)
Inventor
Junichi Noda
淳一 野田
Yasuo Kanehata
鹿子幡 庸雄
Takemasa Horiguchi
兵誠 堀口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Automotive Systems Engineering Co Ltd
Original Assignee
Hitachi Automotive Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Automotive Engineering Co Ltd
Priority to JP6394787A priority Critical patent/JPS63231269A/en
Publication of JPS63231269A publication Critical patent/JPS63231269A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To secure sufficient heat generation even when the temperature of an air flow is low and to suppress the supply of excessive electric power even when the air flow temperature is high by driving a thermosensitive element with a constant current. CONSTITUTION:Thermistors 2 for correction are provided in an air passage oppositely to wind speed thermistors 1. The wind speed thermistors 1 are applied with a voltage Ea through a constant current driving circuit 5 and the thermistor 2 for correction are applied with a voltage Ec through a resistance Rc. The outputs of the wind speed thermistors 1 and thermistors 2 for correction are connected to a voltage measuring instrument 4 through a switching circuit 3. The output of the voltage measuring instrument 4 is supplied to an arithmetic controller 6, which calculates a wind speed from the output of the voltage measuring instrument 4.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は車両用空調機の風速測定装置に係り、特に、車
両用空調機の気流温度を広範囲に亘って測定するに好適
な車両用空調機の風速測定装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a wind speed measuring device for a vehicle air conditioner, and particularly to a vehicle air conditioner suitable for measuring the airflow temperature of a vehicle air conditioner over a wide range. Related to wind speed measuring device for aircraft.

〔従来の技術〕[Conventional technology]

車両用空調機のヒータあるいはクーラの吹出口の風速を
制御するには、低コストで信頼性の高い測定システムが
必要とされている。そこで車両用空調機の風速を測定す
る装置としては、白金やニクロム線などの電熱線に電流
を流して加熱したものを気流中におき、電熱線が気流に
よって冷却される現象を利用し、電熱線の温度変化から
風速を測定するようにしたもの、例えばホットワイヤ式
風速計や熱電式風速計が知られている。又、サー゛ミス
タなどの自己加熱型感熱抵抗体を受感部とし、この受感
部に直列に配置された抵抗からなる回路に定電圧を印加
し、自己加熱型感熱抵抗体を発熱させ、気流によって変
化する熱伝達率の変化を、その抵抗変化としてとらえる
測定装置も知られ・でいる。
A low-cost, highly reliable measurement system is needed to control the air velocity at the outlet of a heater or cooler in a vehicle air conditioner. Therefore, as a device to measure the wind speed of a vehicle air conditioner, a heating wire such as a platinum or nichrome wire is heated by passing an electric current through it, and then placed in the airflow, and the heating wire is cooled by the airflow. Devices that measure wind speed from temperature changes in hot wires, such as hot wire anemometers and thermoelectric anemometers, are known. In addition, a self-heating heat-sensitive resistor such as a thermistor is used as a sensing part, and a constant voltage is applied to a circuit consisting of a resistor arranged in series with this sensing part to cause the self-heating heat-sensitive resistor to generate heat. There are also known measuring devices that detect changes in heat transfer coefficient due to airflow as changes in resistance.

なお、広範囲の気流温度に対応できる風速検出体として
は、特公昭46−26278号公報及び特公昭49−3
1355号公報に記載されているような熱電式風速計用
検出体が知られている。又自己加熱型感熱抵抗体を定電
圧駆動し、空調機の冷媒乾き度を制御するものとして特
公昭61−1663号公報に記載されているものが知ら
れている。
In addition, as wind speed detectors that can handle a wide range of airflow temperatures, Japanese Patent Publication No. 46-26278 and Japanese Patent Publication No. 49-3
A detection body for a thermoelectric anemometer as described in Japanese Patent No. 1355 is known. Furthermore, there is known a device for controlling the dryness of refrigerant in an air conditioner by driving a self-heating type heat-sensitive resistor at a constant voltage, as described in Japanese Patent Publication No. 1663/1983.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術においては、測定精度や応答性に優れたも
のがあるが、受感部の信頼性に乏しく回路が複雑なため
高コストとなるという問題があった。又第3図に示され
るように、従来の装置においては、自己加熱型感熱抵抗
体1を定電圧駆動して風速測定を行っているため、低コ
ストではあるが、気流温度によって抵抗体1の抵抗値が
変化し、広範囲に亘っての気流温度の測定ができないと
いう不具合があった。即ち、第4図に示されるように、
気流温度が低くなると感熱抵抗体1の抵抗値が増し、そ
れに伴って、流れる電流が減少し、抵抗体1の十分な発
熱が不可能となり、風速測定の精度が著しく低下する。
Some of the above-mentioned conventional techniques have excellent measurement accuracy and responsiveness, but there are problems in that the reliability of the sensing section is poor and the circuit is complex, resulting in high cost. In addition, as shown in Fig. 3, in the conventional device, the wind speed is measured by driving the self-heating type heat-sensitive resistor 1 at a constant voltage. There was a problem in that the resistance value changed, making it impossible to measure the airflow temperature over a wide range. That is, as shown in FIG.
When the airflow temperature decreases, the resistance value of the heat-sensitive resistor 1 increases, and accordingly, the flowing current decreases, making it impossible for the resistor 1 to generate sufficient heat, and the accuracy of wind speed measurement decreases significantly.

逆に、気流温度が高くなると抵抗体1の抵抗値が急激に
減少するため、損傷したりあるいは特性が劣化したり、
温度測定ができないという不具合があった。
Conversely, when the airflow temperature increases, the resistance value of resistor 1 decreases rapidly, resulting in damage or deterioration of characteristics.
There was a problem that temperature measurement was not possible.

本発明の目的は、気流温度を広範囲に亘って測定するこ
とができる車両用空調機の風速測定装置を提供すること
にある。
An object of the present invention is to provide a wind speed measuring device for a vehicle air conditioner that can measure airflow temperature over a wide range.

〔問題点を解決するための手段〕[Means for solving problems]

前記目的を達成するために、本発明は、空調用空気通路
中の気流の温度に感応し、温度に応じた信号を出力する
感熱素子と、感熱素子を定電流駆動する駆動手段と、感
熱素子の出力から風速を測定する測定手段と、を有する
車両用空調機の風速測定装置を構成したものである。
In order to achieve the above object, the present invention provides a heat-sensitive element that is sensitive to the temperature of airflow in an air conditioning air passage and outputs a signal according to the temperature, a drive means that drives the heat-sensitive element with a constant current, and a heat-sensitive element that This is a wind speed measuring device for a vehicle air conditioner, which has a measuring means for measuring wind speed from the output of the air conditioner.

〔作用〕[Effect]

感熱素子を定電流駆動すると、気流温度が低温でも十分
な発熱を保証することができ、又気流温度が高温でも感
熱素子の抵抗減少に伴う過剰電力の供給を抑制すること
ができる。これにより気流温度の広範囲に亘った風速測
定が可能となる。
When the heat-sensitive element is driven with a constant current, sufficient heat generation can be ensured even when the airflow temperature is low, and even when the airflow temperature is high, it is possible to suppress the supply of excessive power due to a decrease in the resistance of the heat-sensitive element. This makes it possible to measure wind speed over a wide range of airflow temperatures.

〔実施例〕〔Example〕

以下、本発明の一実施例を図面に基づいて説明する。 Hereinafter, one embodiment of the present invention will be described based on the drawings.

第1図には、本発明の好適な実施例の構成が示されてい
る。第1図において、自己加熱型感熱抵抗体(風速用サ
ーミスタ)1は感熱素子として、気流を直接熱交換可能
に空調用の空気通路中に設けられている。温度検知用感
熱抵抗体(補正用サーミスタ)2は風速用サーミスタ1
と相対抗して空気通路中に設けられている。各風速用サ
ーミスタ1には定電流駆動回路5を介して電圧Eaが印
加されており、各補正用サーミスタ2には抵抗Reを介
して電気ECが印加されている。この補正用サーミスタ
2は風速用サーミスタ1に当る気流をできるだけ乱すこ
となく、又風速用サーミスタ1のふく射の影響のない位
置で、しかも風速用サーミスタ1に当る気流温度を測定
可能な位置、例えば気流方向に直角に相互に近づけて設
置されている。そして各風測用サーミスタ1と補正用サ
ーミスタ2の出力は切換回路3を介して電圧測定装置4
へ接続されている。電圧測定装置4の出力は演算制御装
置6に供給されており、演算制御装置6において電圧測
定装置4の出力から風速を測定するようになっている。
FIG. 1 shows the configuration of a preferred embodiment of the present invention. In FIG. 1, a self-heating heat-sensitive resistor (wind velocity thermistor) 1 is installed as a heat-sensitive element in an air passage for air conditioning so that heat can be exchanged directly with airflow. Thermal resistor for temperature detection (correction thermistor) 2 is thermistor 1 for wind speed
It is provided in the air passage in opposition to the air passage. A voltage Ea is applied to each thermistor 1 for wind speed via a constant current drive circuit 5, and an electric voltage EC is applied to each thermistor 2 for correction via a resistor Re. The correction thermistor 2 is placed at a position where the airflow that hits the wind speed thermistor 1 is not disturbed as much as possible, and where it is not affected by the radiation of the wind speed thermistor 1, and where the airflow temperature that hits the wind speed thermistor 1 can be measured, for example, the air flow. They are placed close to each other at right angles to the direction. The output of each wind measuring thermistor 1 and correction thermistor 2 is connected to a voltage measuring device 4 via a switching circuit 3.
connected to. The output of the voltage measuring device 4 is supplied to the arithmetic and control device 6, and the wind speed is measured from the output of the voltage measuring device 4 in the arithmetic and control device 6.

即ち演算制御装置6は測定手段として機能している。That is, the arithmetic and control unit 6 functions as a measuring means.

風速サーミスタ1を駆動するに際しては、第2図に示さ
れるように各風速サーミスタ1を直列接続し定電流駆動
回路5によって駆動することも可能であり、又第5図に
示されるように、直列接続された風速用サーミスタ1に
それぞれ定電流駆動回路5を設けるようにすることも可
能である。又、定電流回路としては、第6図に示される
ように、3端子レギユレータを用いたものあるいは、第
7図に示されるように、演算増幅器8.トランジスタ9
.抵抗R2,R3,R4,R5,R6,R7、ツェナダ
イオードD1を用いたものを適用することができる。
When driving the wind speed thermistor 1, it is possible to connect each wind speed thermistor 1 in series and drive it by a constant current drive circuit 5 as shown in FIG. It is also possible to provide a constant current drive circuit 5 for each connected wind speed thermistor 1. The constant current circuit may be one using a three-terminal regulator as shown in FIG. 6, or an operational amplifier 8 as shown in FIG. transistor 9
.. It is possible to use resistors R2, R3, R4, R5, R6, R7 and a Zener diode D1.

ここで、風速用サーミスタの印加電圧Ea、風速用サー
ミスタ1の抵抗値Rth、風速用サーミスタ1の両端電
圧Eth、回路に流れる定電流■、気流温度Ta、風速
用サーミスタ1の温度Tth、風速用サーミスタ1のβ
定数β、温度Taにおける風速用サーミスタ1の抵抗値
Ra、強制対流時における風速用サーミスタ1の熱伝達
率α、このときの風速Vが与えられると、一般にαとV
は次の(1)式に示される関係で表わされる。
Here, the applied voltage Ea of the thermistor 1 for wind speed, the resistance value Rth of the thermistor 1 for wind speed, the voltage Eth across the thermistor 1 for wind speed, the constant current ■ flowing in the circuit, the air flow temperature Ta, the temperature Tth of the thermistor 1 for wind speed, and the temperature Tth of the thermistor 1 for wind speed, β of thermistor 1
Given the constant β, the resistance value Ra of the thermistor 1 for wind speed at temperature Ta, the heat transfer coefficient α of the thermistor 1 for wind speed during forced convection, and the wind speed V at this time, generally α and V
is expressed by the relationship shown in the following equation (1).

α=aVb            ・・・(1)又、
サーミスタ1の抵抗と温度の関係は次の(2)式で表わ
される。
α=aVb...(1) Also,
The relationship between the resistance of the thermistor 1 and the temperature is expressed by the following equation (2).

Rth= Ra exp(β(1/ Tth −1/ 
T a ))・・・(2) 従って、 Tth=  1  /((1/  β)Q n(R,t
h/ Ra)+  1  / Ta)・・・(3) ここでTa及びTaは絶対温度である。
Rth= Ra exp(β(1/ Tth −1/
T a ))...(2) Therefore, Tth= 1/((1/β)Q n(R, t
h/Ra)+1/Ta)...(3) Here, Ta and Ta are absolute temperatures.

今風速用サーミスタ1が失なう熱量をQとすれば、 Q=Aa (Tth−Ta)      ・・・(4)
と表わせられる。また Q = E th・工           ・・・(
5)とも表わせる。
If the amount of heat lost by the wind speed thermistor 1 is Q, then Q=Aa (Tth-Ta)...(4)
It can be expressed as Also, Q = E th · Engineering ... (
5) can also be expressed.

従って(1)、 (’l)、 (5)式より。Therefore, from equations (1), ('l), and (5).

V=Ct(Eth”I/ (Tth  Ta))  −
(6)が得られる。
V=Ct(Eth”I/(Tth Ta)) −
(6) is obtained.

上記理論式に基づいて風速とサーミスタ1の両端電圧E
thの関係を実測したところ、第8図に示されるような
測定結果が得られた。第8図から、測定結果はほぼ理論
値を一致することが確認された。
Based on the above theoretical formula, the wind speed and the voltage E across the thermistor 1 are
When the relationship between th and th was actually measured, the measurement results shown in FIG. 8 were obtained. From FIG. 8, it was confirmed that the measurement results almost matched the theoretical values.

二のように、本実施例においては、風速用サーミスタ1
を定電流で駆動するようにしたため、気流温度が低温で
も十分な発熱を保証することができ、又気流温度が高温
でもサーミスタ1の抵抗減少に伴う過剰電流を抑えるこ
とができる。
2, in this embodiment, the wind speed thermistor 1
Since it is driven with a constant current, it is possible to ensure sufficient heat generation even when the airflow temperature is low, and even when the airflow temperature is high, it is possible to suppress excessive current due to a decrease in the resistance of the thermistor 1.

又、本実施例においては、単一の電源回路に複数個の風
速用サーミスタを直列接続しても各サーミスタが相互に
干渉することなく動作させることができ、複数の風速測
定においても広範囲に亘った温度測定が可能となる。又
さらに、風速用サーミスタ1を定電流駆動しているため
、気流温度が低温になり、サーミスタ1の抵抗が増加し
てもサーミスタ1の検出による温度と気流温度との差を
十分に得ることができる。
Furthermore, in this embodiment, even if multiple wind speed thermistors are connected in series to a single power supply circuit, each thermistor can be operated without interfering with each other, and even in multiple wind speed measurements, it is possible to operate over a wide range. temperature measurement becomes possible. Furthermore, since the thermistor 1 for wind speed is driven with a constant current, even if the airflow temperature becomes low and the resistance of thermistor 1 increases, it is not possible to obtain a sufficient difference between the temperature detected by thermistor 1 and the airflow temperature. can.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、感熱素子を定電流駆動するようにした
ため、気流温度が低温でも十分な発熱を保証することが
でき、又気流温度が高温でも感熱素子の抵抗を減少に伴
う過剰電力の供給を抑制することが可能となり、広範囲
な気流温度における風速を高精度に測定することができ
る。
According to the present invention, since the heat-sensitive element is driven with a constant current, sufficient heat generation can be guaranteed even when the airflow temperature is low, and even when the airflow temperature is high, excess power is supplied by reducing the resistance of the heat-sensitive element. This makes it possible to suppress wind speed over a wide range of airflow temperatures, making it possible to measure wind speed with high precision.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す全体構成図、第2図は
サーミスタ1の駆動回路図、第3図は従来例の駆動回路
図、第4図は気流温度と風速用サーミスタ1の温度上昇
との関係を示す線図、第5図は本発明に係る駆動回路の
他の構成図、第6図及び第7図はそれぞれ本発明に係る
駆動回路の他の構成図、第8図は風速と出力電圧との関
係を示す線図である。 1・・・自己加熱型感熱抵抗体、2・・・温度検知用感
熱第1区 第2図 #4図 第50 y、4図
Fig. 1 is an overall configuration diagram showing an embodiment of the present invention, Fig. 2 is a drive circuit diagram of the thermistor 1, Fig. 3 is a drive circuit diagram of a conventional example, and Fig. 4 is a diagram of the thermistor 1 for controlling air flow temperature and wind speed. A diagram showing the relationship with temperature rise, FIG. 5 is another configuration diagram of the drive circuit according to the present invention, FIGS. 6 and 7 are respectively other configuration diagrams of the drive circuit according to the present invention, and FIG. 8 is a diagram showing the relationship between wind speed and output voltage. 1...Self-heating type heat-sensitive resistor, 2...Thermal sensitive 1st section for temperature detection Fig. 2 #4 Fig. 50 y, Fig. 4

Claims (1)

【特許請求の範囲】[Claims] 1.空調用空気通路中の気流の温度に感応し、温度に応
じた信号を出力する感熱素子と、感熱素子を定電流駆動
する駆動手段と、感温素子の出力から風速を測定する測
定手段と、を有することを特徴とする車両用空調機の風
速測定装置。
1. a heat-sensitive element that is sensitive to the temperature of the airflow in an air conditioning air passage and outputs a signal according to the temperature; a driving means that drives the heat-sensitive element at a constant current; and a measuring means that measures wind speed from the output of the temperature-sensitive element; A wind speed measuring device for a vehicle air conditioner, characterized by having the following.
JP6394787A 1987-03-20 1987-03-20 Wind speed measuring instrument for air conditioning equipment for vehicle Pending JPS63231269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6394787A JPS63231269A (en) 1987-03-20 1987-03-20 Wind speed measuring instrument for air conditioning equipment for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6394787A JPS63231269A (en) 1987-03-20 1987-03-20 Wind speed measuring instrument for air conditioning equipment for vehicle

Publications (1)

Publication Number Publication Date
JPS63231269A true JPS63231269A (en) 1988-09-27

Family

ID=13244049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6394787A Pending JPS63231269A (en) 1987-03-20 1987-03-20 Wind speed measuring instrument for air conditioning equipment for vehicle

Country Status (1)

Country Link
JP (1) JPS63231269A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0360070U (en) * 1989-10-16 1991-06-13
US6485021B1 (en) * 1995-11-10 2002-11-26 Nikuni Machinery Ind Co Mechanical seal unit with temporarily connecting inlet and outlet grooves

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0360070U (en) * 1989-10-16 1991-06-13
US6485021B1 (en) * 1995-11-10 2002-11-26 Nikuni Machinery Ind Co Mechanical seal unit with temporarily connecting inlet and outlet grooves

Similar Documents

Publication Publication Date Title
US7140263B2 (en) Anemometer circuit
JPH01150817A (en) Mass flow meter
JPH0132419B2 (en)
JPWO2003016833A1 (en) Thermal flow meter
US6443003B1 (en) Thermoelectric air flow sensor
US6763711B1 (en) Air flow sensor using measurement of rate of heat loss
US2755999A (en) Temperature measuring and control apparatus
JPS63231269A (en) Wind speed measuring instrument for air conditioning equipment for vehicle
JP6677311B2 (en) Wind speed measurement device and air volume measurement device
JP2952438B2 (en) Thermal flow meter
JP2879256B2 (en) Thermal flow meter
JP3706283B2 (en) Flow sensor circuit
JP3153787B2 (en) Heat conduction parameter sensing method and sensor circuit using resistor
JPH0449893B2 (en)
JP2771949B2 (en) Thermal flow sensor
JPH09243423A (en) Flow rate measuring apparatus
SU788004A1 (en) Constant-temperature thermoanemometer
JPH10142249A (en) Flow sensor
JPS61105422A (en) Flow rate measuring instrument
SU777586A1 (en) Method of graduating thermoanemometer
SU1016747A1 (en) Hot-wire anenometer
JPH02213767A (en) Flow sensor
SU1170354A1 (en) Gas or liquid flow velocity pulsation thermal converter
SU448440A1 (en) Temperature control device
JPS61288133A (en) Measuring instrument for radiation heating value